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Abstract: Food fraud is a matter of major concern as many foods and beverages do not follow
their labelling. Because of economic interests, as well as consumers’ health protection, the related
topics, food adulteration, counterfeiting, substitution and inaccurate labelling, have become top
issues and priorities in food safety and quality. In addition, globalized and complex food supply
chains have increased rapidly and contribute to a growing problem affecting local, regional and
global food systems. Animal origin food products such as milk, dairy products, meat and meat
products, eggs and fish and fishery products are included in the most commonly adulterated food
items. In order to prevent unfair competition and protect the rights of consumers, it is vital to detect
any kind of adulteration to them. Geographical origin, production methods and farming systems,
species identification, processing treatments and the detection of adulterants are among the important
authenticity problems for these foods. The existence of accurate and automated analytical techniques
in combination with available chemometric tools provides reliable information about adulteration
and fraud. Therefore, the purpose of this review is to present the advances made through recent
studies in terms of the analytical techniques and chemometric approaches that have been developed
to address the authenticity issues in animal origin food products.

Keywords: animal and animal-derived matrices; authenticity; adulteration; chemometric tools;
analytical techniques; milk; dairy products; meat and meat products; eggs; fish and fishery products

1. Introduction

In the modern world, the concepts of food safety and quality have expanded. Al-
though they are inextricably linked to the hygiene and wholesomeness of food and, by
extension, to consumers’ protection, they also incorporate the knowledge on food fraud
and authenticity, intended as the adulteration, counterfeiting, substitution, addition and/or
omission of ingredients/information on both the processing and origin of the products [1,2].
On the other hand, the consumer has become increasingly aware and sensitive to the com-
munication/implementation of risk, and to the notions of healthy eating and nutrition as
powerful tools to prevent and treat the onset of many diseases [3]. Therefore, the food
system has to face the challenge of demonstrating not only the healthiness, nutritional
value, safety and quality of the product, but also its sustainability, traceability and authen-
ticity [4]. As a consequence, food scientists, assessors and managers have developed more
informative, sensitive and accurate analytical methods to meet these needs.
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These high-throughput and high-content methods generate a large amount of data,
which in order to be best evaluated need to interface with biostatistical, bioinformatic and
chemometric approaches. In particular, in the analytical branch of food authentication, com-
plex protocols of sample preparation followed by analytical separation, identification and
quantitation are “hyphenated” with advanced chemometrics [5,6]. This interdisciplinary
statistical-based discipline is used to identify the relationships between many variables
(multivariate analysis), and to analyse, elaborate and interpret the data. The construed
models are validated and become able to substantially discriminate between and clas-
sify the food products. In these ways, the data generated from conventional analytical
techniques, chromatographic, spectrophotometric, biochemical, immunochemical and his-
tological methodologies, and omics applications are complemented [7,8]. Figure 1 presents
the implementation of authenticity analysis in animal and animal-derived matrices with
the help of chemometric tools.
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Figure 1. The implementation of authenticity analysis in animal and animal-derived matrices with
the help of chemometric tools.

In this framework, the aim of this review is to give a comprehensive overview of
analytical methods used for food authentication purposes, with a special attention on
animal and animal-derived matrices, i.e., meat and meat products, milk and dairy products,
and fish and fish products. Furthermore, with this study, the authors would like to em-
phasize the power of chemometric protocols, discussed in depth, used for processing the
datasets. These considerations may be a useful tool not only for researchers and researchers,
laboratories and stakeholders but also for governments and authorities since the majority
of these methods for animal-derived matrices do not meet regulatory acceptance criteria
yet [9]. In fact, although the targets of the majority of detected food frauds are fish, honey,
dairy products and meat, in the current worldwide legislations, there are few official and
internationally accepted methods for these applications. Thus, the authentication of food
products has become a major priority and concern not only for safety reasons but also for
preventing economic fraud since these matrices are among the most internationally traded
food commodities [10–12].
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2. Chemometrics of Milk, Dairy Products, Meat and Meat Products, Eggs, Fish and
Fishery Products
2.1. General Considerations: Chemometrics and Multivariate Analysis

The animal-derived matrices, discussed in this review, are characterized by very dif-
ferent physicochemical characteristics. Similarly, the topic of food authenticity is complex
with many attributes that should be considered and assessed. Environmental and growing
conditions, feeding and feed types, and the processing, handling and storage of materials
are only some variables that may influence the results of the analytical controls of these
matrices. If examined through the usage of classical descriptive statistics, exploring each
variable separately (univariate analysis), the results often have no statistical significance
and offer a partial image of food origin and global composition. For this reason, in the last
decades, researchers and academics have made an effort to give more power to authenti-
cation studies by merging them with multivariate analysis. The resulting combination of
analytical and chemometric studies is currently the best approach for a precise, global and
multiview analysis and to fight and win the battle of food fraud.

2.2. Chemometrics of Milk and Dairy Products

Cheese is widely consumed worldwide and represents a well-known food product.
New approaches that partially or fully replace milk fat derive from the increasing demand
for nutritionally enhanced or functional dairy products from the cheese industry. This
has also led to the identification of new methods of adulteration, which may result in
these fully/partially substituted products being marketed as cheese [13]. There are over
4000 different types of cheeses worldwide, and dairy fat consists of approximately 400 fatty
acids, making it one of the most complex dietary fats [14]. A growing issue in the dairy
product market is the incorrect labelling or adulteration of high-value milk samples, such
as goat’s or sheep’s milk, with cow’s milk [15]. Adulterations in milk primarily involve
water, reconstitution agents (oils, sugar from sugarcane, animal fats), thickening agents
(starch, urea, glucose, salt, etc.), preservatives (formaldehyde, sodium carbonate, hydrogen
peroxide, etc.), melamine and more [16].

Traditionally, goat’s milk is used in the production of dairy products that have under-
gone fermentation, especially cheese and yogurt. The nutritional characteristics of goat’s
milk (less allergenic protein fraction, higher lipid content and high mineral availability)
have increased its demand and production; hence, its high susceptibility to adulteration.
Its easy dilution with water and cow’s milk whey (from cheese processing), or even mixing
with cow’s milk, gives goat’s milk a higher market value compared to cow’s milk, which
is abundant. Hence, the adulteration of goat’s milk with cow’s milk has become more
evident nowadays, and this particularly targets many consumers with lactose intolerance
and cow’s milk protein allergies, leading to various allergic disorders [17]. Therefore, goat’s
or sheep’s milk with cow’s milk added alters the sensory characteristics of the final product
and also poses a significant risk to consumers with intolerance or allergies to cow’s milk.
Similarly, adulteration with urea in goat’s and cow’s milk often occurs to compensate for
protein content [17,18].

