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Abstract: Recently, there has been a growing interest in advancing plant-based or cultured meat
substitutes as environmentally and ethically superior alternatives to traditional animal-derived meat.
In pursuit of simulating the authentic meat structure, a composite fiber composed primarily of soy
protein isolates (SPIs) was fashioned, employing a fiber-based plant-based analog meat construct. To
refine the spinning process and enhance fiber quality, we employed ultrasound treatment, a physical
modification technique, to scrutinize its influence on SPI protein structure. This inquiry extended to
the examination of the interplay between sodium alginate (SA) and SPI, as well as the impact of salt
ions on the SA and ultrasound soy protein isolates (USPI) interaction. A comprehensive exploration
encompassing ultrasound treatments and salt concentrations within the composite solution, along
with their repercussions on composite fiber characterization, with a rise in negative zeta potential
value, states the ultrasound treatment fosters protein aggregation. Moreover, the introduction of salt
augments protein aggregation as salt content escalates, ultimately resulting in a reduced structural
viscosity index and improved spinnability. The presence of Ca2+ ions during the coagulation process
leads to interactions with SA. The involvement of ultrasound prompts the exposure of hydrophilic
amino acid segments in the protein to water, leading to the development of a more porous structure.
Solely under the influence of ultrasound, the fiber exhibits 5% higher water-holding capacity and
superior mechanical properties while maintaining comparable thermal stability.

Keywords: ultrasound; meat analog fiber; wet-spinning; physical characterization

1. Introduction

In recent years, there has been a burgeoning interest in the development of plant-based
or cultured meat alternatives as a more sustainable and ethical option compared to tradi-
tional animal-based meat [1]. Despite the growth in popularity of meat alternative products
made from legumes, such as patties, nuggets, and kebabs [2,3], there were still limitations
remaining in terms of nutrition, texture, and mouthfeel [4]. These limitations arise from
the fibrousness of animal meat, which results from the collagen fibrils (perimysium and
endomysium) entrapping bundles of muscle fiber [3]. To address this challenge, various
processing techniques can be employed, including wet or electro-spinning, extrusion, 3D
printing, and high-temperature conical shear cells [2]. The wet-spinning method, as a
bottom-up method, is one of the most common manufacturing techniques for the fabrica-
tion of fibrous structures, and usually provides the feasibility to produce individual fiber
that can be further bundled and stretched to orient fiber microstructure [2]. Through 4 main
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stages: dissolution, extrusion, coagulation, and collection, the wet-spinning method will be
able to produce fiber-based biomaterial that is founded on the concept of solvent exchange
between the polymer solution and the coagulation bath [5]. To adapt the wet-spinning
method for use in the food industry, to accommodate edible materials into the production
and with a similar manufacturing process, it would be ideal to create large-scale, low-cost,
high-yield plant-based analog meat microfibers [5–7].

Two key factors play a vital role in the wet-spinning process: the polymer solution
and the coagulation bath. The polymer concentration, molecular weight, additives in the
polymer solution, and the processing temperature are important parameters that would
affect the spinning process and fiber quality [5]. The polymer in the solution is extruded out
of the nozzle and in contact with the coagulation bath, it begins to coagulate and solidify
which is induced by solvent/non-solvent exchange [5,6]. The coagulation process is a
diffusion-controlled phase separation process that can produce fiber. The porous structure
on the surface of the fiber is usually caused by coagulation, where higher processing
temperature results in increased mutual diffusion coefficients and, therefore, more porous
structure [5].

Proteins and polysaccharides can be used as ingredients for spinning. By successfully
combining sodium alginate (SA) and soy protein isolates (SPI), we are able to produce a
high protein-content plant-based analog meat fiber [8]. Limited by the high protein content
and large molecule size, the fluidity and spinnability of the fiber need to be improved.
Considering the food safety aspect of the product and minimizing modifications to the raw
material, modulation of the electrostatic interaction between protein molecules and reduced
protein molecule size physiochemically were applied. Recent studies on the physical
modification of plant-based protein mainly stated five approaches: conventional heat
treatment, high pressure, sonication, extrusion, and cold atmospheric plasma processing [9].
Sonication is a green, sustainable, novel technique that has several advantages compared
to other modification methods. In particular, ultrasound (US) emits an acoustic sound
wave above 20 kHz, which the wave can be affected by pressure and displacement. The
radicals and superoxide produced during the protein US modification process may induce
structural changes caused by the disruption of non-covalent bonds [9,10]. Due to the above,
sonification can apply a total effect on the protein structure that would decrease protein
viscosity and reduce intrinsic viscosity [11]. Studies have shown that US treatments had
positive impacts on the structural, physicochemical, and functional properties of plant
protein, including solubility, emulsification, gelation, water-holding capacity, foaming, and
oil absorption capacity [12–17].

