
Citation: Ku, H.-H.; Lung, C.-F.; Chi,

C.-H. Design of an Artificial

Intelligence of Things-Based Sesame

Oil Evaluator for Quality Assessment

Using Gas Sensors and Deep

Learning Mechanisms. Foods 2023, 12,

4024. https://doi.org/10.3390/

foods12214024

Academic Editor: Wenjing Cui

Received: 18 September 2023

Revised: 15 October 2023

Accepted: 31 October 2023

Published: 3 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Design of an Artificial Intelligence of Things-Based Sesame Oil
Evaluator for Quality Assessment Using Gas Sensors and Deep
Learning Mechanisms
Hao-Hsiang Ku 1,* , Ching-Fu Lung 2 and Ching-Ho Chi 3

1 Institute of Food Safety and Risk Management, National Taiwan Ocean University,
Keelung City 202301, Taiwan

2 Department of Food Science, National Taiwan Ocean University, Keelung City 202301, Taiwan;
0093a005@mail.ntou.edu.tw

3 Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University,
Tainan City 701401, Taiwan; s68091029@gs.ncku.edu.tw

* Correspondence: kuhh@email.ntou.edu.tw

Abstract: Traditional oil quality measurement is mostly based on chemical indicators such as acid
value, peroxide value, and p-anisidine value. This process requires specialized knowledge and
involves complex steps. Hence, this study designs and proposes a Sesame Oil Quality Assessment
Service Platform, which is composed of an Intelligent Sesame Oil Evaluator (ISO Evaluator) and a
Cloud Service Platform. Users can quickly assess the quality of sesame oil using this platform. The
ISO Evaluator employs Artificial Intelligence of Things (AIoT) sensors to detect changes in volatile
gases and the color of the oil during storage. It utilizes deep learning mechanisms, including Artificial
Neural Network (ANN), Convolutional Neural Network (CNN), and Long Short-Term Memory
(LSTM) to determine and evaluate the quality of the sesame oil. Evaluation results demonstrate that
the linear discriminant analysis (LDA) value is 95.13. The MQ2, MQ3, MQ4, MQ7, and MQ8 sensors
have a positive correlation. The CNN combined with an ANN model achieves a Mean Absolute
Percentage Error (MAPE) of 8.1820% for predicting oil quality, while the LSTM model predicts future
variations in oil quality indicators with a MAPE of 0.44%. Finally, the designed Sesame Oil Quality
Assessment Service Platform effectively addresses issues related to digitization, quality measurement,
supply quality observation, and scalability.

Keywords: sesame oil; artificial intelligence of things; artificial neural network; convolutional neural
network; long short-term memory; deep learning

1. Introduction

In recent years, a significant rise in food safety incidents, including melamine, plas-
ticizers, contaminated starch, toxic soy sauce, recycled cooking oil, and tainted eggs, has
brought about substantial threats and risks to human life and health [1–3]. As a result, there
has been an increased emphasis on food safety. Oil products, being an integral component
of daily consumption, can have widespread implications if their quality is compromised.
Therefore, it is crucial to exercise vigilance and promptly detect any changes in oil quality
before consumption. Among various oil products, flavored oils play a vital role in enhanc-
ing the taste of culinary preparations. Sesame oil, specifically used in Asian cuisine, stands
out due to its unique nutritional composition and distinct flavor profile, setting it apart
from other oils. Furthermore, extensive research has shown that sesame oil contains a
higher concentration of antioxidants compared to most other oil products. The sesame oil
has been stored for an extended period, and oxidation indicators, such as peroxide value
and p-anisidine value, are noticeably lower than those of other oil products. This suggests
that sesame oil is more effective in antioxidation [4]. Therefore, the topic of developing a
simple method for the public to assess the quality of sesame oil is a worthy research subject.
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Lipid oxidation poses a significant food safety concern, particularly in the context of
edible oils. This process not only leads to the deterioration of the sensory properties of oil
products but also results in the formation of compounds like hydroperoxides and aldehydes,
which can have adverse health effects on consumers [5,6]. To gauge the freshness and safety
of edible oils, peroxide values are often used as a critical indicator. Fresh oils typically
exhibit peroxide values below 10 meq/kg, while values exceeding 100 meq/kg have been
associated with food poisoning incidents [7]. The need for accurate and efficient methods
to monitor edible oil quality has prompted the adoption of advanced technology, where
researchers in the food industry are exploring the integration of information technologies
into traditional measurement methods [8]. Therefore, to assess the quality of oil products,
related studies have been roughly classified into three distinct methodologies.

(1) Chemical analyses of oils: In the assessment of the oxidative stability of sesame
oil, extracted using different methods or obtained through roasting processes at
various temperatures; commonly used chemical indicators include acid value (AV),
peroxide value (POV), and p-anisidine value (AnV) [9–12]. These indicators are
assessed using a variety of techniques, including paper-based analytical devices
(PADs) employing an iodometric method [13], room-temperature phosphorescence
(RTP)-based sensors [14], and spectroscopies like near-infrared (NIR), mid-infrared
absorption, and Raman scattering combined with partial least squares regression
(PLSR) for quick and sensitive POV estimation [15,16]. Additionally, techniques such
as surface-enhanced Raman spectroscopy (SERS) [17], spectrophotometric iodide-
dependent methods [18], and chromatography methods (GC-FID and HPLC-ELSD)
are employed to measure various aspects of edible oil quality and authenticity [19].

(2) Data Analysis: Researchers employ various methods to assess the quality and au-
thenticity of edible oils. Liu et al., use Terahertz spectra to evaluate peanut oil’s
peroxide value (POV) and employ genetic algorithms (GA) and principal component
analysis (PCA) to process THz data, ultimately achieving better correlation between
absorbance spectra and POV [20]. Surya et al., implement Long Short-Term Memory
(LSTM) with the seagull optimization algorithm (SOA) for improved classification
and authenticity assessment, outperforming existing techniques [21]. Dou et al. utilize
headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS) to detect
sesame oil adulteration effectively, distinguishing authentic and counterfeit products
using chemometric methods [22]. Meng et al., apply Fourier-transform infrared (FTIR)
and visible–near-infrared (Vis-NIR) spectroscopy in detecting adulterated olive oil,
achieving high accuracy and a user-friendly technique [23]. Liu et al., develop a visual
array sensor for sesame oil adulteration detection, reaching a 100% classification
accuracy [24]. Chen et al., create a model for detecting sesame oil adulteration using
fatty acids, phytosterols, and tocopherols and employ chemometric techniques for
effective screening and verification [25]. These methods involve the utilization of
headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS) and various
spectroscopic techniques, along with analytical algorithms, such as Terahertz spectra
and Long Short-Term Memory (LSTM), combined with chemometrics for identifying
adulteration and assessing oil quality.