An illegal and significant adulteration is the deliberate addition of formaldehyde to
raw milk, with the aim of extending the shelf life of milk at room temperature. Rapid
deterioration of milk is caused by a high moisture content. Hence, the preservative and
antiseptic properties, along with the ability to improve the appearance, including the odour
of milk, need to be presented, and this is carried out by formaldehyde. However, it should
be considered that formaldehyde is classified as a human carcinogen by the International
Agency for Research on Cancer (IARC), being toxic at low concentrations [16,19]. Higher
levels of formaldehyde in foods can lead to symptoms such as nausea, coma, abdominal
pain, dermatitis, eye irritation, asthma and more [16]. Formaldehyde has been found in
milk available in Brazil, Kenya, India and Pakistan, among other places. Another case of
adulteration to remember took place in China in 2013 with melamine detection in milk
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powder. Melamine was added to increase the apparent protein content, leading to dramatic
consequences for public health. [19].

The need to include the geographical origin of foods on labels for many commercial
products, such as cheeses produced in a specified region with specific physicochemical and
sensory characteristics, is depicted in recent EU regulations. Consequently, geographical
origin is considered a significant indicator [20]. A usual form of adulteration in dairy
product production is the substitution of one type of milk with another due to the lower cost
and year-round availability. Some milk products, such as milk powder, are susceptible to
dilution or adulteration with exogenous fats or oils. Additionally, the incorrect declaration
of geographical origin is another common form of fraud. There is a risk of adulteration
due to the violation of PDO protocol specifications in the case of high-value dairy products
such as some PDO (Protected Designation of Origin) cheeses.

There is a high demand for the development of portable NIR devices specifically
in the production chain of goat dairy products since they are effective in distinguishing
between authentic and adulterated samples, for a reduction in the economic cost and
analysis time. This will target the production of high-quality products and consumer safety
while simultaneously controlling the nutritional value stated on their labels [21].

2.3. Chemometrics of Meat and Meat Products

The growing issue of meat fraud occurs in the increasingly globalized and complex
food supply chains. In the meat industry, substitution fraud mainly concerns meat deriva-
tive products, which consist of minced meat mixed with other ingredients to manufacture
sausages, salami, kebabs, burgers, meatballs and stuffed pastas. Raw meat must be correctly
labelled when it comes from different animal species, otherwise it becomes fraudulent.
When other parts of animals, such as fat, collagen, entrails or internal organs, are added
to minced meat during the manufacturing process, fraud might occur [22]. Typical meat
products including raw sausages or ham made from game species such as wild goats
(chamois), red deer or chamois are consumed in certain alpine regions, such as Switzerland,
Austria, Germany and Italy. Game meat is more expensive and easier to substitute with
other meats that have a remarkably similar taste, colour and appearance due to its scarcity,
coupled with challenges in hunting activities due to increased habitats [23].

The quantity of each ingredient must be declared in meat-derived products, and this
is known as quantitative ingredient declaration. The identification of species and differen-
tiation of animal tissues in meat products are of significant concern regarding consumer
protection against illegal and/or unwanted adulteration, not only for economic and health
reasons but also for religious matters. The presence of pork derivatives such as pork skin,
lard, pork meat and pork gelatine in any food products is a significant issue for religions
such as Islam, Judaism and Hinduism, which prohibit their followers from consuming
pork and its derivatives. Furthermore, halal and kosher, which are still widely practiced by
Muslims and Jews, respectively, and certified accordingly, guide the production, slaughter
and preparation of meat for human consumption. To be considered kosher, an animal’s
meat must come from a cloven-hoofed animal. For example, halal-labelled products should
not include the substitution of non-halal meat, and this is considered to be an illegal and
unacceptable practice according to Islamic law. Fraud and the adulteration of halal meat
products occur due to financial incentives. Food manufacturers in many countries nowa-
days choose to use pork meat or pork derivatives (pork fat, pork gelatine, etc.) because
they are inexpensive and readily available [24,25].

The meat industry faces ongoing challenges in ensuring the authenticity and quality
of its products. Fraudulent practices, mislabelling and adulteration are persistent con-
cerns. However, the integration of chemometrics, a multidisciplinary field encompassing
chemistry, mathematics and statistics, offers robust solutions to address these issues effec-
tively. This essay explores the diverse applications of chemometrics in safeguarding the
authenticity of meat and meat products across numerous studies.
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2.4. Chemometrics of Eggs

Data interpretation and visualization can be carried out by chemometrics, which
provides powerful tools. Principal Component Analysis (PCA) helps in reducing the di-
mensionality of complex datasets, making it easier to identify patterns and trends in the
chemical composition of eggs. This allows researchers to gain a comprehensive under-
standing of the factors affecting egg authenticity. Chemometric methods enable the clear
differentiation between different types of eggs, such as organic and conventional eggs,
based on their chemical profiles. By applying multivariate statistical techniques, researchers
can establish distinct chemical fingerprints for each egg type, enhancing the ability to detect
fraudulent labelling and ensure accurate product labelling.

During the long-term storage of eggs, a significant change that occurs in the egg is the
reduction in the elasticity of the vitelline membrane, allowing for easier migration of water
from the albumen through the weaker vitelline membrane. The result of this process is that
the yolk becomes flatter, and thus, the yolk index parameter measures the thickness and
diameter of the yolk. Therefore, the yolk index indicates the viscosity of the yolk, and the
higher it is, the better the quality of the egg. In addition, γ-aminobutyric acid was found to
be a good marker of the age of eggs during storage [26].

Chemometrics aids in the identification of egg production systems by analysing
the chemical composition of egg components. Puertas et al. [27] employed UV-VIS-NIR
spectroscopy and chemometric techniques such as SVM, LDA and QDA to identify different
egg production systems. Their study focused on the analysis of yolk lipid extracts.

In addition, S-ovalbumin is a biological marker that arises from albumen (the most
abundant protein found in eggs). S-ovalbumin is highly correlated with storage time,
with low physical variability, and has the potential to become a common indicator for
assessing egg freshness [28]. The freshness and storage time of eggs were assessed using
chemometric models based on parameters such as the Haugh unit, pH of albumen and yolk
height. These parameters were measured using spectroscopic techniques such as VIS-NIR
spectroscopy [29]. Moreover, liquid chromatography–tandem mass spectrometry for the
quantitation of lipidomic profiles in the yolk granule and yolk plasma of egg yolk was used
by He et al. [30]. The recorded differences revealed by using chemometrics, particularly
PCA and OPLS-DA, enlighten the need to study new functional and high-value novel
egg products.

Furthermore, determination of the geographical origin of eggs can be carried out by
chemometric approaches. In addition, chemometrics assists in predicting the freshness
and storage time of eggs based on key parameters such as the Haugh unit, pH and yolk
height. By establishing mathematical models, chemometrics enables the estimation of
egg quality over time, ensuring that consumers receive fresh products. What is more,
studies such as that of Joshi et al. [31] have demonstrated the use of chemometric models
to distinguish genuine eggs from counterfeit ones based on their chemical properties.
This helps in maintaining product integrity and consumer trust. Moreover, by providing
accurate and objective assessment tools, chemometrics contributes to quality assurance in
the egg industry. Reliable authenticity testing enhances consumer confidence, promotes
fair trade practices and ensures that consumers receive the products they pay for.