In this current work, we aim to optimize the spinning process and improve the
performance and mechanical strength of the fiber through the effect of US treatment on the
SPI, and the addition of ions to influence the ionic environment of the protein. Scanning
electron microscope, Fourier-transform infrared spectroscopy, and differential scanning
calorimetry were used to characterize the morphology, secondary structure, and thermal
properties of the modified composite fiber, respectively. Water-holding capacity, mechanical
properties, and moisture distribution were performed to investigate the properties of the
sodium alginate and US pre-treated soy protein isolate (USPI) composite fibers. In this
study, our work will redesign the spinning medium based on US modification on the plant
protein, and further improve the quality and water retainability of obtained fiber.

2. Materials and Methods
2.1. Materials

Defatted soybean flour was purchased from Shandong Yuwang Industrial Co., Ltd.
(Yucheng, Shandong Province, China). Food-grade sodium alginate (Mn = 357,475 Da,
Mn/Mw = 1.392, M/G =0.32) was purchased from Qingdao Haizhilin Biotechnology De-
velopment Co., Ltd. (Qingdao, China). Analytical pure hydrochloric acid (HCl), sodium
hydroxide (NaOH), calcium chloride (CaCl2), sodium chloride (NaCl), and potassium chlo-
ride (KCl) were all purchased from Sinopharm Chemical Reagent Co., Ltd. (Wuhan, China).
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2.2. USPI Preparation

The SPI was extracted with methods adopted from [18,19]. The protein content of SPI
determined by the Kjeldahl method was 90.36 ± 0.35% (N × 6.25). The SPI powder was
dispersed in distilled water with a total solids content of 10% (w/v), slowly stirred for 2 h at
room temperature, and stored in the fridge overnight at 4 ◦C. The 100 mL SPI dispersion
was treated using a 20 kHz angle sensor sonicator (FB705, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) with a 12 mm titanium probe. Place it in a 100 mL flat-bottom
cylindrical flask, and soak it in an ice water bath. Samples were treated at 80% amplitude
for 5 min (pulse time 5 s, intermittent 5 s), after sonication all samples were lyophilized
and stored at room temperature in a sealed container.

2.3. Preparation of SA/USPI Composite Solutions

At ambient temperature, a specified quantity of SA was completely dispersed and
dissolved in distilled water, resulting in an SA solution with a mass fraction of 7 wt%.
Simultaneously, the sonicated SPI was dissolved in distilled water and stirred for 2 h to
produce a USPI solution with a mass fraction of 16 wt%. All solutions were stored at 4 ◦C
overnight to ensure complete hydration. The pH values of the SA and SPI solutions were
adjusted to 7, respectively. Next, equal amounts of SA solution and SPI solution (labeled
with rhodamine B) were combined.

Varying amounts of NaCl or KCl were added to create composite spinning solutions
with different salt contents. Control samples without added salt were also prepared. The
solutions were mechanically stirred and degassed by centrifugation (10,000× g) for 10 min.

2.4. Confocal Laser Scanning Microscopy (CLSM)

The solution morphology was observed using a confocal laser scanning microscope
(CLSM, FV3000, Olympus, Shinjuku-ku, Tokyo, Japan). Modifications on the method were
made based on previous study [20]. Nile Blue A was used to label SPI. The stained USPI
solution was then mixed with SA solution and thoroughly stirred for 1 min. The stained
samples were placed on a glass slide with a coverslip, and all images were obtained at a
wavelength of 488 nm using CLSM at a magnification of 100×.

2.5. Zeta Potential

The zeta potential was measured using Zetasizer Nano-ZS90 (Grovewood Rd., Malvern,
WR14 1XZ, U.K.) based on dynamic light scattering (DLS) technology. Each sample was
diluted 1000 times with the corresponding solution and tested at 25 ◦C, in triplicate. The
final result was recorded by its average.