(3) Internet of Things Technology: Researchers have harnessed electronic nose (E-nose)
technology to enhance the detection of adulteration and assess the quality of edible oils.
Aghili et al., effectively employed E-nose in conjunction with chemometric methods
to detect low-level fraud in vegetable oils, presenting a promising approach for
improving efficiency and ensuring safety [26–28]. Zarezadeh et al., fused E-nose with
ultrasound methods, achieving a significant increase in classification accuracy. Their
artificial neural networks (ANN) method reached an impressive 95.51% accuracy in
identifying fraudulent olive oil samples [29]. Han et al., applied E-nose alongside gas
chromatography–ion mobility spectrometry (GC-IMS) to differentiate oils and detect
adulteration in safflower seed oil (SSO), making a valuable contribution to SSO quality
assessment [30]. Xing et al., discussed the potential of E-nose as a low-cost, portable,
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and sensitive technology for food quality assessment, addressing challenges and
prospects in odor-based food safety and quality monitoring [31]. Karami et al., used E-
nose in combination with ANN and PCA to predict the shelf life and oxidation degree
of oils, highlighting the effectiveness of ANN and E-nose in pattern recognition and
quality assessment [32]. Anwar et al., explored the use of electronic nose technology
and machine learning algorithms for rapid and cost-effective food quality assessment
across various food categories, providing case studies demonstrating its potential to
enhance food industry evaluation [33]. Teixeira et al., employed E-nose alongside
PCA and linear discriminant analysis (LDA) to classify olive oils based on fruity
intensity, offering a non-destructive tool for quality assessment, particularly for extra
virgin olive oils [34]. These IoT-based approaches are delivering rapid, cost-effective,
and efficient solutions for enhancing food quality assessment, monitoring, and safety
in the food industry.

Taking into account the above-mentioned approaches when designing a sesame
oil quality evaluator, it is important to consider the following issues: (1) digitization,
(2) quality assessment, (3) quality monitoring, and (4) scalability. Each of these aspects is
described below:

(1) Digitization: The device should incorporate digital technologies to enhance the ef-
ficiency and accuracy of testing. This could involve using sensors, data analysis
algorithms, and connectivity capabilities to gather and process relevant information.

(2) Quality assessment: The evaluator should be able to assess the quality of sesame oil
based on established standards and parameters. This may involve analyzing various
factors such as acid value, peroxide value, presence of contaminants, and sensory
attributes like aroma and flavor.

(3) Quality monitoring: The evaluator should facilitate monitoring the quality of sesame
oil throughout the supply chain. This could involve implementing quality control mea-
sures at different stages, including production, processing, storage, and distribution,
to ensure consistent and safe products.

(4) Scalability: The evaluator should be designed to accommodate potential future needs
and advancements in technology. It should be flexible and adaptable, capable of
integrating new features and functionalities as the field of smart testing evolves.

By addressing these issues, the development of a sesame oil quality evaluator can
provide a convenient and reliable method for the public to assess the quality of sesame oil
and promote consumer confidence in its safety and authenticity.

The remainder of this study is organized as follows. Section 2 describes the sys-
tem framework and components of the Sesame Oil Quality Assessment Service Platform.
Section 3 describes the implementation and evaluations. Finally, Section 4 gives the con-
cluding remarks.

2. The System Framework of Sesame Oil Quality Assessment Service Platform

The Sesame Oil Quality Assessment Service Platform is composed an Intelligent
Sesame Oil Evaluator (ISO Evaluator) and a Cloud Service Platform. Users can quickly
assess the quality of the sesame oil using this platform. The core mechanism of the ISO
Evaluator is based on the integration of AIoT and deep learning technologies. The ISO
Evaluator utilizes AIoT devices to collect volatile compounds emitted by sesame oil and
captures images of the color status of sesame oil using a camera. The collected data
are securely stored on a data storage to ensure data accuracy and enable traceability.
Subsequently, a deep learning module analyzes the data to obtain the quality assessment of
the sesame oil. The overall architecture of the system consists of two main components:
(1) the construction of the Intelligent Sesame Oil Evaluator and (2) the establishment of a
Cloud Service Platform. The detail framework is shown in Figure 1.
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2.1. Intelligent Sesame Oil Evaluator

The Intelligent Sesame Oil Evaluator (ISO Evaluator) leverages AIoT devices, gas
sensors, and a web camera to capture and monitor the relevant characteristics of sesame
oil. The collected data, including the volatile compounds and color images, are processed
in real-time to provide an immediate assessment of the oil’s quality. The working flow is
shown in Figure 2.
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2.1.1. AIoT Control Module

The AIoT Control Module is built on a Raspberry Pi. It is responsible for automating
the control and recording of multiple gas sensors, which is equipped with various gas
sensors, including MQ2, MQ3, MQ4, MQ5, MQ6, MQ7, MQ8, MQ9, MQ135, and MQ137,
to detect volatile compounds present in sesame oil. These compounds include pyrazines,
pyrroles, furans, carbonyls, and sulfur-containing compounds. The detected gases include
ethanol, methane, carbon monoxide, hydrogen, hydrogen sulfide, ammonia, carbon dioxide,
and so on. It also identifies volatile compounds such as aldehydes, alcohols, ketones, and
others. In addition, it also integrates a webcam for capturing sesame oil images to record
quality and for visual recognition to confirm the quality.