In conclusion, chemometrics plays a pivotal role in addressing various aspects of egg
authenticity, ranging from the differentiation of egg types to determining geographical
origin and predicting freshness. Its ability to handle complex chemical data and provide
actionable insights makes it an invaluable tool in ensuring the accuracy and reliability
of egg quality assessments. By combining various analytical techniques with advanced
data analysis methods, several studies have successfully differentiated between different
egg types, identified production systems, determined geographical origins, and predicted
freshness and storage times. These findings highlight the importance of chemometrics in
ensuring the quality and authenticity of egg products, contributing to consumer confidence
and fair-trade practices in the egg industry.
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2.5. Chemometrics of Fish and Fishery Products

The employment of qualitative spectroscopy and chemometrics applied to authenti-
cate fish and seafood products is developed in this section. In fact, several spectroscopic
techniques have focused on fish species substitution, geographical origin misrepresenta-
tion, and the processing and production method. Using PLS and PCA, Gayo et al. [32]
utilized VIS-NIRS to distinguish Atlantic blue crab mixed with the meat of blue swimmer
crab. These models are better able to predict the adulteration since the standard errors of
prediction (SEP) of 0.252 (PLS) and 0.244 (PCA). NIR spectroscopy reviewed seven species
of freshwater fish [33]. In this study, to distinguish between fish samples, PCA, PLS and fast
Fourier Transform (FFT), coupled with LDA models, were established by nine preselected
spectra wavelengths, and a good prediction of the approved strategy was revealed. The
PCA-LDA and FFT-LDA models were performed with high accuracy, specificity, sensitivity
and precision. According to Zhang et al. [34], three fish surimi species were categorized
by NIR vibration. Using PCA, a disjointed cluster related with red coat surimi species
was noticed, and a full distribution rate was provided by LDA findings. Alamprese and
Casiraghi [35] developed FT-NIR and FT-MIR to (i) assess the replacement of prized red
mullet and plaice species with low-cost Atlantic mullet-and-flounder, and to (ii) distinguish
fresh and frozen–thawed fish. These authors noted that LDA and SIMCA associated with
FTIR displayed a high difference between samples, and was used to separate fresh and
frozen ones. In this sense, a specificity of >95% was determined and sensitivity values
were >60%.

Cozzolino et al. [36] used NIR/PLSR to authenticate the fishmeal batches from different
fish species. They concluded that dummy PLSR achieved ~80% good classification; in
addition, PCA had a score of >80%.

In addition to NIR, further vibrational spectroscopic tools have been extensively
promised to be able to perceive fraud in fish and fish products. For instance, MIR was
employed to identify fraud by replacing Atlantic salmon with rainbow trout [37]. Using
PCA/PLSR, 12 formulations were effectively predicted. Similar trends were observed by
Chen et al. [38] who used Raman vibration.

Rašković et al. [39] applied Raman spectroscopy for the classification of 12 different
fish fillets of different species. By using HCA/Raman spectra, three separated clusters
were revealed. To separate samples, belonging to cod, haddock, saithe and pollack, Standal
et al. [40] evaluated and characterized their phospholipid profiles, obtained by 13C NMR.
Linear analysis contributed a 78% classification rate, while the Bayesian belief network
(BBN) achieved a classification equal to 100%. To distinguish between wild/farmed salmon
according to the degree of processing, Capuano et al. [41] utilized 1H NMR. These authors
reported that by employing SIMCA, a full separation was achieved on the oleic and linoleic
acid levels. Similar trends were reported by Vidal et al. [42] who discriminated between
farmed/wild European sea bass due to great di-unsaturated acyl groups.

By applying PNN and SVM techniques, Masoum et al. [43] applied the 1H NMR to
separate salmon fish oils from eight different geographical sites. These authors noted a
grouping % of 98.5 and 100%, respectively. Likewise, promising results were reported
by Dalle Zotte et al.’s [44] study that used the combination of 1H-NMR/PCA and LDA.
These authors noted a perfect separation between wild/farmed samples. In the same way,
LDA variables’ selection allowed a classification of 100% of the tested wild and farmed
samples. Protein structures, exaggerated by thermal processing, have been examined
by the application of spectroscopic tools. He et al. [45] investigated the impact of wet
cooking on the myosin/ctin denaturation in false abalone by the heat transfer model. These
authors concluded that immobilized water was condensed with a prolonged processing
time, and the shear force was also reduced by LF-NMR and MRI. PLSR showed a great
relationship among immobilized water and sensory studied features. By fluorescence
microscopy joined with physicochemical changes, Cropotova et al. [46] measured the lipid
oxidation in sous-vide-cooked Atlantic mackerel. At 70 ◦C and 80 ◦C during 10/20 min
it was achieved with/without antioxidants. Fluorescence micrographs of extracted lipids
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were acquired in λex 475/40 and λem 530/50, and interrelated with TBARS. It was stated
that the conjugated trienes produced by lipid polymerization throughout the storage of
processed mackerel were associated and correlated with the instrumental yellowness of
the fish flesh. Fluorescence at 415 nm and 347 nm for uncooked and cooked fish fillets was
assessed by Tavares et al. [47], and the outcomes showed the highest intensity was observed
in baked and fried samples compared to the raw and boiled ones. Xia et al. [48] employed
NMR and MRI to investigate the boiling, frying and stewing of turbot. Assessments were
connected with texture and colour quality. A good separation was made between cooking
methods and was shown by PCA/NMR data. Moreover, NMR results were confirmed by
weighted images of the MRI scans with exposed conceptions of interior structural data.
Some modern spectroscopic tools for tracking thermal handlings in fish and fish products
are outlined in Table 1.

Table 1. Some recent examples of spectroscopic techniques used for monitoring thermal treatments
in fish and fish products.