2.6. Rheological Measurement

The rheological properties of the SA/USPI composite solution were measured by the
DHR-2 rheometer (DHR-2, TA Instruments, New Castle, DE, USA) with a parallel plate
geometry (40 mm diameter, 1000 µm gap) equipped. The steady-state flow behavior of the
sample was measured at a shear rate of 0.1 s−1–100 s−1 at 25 ◦C. Sample flow behavior was
characterized by the power-law equation with the following formula [21]:

τ = K·γn (1)

n =
dlg τ

dlg γ
(2)

where K is the apparent viscosity constant, τ is the shear stress, γ is the shear rate, and n is
the non-Newtonian index.

The spinning performance of the composite solution is determined by the following
formula:

∆η = −
[

d(lgη)
d(
√
γ
)]×102 (3)
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where4η is the structural viscosity index.

2.7. Preparation of SA/USPI Composite Fibers

The process flow of the wet-spinning method-prepared SA/USPI composite fiber is
shown in Figure 1. The SA/USPI composite spinning solution was extruded from 75-hole
spinnerets (0.12 mm diameter) into a 3% (w/w) CaCl2 solidification bath at 25 ◦C with a
metering pump (speed of 6 mL/min) to obtain SA/USPI composite fiber bundles. The
fiber bundles were subsequently washed in a washing tank and collected by a collecting
roller. The naming of the SA/USPI composite spinning fiber corresponded to its matching
composite solution.
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2.8. Scanning Electron Microscope (SEM)

The SA/USPI composite fibers were flash-frozen in liquid nitrogen immediately after
preparation to obtain the cross-section. The frozen fibers were then transferred to a vacuum
freeze dryer. The surface and cross-sectional morphology of the fiber were analyzed
using a scanning electron microscope (SEM) (JSM-6390LV, Jeol, Tokyo, Japan) with an
accelerating voltage of 5 kV after sputter-coating with Au. All images were recorded under
a magnification of 500×.

2.9. Fourier-Transform Infrared Spectroscopy (FT-IR)

The fiber powder obtained from the wet-spinning process was blended with KBr with
a mass ratio of 1:50, then grounded and pressed into pellets for Fourier transform infrared
spectrometer (FTIR) (Nicolet iS50, Thermo Fisher Scientific Co., Waltham, MA, USA). The
infrared spectra of the corresponding samples were obtained by scanning 32 times at a
resolution of 4 cm−1 in the wavenumber range of 500–4000 cm−1.

The spectra were processed via OMNIC 8.0 (Thermo Fisher Scientific Co., Waltham,
MA, USA), and Peak Fit v4 software (SeaSolve Software Inc. San Jose, CA, USA) were used
to determine the shift and peak area ratio of absorption peaks [22]. Baseline correction and
Fourier self-deconvolution were performed. Second-order derivation and Gaussian curve
fitting were conducted. According to the area of each peak in the range of 3700–3000 cm−1

and the peak area in the amide I region (1600–1700 cm−1), the content of different types of
hydrogen bonds and the protein secondary structure content were calculated, respectively.

2.10. Differential Scanning Calorimetry (DSC)

The thermal properties of lyophilized fibers were determined by differential scanning
calorimetry (DSC) (DSC200F3, New Castle, TA Instruments, USA). DSC analysis of all
samples was performed in an N2 flow at 50–350 ◦C at a heating rate of 10 ◦C/min, and all
tests were performed under N2 flow with purge gas flow at 20 mL/min and protecting gas
flow at 60 mL/min [23].
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2.11. Water Holding Capacity (WHC)

The sample (2 g) was wrapped in filter paper and placed in a centrifuge tube and
centrifuged at 2000 g for 1, 3, 5, 10, 15, and 20 min. Excess moisture was removed from the
surface of fresh fibers with filter paper before centrifugation. The formula for calculating
WHC is as follows [8]:

WHC (%) =
Wa

Wb
×100 (4)

In the formula:
Wa is the total weight (g) of the fresh fiber after centrifugation,
Wb is the total weight (g) of the fresh fiber before centrifugation.