2.1.2. Oil Quality Indicator Collection Module

The oil quality indicator collection module is used to collect various indicators that
determine the quality of the oil. It is designed to gather data related to the acid value,
peroxide value, and p-anisidine value of the oil. These indicators provide important
information about the freshness, stability, and overall quality of the oil. The module aims to
systematically collect and store this data to establish a comprehensive oil quality database
for analysis and comparison purposes.

(a) The acid value (AV) is a measure of the amount of potassium hydroxide (KOH) in
milligrams (mg) required to neutralize the free fatty acids present in 1 gram of oil or
fat. This indicator is used to assess the content of free fatty acids in the oil or fat, which
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represents the extent of acid hydrolysis of the oil or fat. It also reflects the quality
of the oil or fat, as fresher oils or fats tend to have a lower acid value. According
to the specifications and standards set by the Codex and the Taiwan Quality Food
Association (TQF) for edible oil and fat inspection, the acid value requirement for
pressed sesame oil should be below 4 mg/g [35,36].

(b) The peroxide value (POV) is the milliequivalent of active oxygen per kilogram of oil
or fat. Hydroperoxides are the primary products of oil or fat oxidation, and during the
initial stages of oxidation, the POV increases as the oxidation progresses. However,
when the oil or fat is highly oxidized, the decomposition rate of hydroperoxides
exceeds their formation rate, leading to a decrease in POV. Therefore, POV is suitable
for measuring the initial stage of oxidation in oil or fat. According to the specifications
and standards set by the Codex and the Taiwan Quality Food Association (TQF) for
edible oil and fat inspection, the peroxide value requirement for pressed sesame oil
should be below 15 milliequivalents per kilogram (meq/kg) [35,36].

(c) The p-anisidine value (AnV) is an indicator used to measure the secondary oxidation
products in oils and fats, specifically as an indicator of the late stages of oxidation.
During the initial stages of oil or fat oxidation, hydroperoxides are formed, which
then undergo decomposition and polymerization to form aldehydes, ketones, acids,
and other compounds. Aldehyde compounds react with p-anisidine reagent, and the
absorbance is measured at a wavelength of 350 nm [37]. The higher the absorbance
value, the greater the presence of aldehyde compounds, and the higher the degree
of oxidation. Therefore, the p-anisidine value serves as an indicator of the extent of
oxidation in oils and fats.

Once the oil quality indicator collection module has collected the aforementioned three
indicators, it will integrate the data from the gas sensors and the color analysis of sesame
oil for the same batch. The module will then transmit these data to a cloud server, where
they can be used to establish or adjust the accuracy of evaluation criteria. By analyzing the
combined data from the gas sensors and color analysis, the cloud server can develop or
refine assessment rules that accurately reflect the quality of the oil. This integration of data
and cloud-based analysis helps in enhancing the accuracy of evaluating the oil quality.

2.1.3. Evaluation Module

The evaluation module is responsible for assessing the quality of the oil products.
By utilizing evaluation rules computed on the cloud server, the module calculates the
short-term and long-term results based on the data collected by the AIoT module. The
short-term results represent the evaluation outcome derived from the current collected
data, mainly reflecting the assessment of the current batch of oil products. On the other
hand, the long-term results integrate historical data of sesame oil, including the current
data, to provide insights into the stability of the sesame oil over time.

The data collected by the ISO Evaluator are securely stored, ensuring the integrity,
accuracy, and traceability of information throughout the supply chain. This feature empow-
ers individuals to easily verify the authenticity and quality of sesame oil by accessing the
recorded data. Users can conveniently access the system through their computer or mobile
devices, enhancing the user-friendly nature of the ISO Evaluator. The system’s functionality
enables users to effortlessly view sesame oil-related data collected by the AIoT module and
obtain evaluation results. This seamless access allows users to review the collected sesame
oil data and access evaluation results, thereby enhancing the overall user experience of the
ISO Evaluator.

2.2. Cloud Service Platform

The Cloud Service Platform plays a crucial role in managing and processing data
collected from multiple ISO Evaluators. It serves as a centralized hub that offers scala-
bility and flexibility to handle a large volume of data, perform in-depth analysis using
deep learning techniques, and generate high-quality assessment results. Additionally,
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the platform enables data visualization, reporting, and remote monitoring, making the
system more user-friendly and accessible. At the core of the Cloud Service Platform is deep
learning, ensuring the security and integrity of uploaded data. Furthermore, deep learning
is employed to analyze the data and establish rules, which are subsequently transmitted
back for use by the ISO Evaluator. The platform is divided into two components: (i) the
data normalization module and (ii) the deep learning module. The following sections will
elaborate on each component.

2.2.1. Data Normalization

The primary responsibility of the data normalization module is to categorize and
format data in order to create a computational dataset that can be conveniently utilized by
subsequent deep learning modules. This integrated dataset encompasses gas sensor data
uploaded from the ISO Evaluator, sesame oil color images, and lipid quality indicators.
Furthermore, due to potential variations associated with the sensors, it is essential to
apply initial filtering, formatting, and dataset generation to data uploaded by different ISO
Evaluators. This process ensures consistent data formatting and ultimately enables the
creation of a computational dataset.

After obtaining the sensed values, they undergo min–max scaling normalization [38].
This process involves computing the difference between each original data point and the
minimum value in the dataset, followed by dividing this difference by the range between
the maximum and minimum values. This scaling procedure, represented by Equation (1),
transforms all data points into a standardized range between 0 and 1. This normalization
step is employed to enhance the training efficiency of subsequent models. For each data
point x, you can calculate its scaled value xscaled by subtracting xmin from x and dividing the
result by the range between xmax and xmin.

xscaled =
x − xmin

xmax − xmin
(1)

where x represents an individual data point, xmin represents the minimum value in the
original dataset, and xmax represents the maximum value in the original dataset.