Genus/Species of Fish Applied Technique/Wavelength Range Model Main Findings References

False abalone (Volutharpa
ampullacea perryi) NMR, MRI/21.3 MHz PLSR Quantitative descriptions of actin and myosin protein denaturation and water distribution [45]

Atlantic mackerel
Fluorescence:

Excitation = 475 nm
Emission = 530 nm

Univariate analysis -Fluorescence/lipid oxidation products are highly correlated [46]

Alaska pollock surimi FTIR/4000–400 cm−1 PCA The reduction in the gel strength was consequentce of modifications in protein secondary structures [49]

Atlantic salmon FTIR/4000–400 cm−1 PCA
Cooking/Electrolyzed water:

-significantly reduced Listeria monocytogenes
-developed protein denaturation

[50]

Bighead carp (Aristichthys
nobilis) Raman/400–3500 cm−1 and 22.6 MHz PCA -A decline in α-helix structures

-With the increase in heat treatment, a modification in myosin secondary structures [51]

Hairtail (Thichiurus lepturus)
fillets

Fluorescence:
Excitation = 347 nm
Emission = 415 nm

Univariate analysis -In cooked fish, an increase in fluorescence was observed
-As compared to boiled ones, more fluorescence was noted from baked and fried fillets [47]

Sturgeon (Acipenser
gueldenstaedtii)

Fluorescence:
Excitation = 360 nm

Emission = 380–600 nm
Univariate analysis -Compared to fluorescence of samples before digestion, the fluorescence was increased after digestion

-With roasting times, changes in spectral patters (shape and intensity) were observed [52]

Turbot NMR, MRI/21.2 MHz PCA Correlation between NMR relaxation parameters/texture and colour measurements [52]

Atlantic salmon FTIR/4000–400 cm−1 PCA With high cooking temperature and cooking time, the amid I region exposed an increase in aggregation
and protein denaturation [53]

Fish cakes NIR/760–1040 nm PLSR
-In fish cakes, prediction core temperatures were 2.3 ◦C and 4.5 ◦C for NIR point system and imaging

system, respectively
-In the NIR system, T◦ changes till 11–13 mm depth in fish cakes

[45]

3. Current Analytical Methods for Milk, Dairy Products, Meat and Meat Products,
Eggs, Fish and Fishery Products Authentication and Chemometrics
3.1. Overview of Analytical Methods

As shown in Figure 1, the analytical techniques used for food authentication protocols
are very diverse. Each technique can have different configurations, applications, advantages
and disadvantages.

The spectroscopic techniques, although extremely diversified, are united by the prin-
ciple of the emission or absorption of electromagnetic radiation with the consequent
generation of continuous spectra, band spectra or line spectra. Each substance is capable of
emitting or absorbing particular radiations with intensity dependent on the concentration
of the substance itself. Among the most used are Nuclear Magnetic Resonance spectroscopy,
Infrared and Near-Infrared spectroscopy, and Raman spectroscopy, based, respectively, on
the measurement of paramagnetic spin transitions, vibrational transitions and the inelastic
scattering of photons. These techniques are able to provide a fingerprint of the substance
and are particularly useful for geographical traceability studies of food products.

Similarly, mass spectrometry, which can be used for both inorganic and organic
and hyphenate analysis with different types of chromatographic separation, can provide
the characterization, identification and precise and sensitive quantification of all small
molecules, metabolites, macromolecules and trace elements, which have ionizability as
their characteristic.

Finally, to establish the species and the genomic and transcriptomic characteristics,
the techniques based on DNA analysis, which today have found their maximum use in the
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next generation sequencing (NGS) techniques preceded by the construction of complex
libraries, are today the most studied and investigated.

3.2. Authenticity of Feed Materials towards Egg Authenticity

Determination of the geographical origin of food products is a crucial step; however,
it might not be sufficient on its own to guarantee authenticity. Mapping and controlling
the entire supply chain, including raw feed materials, could be essential for precise control
over the various factors influencing their quality and authenticity.

For example, diet variations among hens even within the same geographical area
might introduce complexities in ensuring consistent quality and authenticity. Mapping
the raw feed materials becomes crucial in ensuring precise control over various aspects
impacting egg authenticity. It is not just the location where hens are raised that matters
but also the source and quality of their feed. Differences in feed can significantly affect the
nutritional composition and even the chemical markers present in eggs.

Formulation of an effective feed should consider the right cost and nutritional quality
to cover the essentials of poultry as reported by Belkhanchi et al. [54].

For livestock, the feed must also provide enough nutrients to meet production needs
(eggs or meat). Different forms can comprise the feed such as: raw materials, compound
feed (a mixture of at least two raw materials), complete feed (compound feed with sufficient
composition, to cover the daily requirements) or supplementary feed (for example, cereals
to supplement the raw materials given to the animal) [55,56].

The increase in the needs of poultry arises from the growth of global demand for
animal protein [57], thus creating many challenges [58–65]. Tremendous changes in the
growth of all phases have been historically observed for the commercial poultry industry
from the hatchery to broiler and layer farm practices across meat and egg processing
technological advances [66]. Hence, the volume of poultry meat and eggs produced has
also expanded to match this rise in retail and consumer demand [67–69]. This rise still
depends on advances in bird genetics, nutritional management, processing technologies
and food safety [70–76].

The success of a quality feed formulation depends on the physicochemical characteris-
tics of raw materials [77] and the production efficiency and meat quality in broiler chickens
derived from the effect of the partial replacement of raw materials with others [78–82].

According to the European Union (EU)-funded project MARLON, the organization
and characteristics of specific livestock and feed production chains (conventional, organic,
GM-free) within the EU, with an emphasis on controls, regulations, traceability and com-
mon production practices, have been studied. Moreover, the origin of animal feed used
in the EU as well as an examination of the use of genetically modified organisms (GMOs)
in feed is provided according to Kleter et al. [83]. They showed that livestock is traceable
at the herd or individual level, depending on the species. Geography and animal species
affect husbandry practices, which can vary. For feeds, only coarse estimates could be made
for the amount of GM feed ingredients that an animal is exposed to.

The approach followed by EU risk assessors is described in a detailed guidance devel-
oped by the European Food Safety Authority’s panel of experts on genetically modified
organisms (EFSA GMO Panel) and incorporated into EU legislation [84,85].

The authenticity of native eggs was detected by combining near-infrared (NIR) spec-
troscopy with data-driven-based class modelling (DDCM) and model-independent variable
selection, i.e., joint mutual information (JMI) as reported by Chen et al. [86]. A total of
122 eggs of three types were collected. Principal Component Analysis (PCA) was utilized
for exploratory analysis. Near-infrared (NIR) spectroscopy has become increasingly im-
portant in food field as a powerful analytical technique [87–92]. NIR spectroscopy can
characterize multiple chemical components of samples showing great advantages such as
A lower sample preparation requirement, reduced analysis time and cost, multicomponent
analysis and the potential for online analysis. NIR spectral information is hardly selective
due to the NIR spectrum corresponding to overtones and combinations of the fundamen-
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tal molecular vibrations. NIR-based quantitative and qualitative analyses need the help
of chemometrics.

Another study by Rogers et al. [93] used stable isotopes to develop authentication
criteria for eggs laid under cage, barn, free range and organic farming regimens from
the Netherlands and New Zealand. Commercial poultry feeds and egg albumen from
49 poultry farms across the Netherlands were used to determine the isotopic variability in
organic and conventional feeds. Trophic effects of these corresponding feeds and barn, free
range and organic farming regimens on corresponding egg albumen were also assessed.
This study suggested that nitrogen showed particular promise as a screening and authen-
tication tool for organically farmed eggs. They proposed that Dutch organic egg whites
should have a minimum δ15N value of 4.8‰ to account for an organic plant-derived diet.
Regarding New Zealand egg isotopes over the past 7 years suggested that organic eggs
should have a minimum δ15N value of 6.0‰, a higher value due to the use of fishmeal or
meat and bone meal (MBM), restricted in the EU.