2.12. Low-Field Nuclear Magnetic Resonance (LF-NMR)

The moisture distribution of fresh fibers was measured using a low-field nuclear
magnetic resonance (LF-NMR) analyzer (MesoQMR23060H, Niumag Electric Corporation,
Shanghai, China) with a modified method adapted from Jiang et al., 2022. Before testing,
excess water was removed from the fiber bundle surface using filter paper. For testing,
2 g of the sample was wrapped in polytetrafluoroethylene film and placed in a glass tube
with a diameter of 15 mm, which was then inserted into the NMR probe. The resonant
frequency used was 21 MHz and the operating temperature was 32 ◦C. The transverse
relaxation time (T2) was determined using the Car-Purcell-Meiboom-Gill (CPMG) sequence
with the following parameters: SW = 100 kHz; RG = 20 dB; Nech = 3000; TE = 0.2 ms;
NS = 4; TW = 2000 ms. The T2 software was used to adapt CPMG to T21, T22, and T23,
and calculate the peak ratio. And P21, P22, and P23 is corresponding to the proportion of
water distribution.

2.13. Mechanical Property Analysis

According to the previous methods [24–26] with modification, the strength of analog
fibers was tested using a permeable myofiber testing system (a set of equipment specifically
designed to measure the tension of muscle fibers in animals). A fresh fiber is fixed using
cellulose acetate glue between the micromanipulators, and the fiber length is rapidly
changed by force sensors and a computer-controlled feedback system (Aurora Scientific
802 B, Aurora, ON, Canada). In a sample cell filled with distilled water measure 3 fibers
from each sample, then stretch each fiber 6 times, recording the force for every L/Ls step
(i.e., stretch length/relaxation length). The obtained results were analyzed statistically.

2.14. Statistical Analysis

The data collation and statistical analysis were carried out using IBM SPSS Statistics
22.0 software (IBM Corp., New York, NY, USA). Origin 2022b software (OriginLab Corpora-
tion, Northampton, MA, USA) was utilized for mapping purposes. The significance of the
results was assessed through one-way ANOVA and 95% confidence intervals. All samples
were tested in triplicate.

3. Results and Discussions

The primary objective of this current investigation is to explicate the consequences
of ultrasound treatment on the composite solution and its impact on the spinning process.
Additionally, we seek to enhance our comprehension of the interrelationship between
polysaccharides and proteins, as well as the ramifications of salt ions on the fiber formation
process and the ultimate quality of the resulting fibers.

3.1. Effect of Ultrasound Treatments and Salt on the SA/USPI Composite Solution
3.1.1. Micro-Morphology and Zeta Potential Analysis

The microstructural analysis of composite solutions subjected to ultrasonic (US) treat-
ment was conducted using confocal laser scanning microscopy (CLSM). Furthermore, the
influence of salt ions on the morphological features of the solutions was investigated in
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Figure 2. The proteins were labeled with green fluorescent. As shown in Figure 2A, a dis-
cernible increase in protein aggregation occurred following US treatment when comparing
CK and UCK, accompanied by no significant changes in surface charge (Figure 2B). The
introduction of salt leads to reduction of absolute zeta potential value of the composite
solution, attributable to the charge screening phenomenon, alongside the aggregation of
proteins, driven by the ionic impact of salt on SPI’s surface charge [27]. Furthermore, the
application of ultrasonic treatment intensified aggregation protein was further prompted
by salt addition, the US treatment resulted in a greater exposure of proteins with negative
charges on the surface [28,29], consequently elevating the protein’s negative surface charge.
Therefore, the interaction between the modified SPI’s amino groups and SA’s carboxyl
groups was amplified by the salt, leading to intense protein aggregation (UNa200, UK200).
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Figure 2. The confocal laser scanning microscopy images (A) and Zeta-potential (B) of SA/SPI
composite solution (CK) and SA/USPI composite solutions (UCK) with different salt types (NaCl
and KCl) and contents (50, 100, and 200 mM).