2.2.2. Deep Learning Module

The deep learning module plays a crucial role in training and establishing evaluation
criteria. Furthermore, deep learning has recently made significant advancements in food
fraud and food quality. Convolutional Neural Networks (CNN) can be employed to analyze
the adulteration of coffee or saffron and to examine the food matrix [39–41]. Artificial
Neural Networks (ANN) extract relevant factors and efficiently classify data, for instance,
in the analysis of food adulteration and quality [42–44]. If there are correlations between
the data, Long Short-Term Memory (LSTM) networks are utilized, as demonstrated in
studies that apply LSTM to assess the quality of oil and meat products [45–47]. Within this
module, a Convolutional Neural Network (CNN) is utilized to analyze color images of
sesame oil. The output from the CNN is then combined with gas sensor data to establish a
short-term evaluation criterion using an Artificial Neural Network (ANN). For the long-
term evaluation criterion, historical data are analyzed using Long Short-Term Memory
(LSTM). In the following sections, it provides operation modes for (a) Convolutional Neural
Network (CNN), (b) Artificial Neural Network (ANN), and (c) Long Short-Term Memory
(LSTM). The working flow is shown in Figure 3.

(a) Convolutional Neural Network

Convolutional Neural Networks (CNN) play a crucial role in sesame oil detection.
CNN utilizes various features to compare different parts of the image and calculates the
similarity between each part and its corresponding features. It consists of four main units:
convolution layers, pooling layers, rectified linear units (ReLUs) layers, and fully connected
layers [48].
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(b) Artificial Neural Network

An Artificial Neural Network (ANN) is constructed by combining multiple artificial
neurons. The operation of an artificial neuron involves multiplying the values of all
connected nodes from the previous layer by the strengths of their corresponding edges.
The resulting values are then summed, and after passing through an activation function,
the output of the artificial neuron is obtained. Figure 5 illustrates the ANN architecture
used in this study.

The input data to the ANN consists of factors from the CNN and the sensor responses
of MQ-2, MQ-3, MQ-4, MQ-5, MQ-6, MQ-7, MQ-8, MQ-9, MQ-135, and MQ-137. The
output layer consists of calculated short-term parameters such as acid value, peroxide
value, and p-anisidine value for sesame oil. Ultimately, the ANN is used to establish a
short-term evaluation criterion for frontend applications.

(c) Long Short-Term Memory

The Long Short-Term Memory (LSTM) is used for analyzing time series data, capturing
long-term temporal dependencies, and enabling prediction and classification tasks.
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In this study, LSTM is employed to evaluate the preservation time of sesame oil,
considering the correlation between time and data by combining past event data. Therefore,
the LSTM is utilized to address the issue of capturing long-term patterns in the data. The
LSTM model is shown in Figure 6. The following steps will explain the LSTM model
in detail.
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The first step is to determine whether information needs to be forgotten. This decision
is made by the forget gate, represented by σ, as shown in Equation (2). It calculates the
sigmoid value based on the previous output and the current input. The resulting value
ranges between 0 and 1. If ft is 1, it means that the memory is fully retained, while a value
of 0 indicates complete forgetting.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)

where ft represents the forget gate value at time step t, σ represents the sigmoid activation
function, Wf is the weight matrix associated with the forget gate, [ht−1, xt] represents the
concatenation of the previous output ht−1 and the current input xt, and bf is the bias term
associated with the forget gate.

The second step is to record the input data into the main cell state. This involves
two sub-steps. Firstly, the input gate represented by σ determines which values should be
updated. Similar to the forget gate, the value ranges between 0 and 1. If it is 1, it means
complete replacement, while a value of 0 means no replacement. The equation is shown

in Equation (3). Next, a new candidate value,
∼
Ct, is created using the hyperbolic tangent

(tanh) function, which will be used to update the subsequent cell state. The equation is
shown in Equation (4).

it = σ(Wi·[ht−1, xt] + bi) (3)
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∼
Ct = tanh(WC·[ht−1, xt] + bC) (4)

The third step involves combining the previous state, Ct−1, with the candidate value,
∼
Ct, to create a new state, Ct. With the parameters calculated in the previous steps, a simple
operation is performed to obtain the new state, Ct. The previous state, Ct−1, is multiplied
by the value obtained from the forget gate(ft) to determine the influence of the previous

memory. Then, it is added to the product of the candidate state,
∼
Ct, and the value obtained

from the input gate (it) to determine the current cell state. The equation is shown in
Equation (5).

Ct = ft × Ct−1 + it ×
∼
Ct (5)

Finally, the content to be output is determined. Firstly, the σ function is applied to
calculate the value of ot based on the previous output and the current input, as shown in
Equation (6). Then, it is multiplied by tanh (Ct) to determine the value to be output in the
current step, as shown in Equation (7).

ot = σ(Wo × [ht−1, xt] + bo) (6)

ht = ot × tanh(Ct) (7)

Through the aforementioned process, the Long Short-Term Memory (LSTM) neural
network can capture long-term and important information, understanding the historical
short-term values. This enables the establishment of long-term estimation rules for use of
the ISO Evaluator.

Ultimately, the cloud server will transmit the short-term estimation rules, which are
used to understand the current state, and the long-term estimation rules, which are used to
understand the long-term supply status. These rules are generated by the deep learning
module and provided to the oil quality standard collection module, allowing users to
conveniently infer the status of the desired white sesame oil.

3. Results and Implementation

This section focuses on the implementation of the hardware and system for the Sesame
Oil Quality Assessment Service Platform. The Intelligent Sesame Oil Evaluator (ISO Eval-
uator) is used for assessing sesame oil quality. The goal is to explore the relationship
between the data collected from gas sensors and the color changes of sesame oil mea-
sured using traditional oil quality testing methods. The section is divided into two parts:
(1) Intelligent Sesame Oil Evaluator and (2) Cloud Service Platform. Each part will be
discussed separately.

3.1. Intelligent Sesame Oil Evaluator

This study analyzes the traditional testing methods applied to sesame oil stored for
different durations, while simultaneously constructing and utilizing sensors to collect data
on volatile gases and changes in oil color. Based on this data, an evaluation model is
established. This section is divided into three parts: (i) construction of the AIoT module,
(ii) determination of traditional oil quality, and (iii) establishment of the evaluation model.

3.1.1. Construction of the AIoT Module

The AIoT module is divided into three parts: (a) sample preparation, (b) device
construction, and (c) data collection.