Finally, Bandoniene et al. [94] developed a method for labelling poultry products by
the selective enrichment of two rare earth elements (REE), namely, terbium and thulium, in
the feed for laying hens to discriminate labelled from unlabelled poultry products. Analysis
was varied by using either conventional or laser ablation inductively coupled plasma mass
spectrometry. This was found to be a good methodology to detect authenticity.

3.3. Current Analytical Methods for Milk and Dairy Products Authentication and Chemometrics

Li et al. [95] as well as Huang et al. [96] noted that Raman spectroscopy is gaining
more and more attention in food quality control in combination with chemometrics due
to it being fast, portable and non-destructive. Furthermore, this technology allows the
measurement of intact samples (while inside the packaging), while the water content of the
samples does not affect measurements.

One of the primary applications of chemometrics in the dairy industry is the detection
of adulteration. Numerous studies in the provided table demonstrate how chemometric
techniques can effectively identify various forms of adulteration, including the addition of
water, non-dairy substances and contaminants such as melamine. For example, FT-NIR
spectroscopy combined with chemometric methods such as PCA, PLS-DA and iPLS was
employed by da Paixao Teixeira et al. [21] to detect the adulteration of yogurt and cheese
made with goat’s milk using bovine milk. Such techniques provide rapid and accurate
detection, bolstering consumer trust and safety. Differentiation of dairy products based on
their geographic and seasonal origin can be carried out by chemometrics, and this is partic-
ularly valuable for products with Protected Designation of Origin (PDO) status. Studies
such as Pellegrino et al. [97] and Tarapoulouzi and Theocharis [98] employed chemometric
methods to distinguish between different types of cheese. This verification is vital for
protecting traditional cheese-making practices and ensuring consumers receive genuine
products. More recently, Tarapoulouzi and Theocharis [99] discriminated Halloumi and
Anari cheese in two classes, thus per cheese type. In addition, they discriminated samples
based on milk species, i.e., cow and goat–sheep origins for each cheese type. They combined
Fourier Transform Infrared (FTIR) spectroscopy with Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA). The success of this study highlighted the importance
of FTIR spectroscopy in combination with chemometrics in food authenticity. Further-
more, beyond authenticity, chemometrics aids in quality control and process verification.
It facilitates the monitoring of dairy product quality by analysing various chemical and
physical parameters. For instance, using rheology and FT-NIR spectroscopy, combined with
chemometric analysis, Strani et al. [100] assessed the impact of physicochemical parameters
and the use of skimmed milk powder in milk thickening. This approach enables producers
to maintain product consistency and quality.

The authenticity of milk and dairy products is ensured by the pivotal role played by
chemometrics applications. They serve as powerful tools for detecting adulteration, verify-
ing the origin of products, identifying species, confirming cheese types and maintaining
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product quality. These applications not only enhance consumer confidence but also help
protect the integrity of traditional dairy products and support quality control efforts within
the dairy industry. As technology continues to advance, the role of chemometrics in the
dairy sector is poised to become even more critical, guaranteeing that consumers receive
authentic and high-quality dairy products. Table 2 presents recent studies of chemometrics
and the authenticity of milk and dairy products.

Table 2. Recent studies of chemometrics and authenticity of milk and dairy products.

Type of Matrix Purpose of Study Method of Analysis Chemometric Method References

Goat milk Detection of water, urea, cow’s whey, cow’s milk NIRS PCA, k-NN, PLS-DA, SIMCA [17]

Fresh milk Formaldehyde detection TD-NMR PCA, PLS, SIMCA [19]

Fresh cow’s milk Formaldehyde detection ATR-FTIR PCA, SIMCA, PLS, PCR [16]

Milk coagulation using rennet Effect of physicochemical parameters and use of skimmed milk powder Rheology, FT-NIR MCR-ALS [100]

Skimmed milk powder
Detection of vegetable protein powder, whey powder, starch, lactose,
glucose, fructose as well as non-protein nitrogen such as ammonium

chloride, ammonium nitrate, melamine and urea

Multiple optical sensors (UV-Vis,
fluorescence and NIRS) Algorithm one class classification [18]

Milk Milk powder detection UPLC-QTOF-MS PCA [101]

Milk Geographical and seasonal origin IRMS, EDXRF,
ICP-MS OPLS-DA, SIMCA [102]

Milk Discrimination based on seasonal and animal origin IRMS One-way ANOVA [103]

Fresh milk Geographical origin IRMS PCA [104]

Milk Geographical origin IRMS OPLS-DA [105]

Milk and halloumi cheese Discrimination based on animal origin FTIR PCA, OPLS-DA [106]

Milk Formaldehyde detection ATR-FTIR PCA, SIMCA, PLSR, PCR [16]

Milk Detection and quantification of skimmed milk powder in fresh milk FE-SEM,
cyclic voltammetry PCA, SIMCA, PLS [107]

Milk and mature cheese Control of breeding system (agricultural production system) of animals FTIR, GC, PTR-ToF-MS, sensor analysis LDA [108]

White cheese Adulteration with vegetable fats Spectroscopy Raman PLS-DA, PLS [13]

PDO-Fontina cheese and traditional Fontal
cheese Discrimination according to the type of cheese GC-IMS, CZE,

chromatography PCA [97]

Graviere cheese Geographical origin GC-MS, ICP-OES LDA [20]

Fresh and pasteurized milk Detection of animal origin and heat treatment Spectroscopy Raman PLS-DA [15]

Cheese Study of ripening and ripening type based on fatty acid content Gravimetric GC-MS,
Ag+-HPLC-DAD CA, PCA, LDA [14]

Yogurt and cheese made with goat’s milk Detection of cow’s milk adulteration FT-NIR PCA, PLS-DA, iPLS [109]

PDO grated cheese Parmigiano Reggiano Study of authenticity based on crust percentage (maximum allowed rind
content percentage) Spectroscopy Raman SIMCA

PLS [110]

Cheese PDO-Pecorino Romano, PDO-Pecorino
Sardo and Pecorino di Farindola Discrimination of the type of cheese based on volatile compounds HS-SPME-GC-MS PCA, LDA, PLS-DA [111]

Kefalotyri and cheddar cheese Discrimination by type of cheese 1H-NMR, FTIR OPLS-DA [112]

Dairy products Detection of adulteration with vegetable fats 1H-NMR Orthogonal projection [113]

Yogurt Detection of adulteration with vegetable fats FT-NIR, FT-MIR SIMCA, PLSR [114]

Milk powder Milk powder ATR-FTIR PCA, SIMCA [115]

Classification of Halloumi and Anari cheese Discrimination according to the origin of the cheeses FTIR OPLS SIMCA [99]

Halloumi cheese, Kefalotyri and cheddar Discrimination according to the type of cheese FTIR, 1H-NMR OPLS-DA, MOCA [116]

Prato and mozzarella cheeses Verification the authenticity of commercial
samples of prato cheese MIR PLS-DA [117]

3.4. Current Analytical Methods for Meat and Meat Products Authentication and Chemometrics

Khan et al. [118] used Fourier Transform Infrared Spectroscopy (FTIR) along with
Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), com-
bined with chemometrics, enabling the analysis of a complex multitype of meat blends.
This approach ensures the maintenance of desired physicochemical characteristics in beef,
pork, chicken and turkey meat products. This chemometric approach ensures the reliable
identification of adulterants, enhancing product quality and consumer trust.