3.1.2. Rheological Properties Analysis

The rheological properties of SA/USPI composite solution were studied to investigate
the effect of ultrasound pre-treatment and salt types/contents. Figure 3A,D demonstrate
the effect of these factors on the viscosity of the solution at different shear rates. This
indicates that the solution exhibits a typical shear-thinning behavior. The non-Newtonian
index could be fit by Figure 3B,E and calculated using Equation (1). As indicated in Table 1,
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all samples exhibited a pseudoplastic fluid behavior (n < 1). Compared between sample
CK and UCK, the ultrasound treatment resulted in an increase in the non-Newtonian
index, indicating an enhancement in fluidity [30,31], which would be beneficial for the fiber
spinning process. Additionally, increasing the salt content decreased the non-Newtonian
index, implying that the presence of salt ions impacts the fluidity of the spinning solution,
which continues to affect the spinning process later on [27].
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Table 1. The non-Newtonian (n) and structural viscosity index (4η) of control and SA/USPI compos-
ite solutions with different salt types and contents.

Sample n R2
1

4η R2
2

CK 0.7464 0.99 9.345 0.98
UCK 0.7797 0.99 8.602 0.98

UNa50 0.7311 0.99 9.099 0.98
UNa100 0.7073 0.99 9.777 0.97
UNa200 0.6971 0.99 10.098 0.96

UK50 0.7371 0.99 8.889 0.98
UK100 0.7297 0.99 9.777 0.97
UK200 0.6978 0.99 10.011 0.96

All tests were conducted at 25 ◦C. Parameters (n,4η) are obtained using Equations (1)–(3), respectively. R2
1 and

R2
2 represent the degree of fitting of the curves.

In order to further characterize the spinnability of the spinning solution Figure 3C,F.
The structural viscosity index (4η) was calculated through Equation (3), and it can be used
to characterize the structurization of a spinning solution, where a small4η indicates a low
structurization but better spinnability and fiber quality [30–34]. In Table 1, the4η of sample
CK was much higher than sample UCK which implies that the ultrasound treatment causes
a low structurization and better spinnability of the fiber. Furthermore, the incorporation of
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salt into the solution resulted in an observable increase in ∆η. This phenomenon can be
attributed primarily to electrostatic screening, which effectively mitigates the electrostatic
repulsion forces acting between the constituent protein molecules [35–37], therefore, as salt
content increases, the composite solution obtains lower spinnability which further affects
the coagulation process.

3.2. Effect of Ultrasound Treatment and Salt on the SA/USPI Composite Fiber Characterization

Through wet spinning, the composite solution is spun into a coagulation bath, cul-
minating in the creation of a fiber structure. Varied formulations and proportions of the
composite solution result in different characteristics of the fibers.

3.2.1. The Micro-Morphology of SA/USPI Composite Fiber

The SEM images of SA/SPI composite fibers with and without ultrasound treatment,
under different NaCl and KCl content, were presented in Figure 4. The surface morphology
exhibits a distinctive grooved structure along the fiber with varying depths on all samples.
This phenomenon was caused by the dual diffusion−reaction mechanism during the pro-
cess of wet spinning [7,38]. The cross-sectional diameter of all obtained fibers consistently
measured approximately 60 µm. Notably, within the coagulation bath, calcium ions interact
with both SA and SPI components immediately upon the entry of the composite solution,
resulting in ion exchange and the formation of crosslinks with SA, thereby establishing
a surface gel layer [38]. The Ca2+ continues to diffuse to the center, whereas the reaction
between SA and Ca2+ creates a junction, forces out the water molecules and leads to uneven
fiber shrinkage that presents a porous structure (Figure 4A) [23,39]. Ultrasound treatment
on SPI however, changes protein solubility by changing the conformation and structure of
the protein which reduces the size of SPI protein molecules through cavitation forces and
the hydrophilic parts of the amino acid would open up towards the water [17,28,40]. This
engages the aggregation of protein during coagulation. The UCK fiber ends up with less
groove, less porous structure (Figure 4A), and fewer filaments compared to sample CK,
which might be attributed to the tension received during the fiber coagulation process; the
weaker fiber structure would be more prone to breakage.

With the addition of salt, the groovy texture on the fiber surface intensified and
witnessed a more porous structure from the fiber cross-section (Figure 4B,C). Due to the
process of dual diffusion reaction during fiber coagulation, salt ions in the spinning solution
diffuse into the coagulation bath, the pressure at the center of the fiber decreases, and the
pressure difference pushes the outer surface to the center of the fiber result in strip and
groove appearance on the surface of the fiber [39]. As salt content increases, the salt ions
drift out of the fiber faster due to the large concentration gradient, which results in a large
pressure difference between the center and the surface of the fiber [23]. This intensifies the
shrinkage and causes more groovy texture on the surface of the fiber.