(a) Sample Preparation

The I-Mei 100% pure sesame oil (I-Mei Foods Co., Ltd., Taipei, Taiwan) is divided and
sealed in five 50 mL plastic bottles, covered with aluminum foil to avoid light exposure.
The measurement of lipid oxidation stability is typically performed under accelerated
conditions (60 ◦C) since it would take a significantly longer time at room temperature for



Foods 2023, 12, 4024 10 of 22

lipid oxidation to occur [49–51]. Therefore, a storage temperature of 60 ◦C is chosen for the
samples. Every week, one bottle of sample is taken out and transferred to a −20 ◦C freezer
for storage. In total, samples are stored at 60 ◦C for between 1 and 9 weeks.

(b) Device construction

The housing of the gas sensor used in this study is 3D-printed using the ATOM 2.0 3D
printer (LAYER ONE CO., LTD., Taipei, Taiwan). Figure 7a presents an exploded view of
the design, showing the internal components. The sensor housing is 42 × π × 22.5 (cm3)
which is divided into two layers: the sample layer and the sensor layer. These are separated
by a middle partition. The sample layer features eight tracks to securely hold the sensors
in place. In the middle of the partition, there is a square opening designed to attach a fan,
which accelerates the flow of gas from the sample layer into the sensor layer. Additionally,
there are four holes around the opening to allow the airflow from the sensor layer to
circulate back to the sample layer, ensuring proper air circulation within the sensor. The
sample layer is dedicated to holding the test samples.
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Figure 7b depicts the external appearance of the sensor, while Figure 7c illustrates
its interior structure. The middle partition is equipped with a 12 V fan, and a total of ten
sensors are installed in the sensor layer. These sensors include MQ-2, MQ-3, MQ-4, MQ-5,
MQ-6, MQ-7, MQ-8, MQ-9, MQ-135, and MQ-137. They are securely mounted on eight
tracks within the sensor layer. An Arduino Mega 2560 control board is used to receive the
voltage outputs from these ten different sensor models. As for the collection of sesame oil
color images, a Logitech C922 Pro HD Stream Webcam is connected to a Raspberry Pi for
capturing the images.

(c) Data Collection

The data collection process consists of three stages: a 10-min preheating stage, a 20-min
sample equilibration stage, and a 20-min recovery stage. For sample preparation, 3 g of
sesame oil is transferred to a plastic culture dish with a diameter of 9 cm and covered with
a lid before being placed in the sample layer, which is shown in Figure 8. After the 10 min
preheating stage, the sample is inserted into the sensor layer and left for 20-min to allow
for gas equilibrium to occur within the sensor. Subsequently, the sample is removed, and
a 20-min recovery stage follows to bring the sensor readings back to the baseline, thus
completing one measurement.



Foods 2023, 12, 4024 11 of 22

Foods 2023, 12, x FOR PEER REVIEW 11 of 22 
 

 

10 min preheating stage, the sample is inserted into the sensor layer and left for 20-min to 
allow for gas equilibrium to occur within the sensor. Subsequently, the sample is removed, 
and a 20-min recovery stage follows to bring the sensor readings back to the baseline, thus 
completing one measurement. 

 
Figure 8. Sesame oil placement test. 

The sensor sampling frequency is set at one data point per second, resulting in a total 
of 3000 data points for each measurement. In this study, the average value of the data 
during the 60-s before the sample equilibration stage is considered as the pre-reaction 
baseline value. The average value of the data during the 60-s before the recovery stage is 
considered as the post-reaction equilibrium value. By subtracting these two average val-
ues, the individual sensor's variation in sesame oil odor is obtained as the numerical value 
for subsequent calculations. 

The selection of a 60-s interval for averaging is based on the need to stabilize the 
sensor output, as there may still be fluctuations after stabilization. Taking the average 
value over a 60-s interval helps to mitigate the impact of fluctuations on the final 
calculated results. 

Regarding image capture, the procedure involves filling a sample bottle with 25 mL 
of sesame oil, as shown in Figure 9. The purpose is to simulate the bottleneck portion of 
the original bottled oil. The diameter of the bottleneck is chosen to be 3 centimeters, 
matching the diameter of the sample bottle. This simulation approach is adopted for 
image recognition purposes. 

 
Figure 9. A 25 mL sesame oil sample. 

Figure 8. Sesame oil placement test.

The sensor sampling frequency is set at one data point per second, resulting in a total
of 3000 data points for each measurement. In this study, the average value of the data
during the 60-s before the sample equilibration stage is considered as the pre-reaction
baseline value. The average value of the data during the 60-s before the recovery stage is
considered as the post-reaction equilibrium value. By subtracting these two average values,
the individual sensor’s variation in sesame oil odor is obtained as the numerical value for
subsequent calculations.

The selection of a 60-s interval for averaging is based on the need to stabilize the sensor
output, as there may still be fluctuations after stabilization. Taking the average value over
a 60-s interval helps to mitigate the impact of fluctuations on the final calculated results.

Regarding image capture, the procedure involves filling a sample bottle with 25 mL
of sesame oil, as shown in Figure 9. The purpose is to simulate the bottleneck portion
of the original bottled oil. The diameter of the bottleneck is chosen to be 3 centimeters,
matching the diameter of the sample bottle. This simulation approach is adopted for image
recognition purposes.
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3.1.2. Determination of Traditional Oil Quality

Three indicators obtained through traditional chemical analysis methods are used:
acid value, peroxide value, and p-anisidine value. Figure 10 illustrates the experimental
procedure integrating these three measurement methods [52]. Detailed explanations of the
experimental steps for each of the three indicators will be provided below.
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(a) Acid Value

The acid value (AV) is determined by directly titrating the oil/fat in an alcoholic
medium against standard potassium hydroxide/sodium hydroxide solution. This method
is referenced the Food Additives Specification Test Methods by the Food and Drug Ad-
ministration, Taiwan [53]. Approximately 0.5 g of oil was weighed and mixed with a
mixture of ethanol and ether in a ratio of 1:1 (v/v) with a volume of 25 mL. Then, 0.5 mL of
phenolphthalein indicator was added. The solution was titrated with 0.01 N potassium
hydroxide (KOH) ethanol solution until the solution turned pink. A blank test was also
performed for calibration. The calculation equation is shown in Equation (8).

