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Abstract: The high hydrostatic pressure (HHP) process has been studied for several applications in
food technology and has been commercially implemented in several countries, mainly for non-thermal
pasteurization and shelf-life extension of food products. HHP processing has been demonstrated
to accelerate proteolytic hydrolysis at a specific combination of pressure and pressure-holding time
for a given protein source and enzyme. The enzymatic hydrolysis of proteins is a well-known
alternative to producing biologically active peptides, with antioxidant and antihypertensive capacity,
from different food protein sources. However, some of these protein sources contain allergenic
epitopes which are often not degraded by traditional hydrolysis. Moreover, the peptide profile and
related biological activity of a hydrolysate depend on the protein source, the enzymes used, the
parameters of the proteolysis process (pH, temperature, time of hydrolysis), and the use of other
technologies such as HHP. The present review aims to provide an update on the use of HHP for
improving enzymatic hydrolysis, with a particular focus on studies which evaluated hydrolysate
antihypertensive and antioxidant capacity, as well as residual allergenicity. Overall, HHP has been
shown to improve the biological properties of hydrolysates. While protein allergenicity can be
reduced with traditional hydrolysis, HHP can further reduce the allergenicity. Compared with
traditional hydrolysis methods, HHP-assisted protein hydrolysis offers a greater opportunity to add
value to protein-rich products through conversion into high-end hydrolysate products with enhanced
nutritional and functional properties.

Keywords: high hydrostatic pressure; enzymatic hydrolysis; antihypertensive activity; antioxidant
capacity; allergenicity

1. Introduction

Consumers are increasingly looking for foods containing substances that assist in
health promotion. In this scenario, hydrolyzed proteins rich in biologically active peptides
offer a pathway to meet the growing market demand for novel functional products and
health promoting foods [1]. In some countries, peptides such as isoleucine-proline-proline
(IPP) and valine-proline-proline (VPP) are approved for use in different commercial prod-
ucts such as sour milk products (Calpis®, Calpis Food Industry Co., Ltd., Tokyo, Japan) and
margarine (Becel Pro-Activ®, Evolus Co., Ltd., Bern, Switzerland) [2]. In this context, the
development of technologically and economically viable protein hydrolysis processes that
provide peptides with increased bioactivities (e.g., antihypertensive activity, antioxidant ac-
tivity) and their use for the development of nutraceutical products, and even as substitutes
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for synthetic preservatives, continues to emerge [3]. Some studies have suggested using
peptides with antihypertensive activity as an alternative to conventional drugs without the
adverse effects seen with synthetic formulations [4]. In this case, their use is indicated for
the initial treatment of high blood pressure symptoms. Peptides with antioxidant activity
also show various potential applications, e.g., in food supplements and therapeutical agents
with positive effects on cellular oxidation or as replacements for synthetic antioxidants to
inhibit lipid peroxidation in foods during storage [5].

Hydrolyzed proteins can be produced from protein sources of animal (milk, eggs,
meat, fish, and insects) [6] or plant origin (soybean, peas, maize, and rice) [7]. In particular,
by-product streams from the agri-food industry can provide protein-rich sources for the
production of hydrolyzed protein containing peptides with healthy attributes [8,9]. Several
studies have demonstrated the production of protein hydrolysates from by-product streams
from the dairy (e.g., whey) [10], meat (e.g., skin, viscera, bones) [6,11], and plant processing
(e.g., non-edible parts) [12] industries. While some of these studies consider these food
protein hydrolysates as sources of antihypertensive peptides, developing processes with
maximum efficiency and industrial viability is still challenging [2].

Different methods can be used to produce hydrolysates, i.e., chemical hydrolysis,
enzymatic hydrolysis, or microbial fermentation, among which the use of proteases as
reaction catalysts are more advantageous compared with chemical processes [9,13]. Protease
processes are water-based and do not require chemical solvents, they operate at milder
pH and temperature conditions, and they enable a higher process reproducibility and
product specificity. Furthermore, it is possible to combine various types of proteases
with different specificities, resulting in an increased process efficiency and reaction speed,
favoring the production of a hydrolysate with a diverse peptide profile and rich in free
amino acids [14,15].