3.2.2. The Secondary Structure of SA/USPI Composite Fibers

The structure change in protein has been investigated through FT-IR by analyzing the
changes in peak position. The deconvolution of amide I (1600–1700 cm−1) provides essential
details about secondary structures presented as α-helix, β-sheet, and random coil [22,41,42].
Within region amide I, it was divided into eight peaks as shown in Figure 5C to I. The
absorption peak 1–3 (1610–1640 cm−1) represents the β-sheet, peak 4 (1640–1650 cm−1)
represents the random coil, and peak 5 (1650–1660 cm−1) represents the α-helix [41–44].
The β-sheet content of the composite fiber decreased, and both the α-helix and random
coil contents increased. The α-helix structure is related to protein folding, where a higher
content of α-helix might adopt more interaction between the SPI and SA, and higher β-sheet
content indicates better mechanical properties of the composite fiber [8,22,41]. The relative
content of the secondary structure was delivered through peak calculation as shown in
Table 2. Compared to related studies on SPI/SA composite fiber characterization [27],
the US treatment on SPI alters the protein structure, resulting in higher β-sheet content
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but lower α-helix and random coil. In combination with the results in macroscopic phase
behavior images, zeta potential, and the SEM images of the composite fiber’s surface and
cross-sections, after ultrasound treatment, the composite solution exhibits an elevated
level of aggregated protein molecules. This phenomenon can be attributed to the fact that
the soy protein isolate (SPI) experiences a significant relaxation in its molecular structure
subsequent to ultrasound treatment. As stated by Jambrak et al. [40], the presence of
cavitation phenomena induces the disruption of hydrogen and hydrophobic bonds within
the SPI, leading to a reduction in the molecular weight of the protein. This disruption
fosters an enhancement in the interaction between proteins and water molecules, resulting
in a greater fraction of the protein’s surface becoming enveloped by water molecules.
therefore, higher protein solubility within the composite solution and an increase in the
repulsive forces between the SA and SPI. Later within the coagulation bath, a higher
number of calcium ions was able to interact with SA, resulting in a higher degree of
structure aggregation. Consequently, in comparison to SA/SPI composite fibers that have
not undergone ultrasound treatment, the ultrasonication process contributes to an elevation
in the mechanical properties of the composite fibers.
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Table 2. Fitting results of the secondary structure of control and SA/USPI composite fibers with
different salt types and contents.

Sample α-Helix β-Sheet Random Coil

CK 16.65 29.30 17.25
UCK 16.03 31.27 15.95

UNa50 16.54 31.55 16.54
UNa100 16.87 30.19 17.07
UNa200 17.06 28.80 17.53

UK50 16.44 32.09 16.40
UK100 16.91 30.79 17.45
UK200 17.49 28.05 17.98

In the presence of salt within the system, a persistent decline in β-sheet content
is observed, concomitant with an increase in α-helix content as the salt concentration
increases. This observation serves to elucidate the impact of salt ions on the intermolecular
interactions between SA and USPI [27], consequently leading to diminished mechanical
properties of the composite fiber.

3.2.3. The Thermal Stability of SA/USPI Composite Fibers

The thermal stability of the sample is elucidated through DSC analysis. In order to
satisfy the prerequisites for subjecting the product to elevated temperatures during cooking,
an assessment of the thermal stability of the composite fiber was conducted. As illustrated
in Figure 6A, sample USPI exhibited an endothermic peak at 87.00 ◦C, indicative of the
initiation of water evaporation. The endothermic peak observed at 307.57 ◦C corresponds
to the thermal decomposition of the USPI. And for the pure SA fiber exhibits an exothermal
peak at 252.57 ◦C, signifying its thermal decomposition. Notably, the UCK fiber exhibits an
endothermic peak at 317.57 ± 1 ◦C, mirroring the behavior of sample CK, thereby implying
that ultrasound treatment does not exert a significant influence on the thermal stability
of the fiber. Combining this finding with the observations presented in Figure 6B,C, it is
evident that all samples manifest endothermic peaks at 317.57 ± 1 ◦C. Consequently, it can
be concluded that neither the type nor the content of the added salt has a significant impact
on the thermal stability of SA/USPI composite fibers.
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3.2.4. The Water-Holding Capacity of SA/USPI Composite Fibers