Acid value =
N × V × 56.11

W
(8)

where N is the concentration of the KOH ethanol solution; V is the volume of the KOH
ethanol solution used for titration (mL); W is the weight of the oil (g).

(b) Peroxide Value

The peroxide value (POV) is determined by measuring the amount of iodine which is
formed by the reaction of peroxides (formed in fat or oil) with iodide ion. This method is
referencd by the Association of Official Agricultural Chemists (A.O.A.C.) [54]. A measure
of 2 g of oil was taken and mixed with a mixture of glacial acetic acid and isooctane in
a ratio of 3:2 (v/v) with a volume of 12 mL. After shaking for 30 s, 0.2 mL of saturated
potassium iodide solution was added. The mixture was shaken for 1 min, followed by
the addition of 12 mL of ultrapure water and 0.2 mL of 1% starch solution. After shaking
for 30 s, the solution was titrated with 0.01 N sodium thiosulfate until clarification. The
calculation equation is shown in Equation (9).

Peroxide value =
S × N × 1000

W
(9)

where S is the volume of sodium thiosulfate used for titration (mL); N is the concentration
of sodium thiosulfate equivalent; W is the weight of the oil (g).

(c) p-anisidine Value

The p-anisidine value (AnV) serves as an indicator of oil oxidation by measuring
the total amount of aldehydes present in the oil sample. This method is referenced by
the Association of Official Agricultural Chemists (A.O.A.C.) [54]. Approximately 0.1 g
of oil was weighed and mixed with isooctane in a volume of 25 mL. Then, 5 mL of this
oil solution was taken and mixed with 1 mL of p-anisidine reagent (0.25 g of p-anisidine
dissolved in 100 mL of glacial acetic acid). The mixture was stirred well and left to stand
for 10 min. The absorbance value was measured at 350 nm. The calculation equation is
shown in Equation (10).

p-anisidine value =
V × (1.2As − Ab)

W
(10)
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where V is the volume of isooctane added (mL); As is the absorbance value of the sample
with p-anisidine reagent added; Ab is the absorbance value of the sample without p-
anisidine reagent added; W is weight of the oil (g).

(d) Arrhenius Equation

The Arrhenius equation is for the temperature dependence of reaction rates, which is
employed in sesame oil preservation experiments to understand how temperature affects
its shelf life. This study uses it accelerated aging process of sesame oil. Table 1 illustrates
the edible oil quality indexes of sesame oil, including POV, AV, and AnV. The weeks of this
table denote that the actual storage time heated to 60 ◦C and the estimation of shelf life by
Arrhenius equation, which is shown as Equation (11) [55].

k = Ae
−Ea
RT (11)

where k is the rate constant; T is the absolute temperature; A is the pre-exponential factor;
Ea is the activation energy for the reaction; R is the universal gas constant.

Table 1. Edible oil quality indexes.

Quality
Weeks

POV b AV b AnV b

0 (0.0) a 0.01 ± 1.49 1.95 ± 0.11 1.58 ± 0.02
1 (5.5) a 0.08 ± 0.28 1.93 ± 0.12 1.56 ± 0.01
2 (10.9) a 0.45 ± 0.26 1.97 ± 0.10 1.60 ± 0.03
3 (16.4) a 0.82 ± 0.28 2.02 ± 0.08 1.64 ± 0.06
4 (21.8) a 2.45 ± 0.23 2.14 ± 0.05 1.64 ± 0.05
5 (27.4) a 4.09 ± 0.17 2.26 ± 0.02 1.63 ± 0.05
6 (32.8) a 7.42 ± 0.15 2.28 ± 0.04 1.62 ± 0.06
7 (38.3) a 10.75 ± 0.13 2.30 ± 0.07 1.60 ± 0.06
8 (43.7) a 13.85 ± 0.16 2.37 ± 0.09 1.63 ± 0.05
9 (49.2) a 16.95 ± 0.19 2.44 ± 0.10 1.67 ± 0.03

a Predictions of parameters at 25 ◦C based on the Arrhenius equation. b Mean ± SD (n = 3).

After heating at 60 ◦C, the experimental correspondence is illustrated in Tables 1 and 2.
Table 1 indicates that the peroxide value (POV) index of sesame oil after the ninth week has
exceeded the standard by 15 meq/kg [35,36]. It represents that the quality of the sesame oil
sample began to decline. The acid value and p-anisidine value increased slightly but the
magnitude was not significant. Table 2 shows that data are sensed by different gas sensors.
The sesame oil quality analysis is conducted through linear discriminant analysis (LDA)
using sensed data from ten gas sensors. Figure 11 illustrates that the LDA can distinguish
sesame oil of different periods by 95.13%, which for LD1 is 63.33% and for LD2 is 31.80%.

Table 2. The data sensed using gas sensors.

Sensors
Weeks

MQ2 b MQ3
b

MQ4
b MQ5 MQ6 MQ7 b MQ8 b MQ9 MQ135 MQ137

0 (0.0) a 0.006 0.217 0.003 0.001 0.003 0.123 0.086 0.005 0.005 0.005
1 (5.5) a 0.013 0.281 0.014 0.013 0.012 0.138 0.099 0.016 0.008 0.011
2 (10.9) a 0.019 0.293 0.014 0.043 0.016 0.137 0.098 0.017 0.010 0.011
3 (16.4) a 0.021 0.358 0.025 0.063 0.018 0.149 0.108 0.022 0.012 0.009
4 (21.8) a 0.022 0.433 0.029 0.049 0.014 0.156 0.116 0.021 0.006 0.009
5 (27.4) a 0.028 0.483 0.032 0.044 0.009 0.160 0.118 0.018 0.001 0.009
6 (32.8) a 0.033 0.495 0.036 0.058 0.006 0.166 0.118 0.019 0.010 0.018
7 (38.3) a 0.035 0.552 0.040 0.069 0.001 0.172 0.127 0.018 0.019 0.026
8 (43.7) a 0.042 0.589 0.047 0.049 0.006 0.182 0.128 0.015 0.020 0.031
9 (49.2) a 0.042 0.619 0.051 0.020 0.009 0.179 0.133 0.015 0.021 0.035

a Predictions of parameters at 25 ◦C based on the Arrhenius equation. b R2 is greater than 0.95.
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To assess the current quality and long-term stability of sesame oil, deep learning
models including convolutional neural networks, artificial neural networks, and long
short-term memory models are utilized.