Varrà et al. [119] monitored the impact of radiation processing on sausages. NIR
spectroscopy, employing the chemometric tools of Principal Component Analysis (PCA)
and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) provided the
necessary insights to maintain product safety and quality. Achata et al. [120] monitored
bacterial growth in beef muscle under various storage conditions, which is a critical study
for food safety. They used Vis-NIR hyperspectral imaging along with the total viable
count (TVC) and Partial Least Squares Regression (PLSR). Rebellato et al. [121] worked
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to determine the sodium content in hamburgers by applying Near-Infrared spectroscopy
(NIR). Chemometrics, including Partial Least Squares (PLS) and PLS Discriminant Analysis
(PLS-DA), supported this assessment effectively. Leng et al. [122] identified adulteration
with pork and duck meat in ground beef products. NIR spectroscopy, in conjunction with
Discriminant Analysis and Partial Least Squares (PLS), helped to achieve this goal. A
very recent study performed by Cozzolino et al. [123] took place to differentiate between
traditional and wild meat species. PCA, LDA and the similarity index (SI) were applied. The
authors concluded that SI is a quite simple method for comparing two spectra. Comparison
of SI to classical chemometric methods (e.g., LDA, PCA), showed that SI can be more
easily understood, has a low cost and can be applied by only using software such as Excel®

(2013). Another study based on NIR spectroscopy was implemented by Hoffman et al. [124].
The adulteration of exotic meat species (emu and camel) with traditional or commercial
species (beef and lamb) in binary mixtures of minced meat was monitored by chemometric
methods, such as PCA and PLS-DA. It was concluded that the level or ratio of adulteration
can be determined by NIR spectroscopy.

Based on the aforementioned research studies, chemometrics stands as an indispens-
able asset in the realm of meat and meat product authenticity studies. Its capabilities span
from precise adulteration detection to the characterization of multi-meat blends, authenti-
cation of halal products, differentiation of meat types, monitoring of processing effects, and
assessment of biochemical and physicochemical properties. Furthermore, chemometrics
plays a pivotal role in food safety by monitoring microbial flora and ensuring compliance
with dietary recommendations. By embracing chemometrics, the meat industry can ensure
that consumers receive products of the utmost authenticity and quality. Table 3 presents
recent studies of chemometrics and the authenticity of meat and meat products.

Table 3. Recent studies of chemometrics and authenticity of and meat and meat products.

Type of Matrix Purpose of Study Method of Analysis Chemometric Method References

Chicken Status identification: fresh or frozen NIR PLS-DA, CPANN, SVM [125]

Sausages (pork and beef mix) Soy protein adulteration E-nose PCA, PNN [126]

Beef meat preparation Wild boar meat adulteration FTIR PCA, PLS [127]

Beef, lamb and venison Discrimination red meats Spectroscopy Raman PCA, PLS-DA και SVM [128]

Beef mixture Chicken adulteration ATR- FTIR PCA, PLSR, ANN [129]

Beef meat preparation Adulteration with another type of meat FTIR PCA, PLS-DA και SIMCA [130]

Minced pork Aging and wear,
characterization of changes during storage and spoilage HS-SPME-GC-MS PCA, OPLS-DA [131]

Beef meat Adulteration with maltodextrin MIR PLS-DA [132]

Beef, pork, chicken and turkey meat Physicochemical characteristics FTIR PCA, PLSR [118]

Sausages Radiation treatment process NIR PCA, OPLS-DA [119]

Beef muscle Bacterial growth at two storage temperatures Vis-NIR HIS TVC, PLSR [120]

Hamburger Sodium content NIR PLS, PLS-DA [121]

Ground beef Adulteration with pork and duck meat NIR DA, PLS [122]

Beef sausage Adulteration with pork LC–HRMS PLS-DA [133]

Sausage products Adulteration with pork GC-MS, FTIR PCA [134]

Pork meat Authenticity of pork fat according to the rearing system NIR DD-SIMCA [135]

Chicken Geographical origin ICP-OES, ICP-MS OPLS-DA, CDA [136]

3.5. Current Analytical Methods for Fish and Fishery Products Authentication and Chemometrics
3.5.1. DNA-Based Methods

In order to identify fish species, several DNA-based methods have been employed.
Their realization involved multiple similar preparative steps, viz. the isolation of DNA
and in silico investigation applying convenient databases (such as specific primers). The
most noteworthy for fish species identification are methods using restriction cleavage RFLP
and AFLP (Amplified Fragment Length Polymorphism), DNA barcoding, FINS (Forensi-
cally Informative Nucleotide Sequencing), HRM (High-Resolution Melting), PCR (Poly-
merase Chain Reaction), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single-
Stranded Conformational Polymorphism) [137,138]. In addition, the Loop-Mediated
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Isothermal Amplification (LAMP) technique has been newly employed for fish species
identification. Several methodologies have been carried out using either nuclear DNA
(nDNA) or mitochondrial DNA (mtDNA), but recently, LAMP (Loop-mediated isothermal
amplification) method has been applied for fish species [139,140]. Nuclear (nDNA) or mito-
chondrial mtDNA have been used in several lines. Databases of genome sequences/nucleic
acid sequences could simplify the choice of appropriate target molecules; on the other
hand, identification markers can support these methodologies through their complexity
and efficiency.