A successful meat analog product would need to fulfill the criterium of relatively high
water retainability in order to constitute a juicy product [45–47]; the water-holding capacity
of the SA/USPI composite fiber with different salt types and contents was analyzed and the
results are shown in Figure 7. Comparing sample CK and sample UCK, the US treatment
increased more than 5% WHC of the fiber, which corroborates the result in SEM that the
porous structure allows the fiber to entrap more water within the fiber structure. When salt
was introduced to the system, the SA/USPI composite fiber’s WHC increased, regardless
of the salt type. Therefore, upon introducing salt into the system, the fiber obtains higher
water retainability, which would effectively improve the juiciness of the composite fiber.
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3.2.5. The Moisture Distribution of SA/USPI Composite Fibers

An analysis performed by LF-NMR aimed to investigate the distribution and pro-
portion of different states of water in the fiber system [48]. The T21 (0.1–10 ms, bound
water), T22 (10–100 ms, immobile water), and T23 (100–1000 ms, free water) in Figure 8A,C
were the transverse relaxation times from short to long; the water component with less
fluidity corresponds to a shorter relaxation time, whereas an increased relaxation time
refers to a greater fluidity of water components [49,50]. The P21, P22, and P23 correspond
to the proportion of water distribution. As shown in Figure 8B,D, after the US treatment,
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sample UCK showed a higher proportion of bound water than sample CK, whereas the
proportion of free water presents no apparent difference. This further claims the result in
the fiber’s water-holding capacity analysis that US treatment improves the fiber’s water
retainability [51], where sample CK’s WHC had a large gap difference compared to other
fibers with US treatment.
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When a different content of salt was added, the proportion of water states changed.
Samples containing different salt types exhibited a consistent pattern, wherein P23 exhibited
an increase as salt content increased, and P21 demonstrated a concurrent decrease with
increasing salt concentration. Indicating alterations of the water mobility in the composite
fiber, it was supposed that the free water (T23) increment was due to the formation of a
porous structure, which would trap more water in the fiber structure. Therefore, with
greater salt addition, the fiber retains an enhanced porous structure, thereby contributing
to improved water retention, and would have the potential of increase the juiciness to
the fiber.

3.2.6. The Mechanical Analysis of SA/USPI Composite Fibers

The mechanical properties of the composite fiber were conducted, with results shown
in Figure 9. The tensile force of the fiber decreased with the increase in salt content. This
would correspond to the salt ions eliminating the reaction between Ca2+ with SA during
the coagulation process [27]. Combined with the result images from SEM analysis, with
only the US treatment, the UCK fiber will show a more aggregated protein structure than
other fibers with salt added. After salt addition, as the salt content increases, the tensile
strength of the fiber reduced, further confirming the result in FT-IR, and the structure of
these fibers appeared more porous than the CK fiber and UCK fiber, which is consistent
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with the result shown in the SEM image. The type of salt used shows no viable difference
in the mechanical properties of the composite fiber.
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4. Conclusions

In this study, the effect of ultrasound treatment and salt on the SA/USPI composite
system, and meat analog fiber quality after being processed through wet spinning was
investigated. The ultrasound treatment promotes protein aggregation, and with the addi-
tion of salt, the protein aggregates even more as salt content increases, which results in a
low structural viscosity index and better spinnability. The Ca2+ interacts with SA during
the coagulation process, and the engagement of ultrasound causes the hydrophilic parts
of the amino acid in protein to open up towards the water, which ends up with a more
porous structure. The porous structure and the hollow in the center of the fiber significantly
increase the water-holding capacity of the fiber. With only the effect of ultrasound, the fiber
obtains higher water-holding capacity and better mechanical properties, while remaining a
similar thermal stability. Regardless of the type of salt added to the system, with higher salt
content, the thermal stability remains stable. As salt content increases, the water-holding ca-
pacity will be enhanced and the mechanical properties decline. Hence, this work would not
only enrich the details of preparing plant-based meat analog fibers through wet-spinning
but also provide possibilities for the production of different meat parts.
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