Firstly, the convolutional neural network processes the images of sesame oil captured
by a webcam. The obtained results are then combined with the response values from
10 different gas sensors and fed into the artificial neural network model. The model outputs
three quality indicators: peroxide value, acid value, and p-anisidine value. These are used
to evaluate the current quality of sesame oil. The evaluation criteria are based on the
standards for edible oils [35,36]. If the peroxide value exceeds 15 meq/kg or the acid value
exceeds 4 KOH mg/g, then the oil is deemed unsatisfactory. The Long Short-Term Memory
model uses the input data from the current sensors to calculate the future changes in the
quality of sesame oil, thereby determining its stability. If the predicted values are close to
the standards, then the user is notified that they should use the oil as soon as possible.

3.2. Cloud Service Platform

The cloud service platform is based on data storage and utilizes a data normalization
module to exclude abnormal values and generate a dataset suitable for model training.
This section introduces three components: (i) the data normalization module and (ii) the
deep learning module.

3.2.1. Data Normalization Module

In a single measurement, each sensor generates 3000 data points, with a total of
10 sensors, resulting in 30,000 data points. Using the Pandas module in Python, the data
from the 540–600th data points and the 1200–1740th data points of each sensor are stored
in Dataframe format. Then, the Dataframe is converted to Numpy array format using the
Numpy module. The mean function from the statistics module is applied to calculate the
average value. Finally, the voltage difference between the pre- and post-reaction of each
sensor is calculated.

To scale the data generated by each sensor, the MinMaxScaler function from the
Sklearn module’s preprocessing stage is used. This function performs min–max scaling,
which scales the data between 0 and 1, ensuring that the data are uniformly scaled across
all sensors.
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3.2.2. Deep Learning Module

In the deep learning module, the Convolutional Neural Network (CNN) is responsible
for classifying the color of sesame oil. It analyzes the visual characteristics of the oil sample
and categorizes it based on its color properties. The Artificial Neural Network (ANN)
is responsible for analyzing the data from the sensors. It processes the sensor data and
estimates the current values of peroxide value, acid value, and p-anisidine value of the
sesame oil. The Long Short-Term Memory (LSTM) module is responsible for analyzing the
sensor data and predicting potential future changes in quality. It is particularly effective in
capturing temporal dependencies and patterns in the data, enabling it to forecast variations
in the quality of the oil.

(a) Convolutional Neural Network

The Convolutional Neural Network (CNN) used in this case is based on the You Only
Look Once (YOLO) version seven and implemented in Python 3.8.16. The dataset consists
of 50 images, which are divided into 5 classes representing storage at 60 ◦C from the 1st to
9th week. The training set contains 40 images, and the test set contains 10 images, with a
ratio of 8:2. The batch size is set to 5, and the number of epochs is set to 100.

Batch size refers to the grouping or batching of data for training in a neural network.
In this case, with a batch size of five, only five data points are inputted into the neural
network at a time. After this process is repeated 10 times, it completes one epoch. An epoch
is defined as one complete pass through the entire training dataset. In this scenario, when
all 50 images have been trained on the neural network, it completes one epoch. The training
process is repeated 100 times, corresponding to 100 epochs, to complete the training.

LabelImg is a tool used for annotating the position and names of objects in images.
When implementing object detection using deep learning, a large dataset with known labels
is required. This dataset consists of images with objects annotated with their respective
positions and names. LabelImg is a manual tool commonly used for this annotation process.

When evaluating the accuracy of the trained model, precision and recall are used as
evaluation metrics. Precision calculates the proportion of true positive predictions out of all
positive predictions, where TP represents true positive (the predicted result is the class of
interest and matches the ground truth) and FP represents false positive (the predicted result
is the class of interest but does not match the ground truth). Recall calculates the proportion
of true positive predictions out of all actual positive instances, where FN represents false
negative (the predicted result is not the class of interest but should be) and TN represents
true negative (the predicted result is not the class of interest and matches the ground truth).
Precision is calculated using Equation (12), while recall is calculated using Equation (13).

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

This study sets the batch size to 11 and the learning iterations to 100 epochs. Learning
iterations exceeding 100 epochs would lead to overfitting in the image recognition model,
thereby causing a decrease in recognition performance.

The performance in classifying the results for each week shows an average precision
of 64.4% and an average recall of 55.6%. The results show that the image recognition model
has shown initial performance. However, due to the limitations in dataset size and source,
there exists an opportunity for optimization in future research.

(b) Artificial Neural Network
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In the ANN model used in this study, the Mean Absolute Percentage Error (MAPE) is
employed as the loss function. Its calculation is defined by Equation (14).

MAPE =
100%

n

n

∑
t=1

∣∣∣∣ At − Ft

At

∣∣∣∣ (14)

where At represents the actual value and Ft represents the predicted value. In the equation,
the index t starts from 1 and goes up to n, indicating that MAPE calculates the sum of
percentage errors from the first predicted value to the nth predicted value. This sum is then
divided by the total number of predicted values n to obtain the average.

During the training process, a total of 40 data points were used (8 data points per
week). The training set and test set were split in an 8:2 ratio. The batch size was set to 8.
After training the model for 1000 iterations, the MAPE for the prediction results was found
to be 8.1820%.

(c) Long Short-Term Memory

The Long Short-Term Memory (LSTM) model is developed to predict sesame oil
storage weeks. The environment for this model is Python, primarily leveraging the Keras
library for LSTM model development.