The most important ones are: EMBL (European Molecular Biology Laboratory, http:
//www.ebi.ac.uk; DDBJ (DNA Data Bank of Japan, http://www.ddbj.nig.ac.jp; and the
NCBI (Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov. The EU
database FishTrace (https://fishtrace.jrc.ec.europa.eu/) employs databases based on fish
nucleotide sequences. Recently, the development of DNA-based identification methods
has been shortened by the recognition of the fish genome sequence. For instance, up to
2020, more than 900 whole-genome sequences of fish species were published [141]. mtDNA
sequence data can also be employed to identify several fish species in concurrence with the
whole-genome sequences, and >3300 mtDNA sequences of fish species have been put in the
NCBI. On the other hand, for fish species identification, mtDNA can be used to elucidate
the difference in nearly linked taxa and even species, and its aptitude to distinguish the
geographical origin of the fish species [142]. According to the literature, for fish species
identification, the commonest mitochondrial markers are: the COI (gene for cytochrome-c-
oxidase subunit I) [143,144] and cytb (cytochrome b) [145]. Their incidence is expected in
treated fish products based on the very high mtDNA copy number in the cell [146]. The
non-feasibility of DNA computing, since mtDNA levels could vary on the tissue type, is the
major drawback of mitochondrial markers compared to nuclear ones [147]. In addition, β-
actin is the most regularly used nuclear marker for fish authentication, and is also employed
as an internal regulator for mRNA quantification [148] and parvalbumin [149]. Additional
regularly used markers for fish species identification are: short tandem repeats (STRs)
and simple sequence repeats (SSR) [150]. These nuclear microsatellites have the benefits
of being extremely species-specific and being utilized for analyses at the intra-species
level; meanwhile, their abundance across the genome requires a small amount of DNA to
assemble data [151].

The PCR-RFLP has been fruitfully useful for fish species and their products’ identifi-
cation due to its ease and low cost. AFLP progresses the species-specific SCAR (sequence
characterized amplified region) marker for detection of the fresh Atlantic salmon’s adul-
teration against the less expensive rainbow trout [149]. Maldini et al. [150] applied AFLP
to assess the distinctiveness of fish species in processed commercial products, while this
approach could quickly classify nine species of cod fish as concluded by Akasaki et al. [151].
Espiñeira et al. [152] used PCR-RFLP to distinguish seven species of anglerfish, and Yu
and Guo [153] also appraised the genetic difference of four strains and one wild popula-
tion of the eastern oyster by AFLP/microsatellite markers. Lin and Hwang [154] utilized
PCR-RFLP, and identified the species in eighteen commercial canned tuna products by
differentiating albacore, yellowfin, bigeye and Atlantic bluefin tuna. Recently, the investi-
gation of Yao et al. [155] established and validated 39 commercial tuna sashimi samples.
RFLP is advantageous due to it being precise, reliable, operative, moderately polymorphic,
with great genomic richness and with random dissemination, and extremely reproducible.
However, it has some disadvantages such as being expansive, not entirely robotic, and
demanding large quantities of purified and great molecular weight DNA for each digestion.

FINS uses a comparable standard to DNA barcoding and is allied with DNA sequenc-
ing/phylogenetic analyses. An informative nucleotide sequence is subsequently identified
by phylogenetic analysis succeeding the sequencing of an amplified specific DNA frag-
ment [154]. Remarkably, FINS allowed the detection of new unexplored species [155]. For
instance, the adulteration of 40% of processed Cyprinidae commercial samples by Ore-
ochromis spp. was noticed using the FINS method [156]. FINS was suitable for extremely

http://www.ebi.ac.uk
http://www.ebi.ac.uk
http://www.ddbj.nig.ac.jp
http://www.ncbi.nlm.nih.gov
https://fishtrace.jrc.ec.europa.eu/
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treated products and powerful when employed to define the interspecific/intraspecific
variability. However, it is expensive, and highly skilled operators are required. Genetic
markers employed to identify fish species are summarized in Table 4.

Table 4. Recent overview of genetic markers employed for fish species identification.

Genus/Species of Fish Detection Method Markers Objective of Study References

Anglerfish (Lophius) real-time PCR Pvb/nDNA Identification and quantitation of two European anglerfish, L. piscatorius and L. budegassa [157]

Salmon and trout real-time LAMP cytb/mtDNA Individually and simultaneously specific detection of S. salar and O. mykiss [145]

Salmon and trout real-time PCR COI/cytb mtDNA Identification of S. salar and O. mykiss in processed fish products [158]

Atlantic salmon (Salmo salar) real-time LAMP, PCR Cytb/mtDNA Detection of S. salar in processed fish products [159]

Sardina DNA barcoding, real-time PCR COI/mtDNA Screen the species of S. pilchardus species in varied products [160]

Codfish species HRM 12S rRNA/mtDNA
Discrimination between Gadus species and the other five Gadiformes species. Nineteen
commercial codfish products were included in the Gadus cluster, cross-confirmed by the

real-time PCR and DNA barcoding
[161]

Salmon LAMP, PCR cytb (LAMP), COI (PCR)/mtDNA Identification of Atlantic salmon in processed fish product [162–165]

Trout PCR, LAMP COI (PCR)/ cytb (LAMP) mtDNA Identification of rainbow trout in processed fish products [163–166]

Salmon real-time PCR GH1, 18S rDNA/nDNA Detection of S. salar in processed fish products [167]

Fish genus real-time PCR 16S rRNA/mtDNA Validation and applicability to model mixtures with spiked fish [168]

Salmon SNPs 94 SNPs loci/ Genome Discriminate between farmed salmon populations of several origins [169]

Sardina PCR-RFLP Cytb/mtDNA The authenticity of sardines commercialized in Rio de Janeiro state [170]

3.5.2. Novel Detection Methods

Recently, novel techniques for assessing fish and fishery products’ features have
resulted in the progress of non-invasive/non-destructive instrumental methods, such as
biosensors and e-sensors.

Biosensor Techniques

Biosensors are able to appraise a biological or chemical reaction and to adapt the
answer into an electrical signal [171]. Tang et al. [172] concluded that a sensitive ampero-
metric sensor, based on carbon nanofibers, has a great affinity to the oxidation of Xanthine
in crucian carp samples. The correlation coefficient and the limit of detection were 0.99
and 20 nM, respectively. Heising et al. [173] used electrode sensors to monitor pH vari-
ation in and conductivity of the aqueous phase, which was associated with the increase
in volatile amines in fish. From raw fish flesh, Chang et al. [174] established an amine
gas sensor qualified to perceive volatile amine gases such as ammonia, TMA and DMA.
Li et al. [175] reviewed the impact of different triethylamine concentrations on copper
nitrate–benzenetricarboxylic acid (Cu-BTC) on the concurrent assessment of Xa and HxA
in fish samples. The results showed that TMA had a great influence on the electron transfer
ability of Cu-BTC, improving the sensibility. A linear performance between the levels and
the oxidation peak of Xa and HxA was performed on fish samples. Enzymatic biosensors,
based on the evaluation of the response substance/enzyme, were created. Thandavan
et al. [176] found a biosensor based on nanoparticles of iron oxide linked with Xanthine
oxidase (XOD), provoking the electroreduction of H2O2. Narang et al. [177] and Borisova
et al. [178] launched a system-based nanocomposite of TiO2 nanoparticles/carbon nan-
otubes and [polydopamine/platinum, which immobilized the enzyme of XOD. In these
studies, labeo and hake fish samples were examined, and these novel biosensors proved to
have high reproducibility and repeatability. Similarly, Apetrei et al. [179] proposed a sensor
for histamine biosensing, where the enzyme diamine oxidase was immobilized on a carbon
blended with grapheme/platinum nanoparticles. The LOD was equal to 25 mM at a linear
array between 0.1 and 300 µM.