In the first phase, LSTM serves as the neuron, with the input_shape parameter as
the LSTM input. There are two arguments, which are n_step and n_feature. "n_step"
specifies the number of preceding data points used for prediction, set to 6, signifying that
the previous data group is utilized for prediction. "n_feature" denotes the feature size,
set to 10, because there are 10 sensors. Since these sensors measure various values, each
prediction point takes input from these 10 sensor readings for prediction. In the final phase,
traditional neurons are employed to calculate values from the preceding LSTM phase and
produce the result.

In the training phase, it sets the batch size of 10, and the epoch of 100 iterations, and
evaluated the model performance by the Mean Absolute Percentage Error (MAPE). In this
study, the MAPE value for the training result of the LSTM model was 1.99%. The training
MAPE value is shown in Figure 12. The MAPE value is 0.44%, indicating that the results
computed by the LSTM model closely align with the actual outcomes.

Foods 2023, 12, x FOR PEER REVIEW 17 of 22 
 

 

(2) When the value of MQ2 is greater than 0.042, the value of MQ3 is greater than 0.619, 
the value of MQ4 is greater than 0.051, the value of MQ4 is greater than 0.179, and 
the value of MQ8 is greater than 0.133, the POV indicator of oil products may have 
begun to exceed the standard. 

 
Figure 12. The Mean Absolute Percentage Error value for each epoch. 

 
Figure 13. Calibration curves of MQ2, MQ3, MQ4, MQ7, and MQ8. 

After reasoning out evolution rules, the proposed Sesame Oil Quality Assessment 
Service Platform is designed and implemented. Figures 14–16 are the designed system 
interfaces. Figure 14 is the history of each detection. Figure 15 is the function of sesame oil 
detection. Figure 16 shows an evaluation report. 

Figure 12. The Mean Absolute Percentage Error value for each epoch.

After sensed data are normalized to a value between 0–1 through the min–max scaling
method, results indicate that MQ2, MQ3, MQ4, MQ7, and MQ8 sensors are with positive
correlation. The min–max scaling method performs a linear transformation on the original
data by Equation (3) [38]. Figure 13 shows the calibration curves of MQ2, MQ3, MQ4, MQ7,
and MQ8. Hence, the calibration curve with R2 is greater than 0.95. According to sensed
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data and chemical experiment data in the edible oil quality collection module, two rules
are reasoned, as follows.
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(1) When the value of MQ2 is greater than 0.035, the value of MQ3 is greater than 0.552,
the value of MQ4 is greater than 0.04, the value of MQ7 is greater than 0.172, and the
value of MQ8 is greater than 0.127, the oil quality has begun to decline.

(2) When the value of MQ2 is greater than 0.042, the value of MQ3 is greater than 0.619,
the value of MQ4 is greater than 0.051, the value of MQ4 is greater than 0.179, and the
value of MQ8 is greater than 0.133, the POV indicator of oil products may have begun
to exceed the standard.

After reasoning out evolution rules, the proposed Sesame Oil Quality Assessment
Service Platform is designed and implemented. Figures 14–16 are the designed system
interfaces. Figure 14 is the history of each detection. Figure 15 is the function of sesame oil
detection. Figure 16 shows an evaluation report.
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4. Conclusions

This study designs and proposes a Sesame Oil Quality Assessment Service Platform,
which is composed of an Intelligent Sesame Oil Evaluator (ISO Evaluator) and a Cloud
Service Platform. Users can quickly assess the quality of the sesame oil using this platform.
The ISO Evaluator employs Artificial Intelligence of Things (AIoT) sensors to detect changes
in volatile gases and the color of the oil during storage. The data calculated in this study
led to the following conclusions:

(1) The sensor data from MQ2, MQ3, MQ4, MQ7, and MQ8 sensors were used to analyze
the oil samples at different weeks. The data exhibited a strong linear relationship
with an R-squared value greater than 0.95. This indicates that these five sensors
can effectively detect variations in oil quality across different weeks. To tackle the
quality assessment challenge, a combination of traditional indicators such as acid
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value, peroxide value, and p-anisidine, along with AIoT gas sensors and webcams,
can be utilized. The recorded data can then be analyzed using ANN, CNN, and LSTM
models for comprehensive analysis of oil quality.

(2) Regarding the analysis of oil samples at different weeks, it was observed that when
analyzing oil images solely through CNN, due to data quantity and design limitations,
the performance resulted in an average precision of 64.4% and an average recall of
55.6%. These results suggest that there is room for improvement when using image
analysis alone.

(3) By combining the features analyzed using CNN with sensor data and using ANN
for analysis, the performance yielded a Mean Absolute Percentage Error (MAPE) of
8.1820%. This demonstrates that the integration of CNN and sensors can effectively
enhance the recognition accuracy.

(4) When analyzing the oil samples recorded over an extended period along with sensor
data using LSTM, the performance achieved a MAPE of 0.44%. This implies that
the results produced by LSTM closely match the actual conditions, indicating that
LSTM can effectively distinguish the quality status of oil samples at different weeks
by utilizing oil images and sensor data recorded over a long-term period.

Four problems are considered and overcome: digitization, quality assessment, quality
monitoring, and scalability.

(1) To tackle the digitization problem, the use of AIoT technologies can be implemented
for efficient and secure data recording and management.

(2) To tackle the quality assessment challenge, a combination of traditional indicators
such as acid value, peroxide value, and p-anisidine, along with AIoT gas sensors and
webcams, can be utilized. The recorded data can then be analyzed using ANN, CNN,
and LSTM models for comprehensive analysis of oil quality.

(3) To overcome the quality monitoring issue, the application of LSTM can enable contin-
uous monitoring and analysis of sesame oil quality throughout the supply chain.

(4) To enhance Scalability, the development platform can be designed as an open system,
allowing for the seamless integration of additional AIoT sensors and the incorporation
of new services to meet evolving needs.

The integration of AIoT, CNN, and LSTM technologies in the Sesame Oil Quality
Assessment Service Platform holds great potential for enhancing consumer trust, ensuring
food safety, and maintaining product integrity. Future research directions can focus on
further advancements in deep learning, multi-modal sensing, real-time monitoring, data-
driven decision support, and blockchain applications to continually improve the platform’s
capabilities and address emerging challenges in the oil industry.
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