Torre et al. [180] developed a biosensor based on a carbon electrode with the immobi-
lized diamine oxidase in tuna and mackerel samples. The LOD was low (0.97 mg/L) and
the accuracy, as well as recovery value were high [180,181]. To define HXa, Xa and uric acid
in four different fish species, Pierini et al. [182] proposed an edge plane pyrolytic graphite
electrode with immobilized nucleoside phosphorylase and XOD. Likewise, to define ATP-
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related compounds, alkaline phosphatase and adenosine deaminase were concurrently
co-immobilized onto alkylamine glass beads [183].

Sensory Bionics Technology

This technique comprises an electronic nose/tongue, a colorimetric sensor array and
computer vision. In fish products, this technology was developed based on the senses of
smell, taste and vision.

- E-nose

Numerous systems have been employed based on electrochemical gas, metal oxide
and conducting polymer sensors joined with various extraction/data processing methods.

Guohua et al. [184] launched an electronic nose system that consisted of eight metal
oxides for envisaging the freshness of grass carp. These authors employed PCA to separate
all samples according to the freshness; so, with the storage time, the response intensities
of sensors increased. In this study, all samples were separated into three different groups.
To discriminate channel catfish according to a good/or not flavoursome aroma, Wilson
et al. (2013) applied an e-nose covering an organic matrix-coated polymer-type 32-sensor
array. To track the spoilage of tilapia, Semeano et al. [185] recently developed an optical
electronic nose linked to the microorganism’s growth. Haugen et al. [186] monitored the
smoked salmon process using a gas-sensor array system. The total viable content (TVC)
and lactic acid bacteria (LAB) loads were controlled, and a precise classification rate ranging
from 93 to 95% was achieved. In the same way, TVC was detected by four metal oxide
microsensors to separate sardines according to freshness [187]. Tian et al. [188] used metal
oxide sensors to assess TVB-N and TVC in hairtail fish, and PCA was employed for the
compensation of humidity and temperature effects. All these established results prove
that e-noses have many benefits in monitoring the authenticity of fish freshness including
their ease of operation, rapidity, reliability and precision, which could substitute for other
expensive or time-consuming analysis techniques.

- E-tongues

To evaluate sea bream freshness, Gil et al. [189] developed a method based on elec-
trodes of several kinds of metals. An artificial neural network was conducted to classify
samples; the correct % was equal to 90. Barat et al. [190] employed an e-tongue composed
of gold/silver wires. A high correlation was obtained between the sum of inosine + HXa
and the sum of all other ATP breakdown products. Miao et al. [191] applied a combination
of the e-nose and -tongue for a post-cooking sensory evaluation of canned tuna. A PCA
was employed for the creation of a K-value calibration model, gaining an acceptable distri-
bution of the samples by the first two principal components. Pattarapon et al. [191] used an
e-tongue, in conjunction with an e-nose and several chemical parameters, to investigate the
variations in grass carp quality between vacuum and non-vacuum packing. The outcomes
showed that these techs could distinguish between the three different storage conditions,
sustained by PCA/LDA analysis [191,192].

- Computer vision technique

This technique has been employed to attain and examine the image of a real scene
using computers. It has the potential to track the quality of food products in an automated
and non-destructive way [193,194]. To assess the colour variations in the pupils and gills of
tilapia, Shi et al. [195] used a computer vision system, and the MLR was investigated to
predict TVB-N, TVC and TBA values with high R2 (~0.999). Similar trends were observed
by Balaban and Alçiçek [196] and Issac et al. [197], who studied fish of gilthead sea bream,
and gills of Indian rohu, respectively. It should be noted that, compared with traditional
evaluation approaches, computer vision displays the capability to be speedy and has a
low-cost for envisaging the freshness and authenticity of fish and fish products.
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4. Challenge and Future Perspectives

In spite of extended investigations focused on the detection of fraud and authentic-
ity via on-site and real-time advances, numerous pivotal challenges continue to prevail
regarding both technique concerns and the framework for the validation of models. In
this line, several approaches comprise non-targeted methods that detect diverse, small
modifications in the studied food product; furthermore, these extracted data were inves-
tigated by a multivariate statistic approach. In this regard, it should be noted that the
authentication of food samples should define the unit/number and variability in samples,
and a sustained maintenance of the food database is required to guarantee its long-term
ability to provide suitable results. On the other hand, various experimental conditions can
impact the acquired results and contribute to analytical deviation that is not linked to the
authentication issue. These deviations should be decreased to the lowest values and be
well monitored to guarantee that they do not confuse the results of the analysis.

In spectroscopic techs, the results of which are reproducible and just influenced by
variations in sensitivity, sample development and preparation was not normally required.
This is true for liquid foods, whereas solids (viz. meat, fish, egg) are heterogeneous matrixes
and may involve moderate and/or multiple preparations. Furthermore, the choice of a
proper acquisition mode was crucial to attain authentic spectroscopic results. Based on the
food product’s nature, the kind of radiation, the type of sample performance, the versatile
sample holder and the employed temperature should be tracked.

Recently, hyperspectral imaging tools have been an effective and useful alternative
to point spectral scanning. In heterogeneous food product samples such as meat and fish
products, hyperspectral imaging can control the large spatial distribution of components.
In these two kinds of animal products, hyperspectral imaging technologies are linked to
NIR radiation spectroscopy to determine the quality and the corresponding authenticity.

Generally, from any developed detection system result, multivariate data analysis
is the ultimate phase that is skilled at categorizing samples as authentic or not. In this
situation, a suitable algorithm and powerful validation of the model are needed to assure
reproducible results that favour the agreement of these practices in legislation. Practically,
several works have been established and developed at the laboratory scale, while few
have been conducted at the plant level, which continues to be challenging. Thus, to meet
these challenges, a collaborative effort of all actors involved, including regulatory agencies,
industries, stakeholders, academics and researchers, is undoubtedly needed.

5. Conclusions

Analytical techniques together with chemometrics are undoubtedly reliable techniques
for predicting fraud and the authenticity of animal and animal-derived foods. It is impor-
tant to find in each case a rapid and non-invasive method, together with the appropriate
model of chemometric processing and validation, in order to extract a reliable tool for the
rapid identification and quantification of adulteration. This is an important requirement at
the current time due to the increasing number of processed animal products in which the
treatments applied can cover a possible adulteration between species, against the rights
of consumers. A high number of analysed samples and validation systems are needed to
demonstrate that the models can accurately predict not only adulteration levels but also
simple adulteration identification.
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