Various factors can influence the efficiency of hydrolysis and the biological properties
of hydrolysates, e.g., the type and specificity of the enzyme chosen, the pH, temperature,
protein source composition and material properties, and others [9,16]. However, even
with the optimization of these parameters, obtaining efficient protein hydrolysis to achieve
health and commercial outcomes can be considered a challenge, mainly because of the
compact structure of the native state of some proteins [2,17,18]. From this perspective,
using high hydrostatic pressure technology (HHP) combined with hydrolysis has been
shown to be an option to improve proteolytic efficiencies leading to enhanced bioactivity
and positive health attributes [5].

HHP is a technology commercially implemented in several countries in the last decades
for non-thermal pasteurization and shelf-life extension purposes. This technology consists
of subjecting pre-packaged foods to a hydrostatic pressure ranging during a set holding
time, followed by pressure release. High pressure equipment at the laboratory scale exhibits
the versatility to operate from 50 to 800 MPa [19,20] for a range of pressure holding times.
For current commercial applications, it is commonly employed at 300 or 600 MPa holding
for up to 3–5 min, depending on the application [21].

HHP is advantageous due to its ability to cause conformational and structural changes
to proteins, particularly by modulating enzymatic processes such as hydrolysis. Proteins
have structures maintained by different inter- and intramolecular interactions that can be
destabilized using high pressures, resulting in the unfolding of the polypeptide chain [21].
Protein unfolding favors hydrolysis in terms of molecular lysis since more cleavage sites
become accessible to enzymes [5,22]. High pressure processing is also known to activate
or inactivate hydrolytic enzymes, depending on the HHP and material composition con-
ditions [23]. It has been shown that the characteristics related to the above-mentioned
bioactivity of hydrolysates (e.g., antihypertensive activity, antioxidant activity) can also be
improved by HHP [5,17,24].

On the other hand, the use of bioactive peptides as ingredients can be limited by the
allergenicity of the native protein used to make the hydrolysate. Producing hydrolysates
with a greater extent of protein breakdown is an alternative to producing hypoallergenic



Foods 2023, 12, 630 3 of 15

formulas. In some cases, hydrolytic processing has been shown to achieve the complete de-
struction of the allergenic epitopes responsible for promoting immunological responses [25].
Furthermore, efforts are underway to understand the effects of HHP in decreasing protein
hydrolysate allergenicity [26].

The emerging potential for HHP to enable the production of health-promoting bioac-
tive peptides and to reduce the allergenicity of the substrate makes it worthy of a literature
review. The present review examines the effects of HHP on the enzymatic hydrolysis of
proteins, with a particular focus on the resulting antihypertensive and antioxidant activities,
as well as on the reduction in the allergenicity of protein hydrolysates made from different
raw materials.

2. Effect of High Hydrostatic Pressure on Proteins

Proteins are macromolecules that have a structural organization that can be divided
into primary, secondary, tertiary, and quaternary levels (Figure 1). The balance of these
structures is maintained by stabilizing interactions within the protein chain, and any change
that may disturb the balance of these interactions, intramolecular and intermolecular, can
lead to protein denaturation [27,28].
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Figure 1. Different structural levels of proteins and the effect of high hydrostatic pressure on the
structure and conformation of proteins.

HHP can promote different levels of protein denaturation, as it acts on protein interac-
tions. Quaternary and tertiary structures are the most affected by the use of pressure, as
they are maintained by hydrophobic and electrostatic interactions that are more sensitive
to pressure [28,29]. The secondary structure, on the other hand, requires the use of higher
pressures for the changes to be effective. Finally, the primary structure is not affected by
HHP, as it is formed by covalent bonds [30,31].

For enzymatic hydrolysis, protein unfolding caused by HHP is the most important
alteration, being a key parameter to improve the process, as it allows greater access of
the enzyme to more specific cleavage points, which were previously protected inside the
molecule [32]. However, the parameters used during pressurization, as well as the bio-
chemical characteristics of the proteins, are factors that guide the intensity of denaturation,
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the rate of refolding after depressurization, and the time for recovery of the initial state of
the protein [33].

Furthermore, the formation of molecular aggregates is another important alteration
that can be induced by HHP and, contrary to unfolding, can decrease the yield of enzymatic
hydrolysis. The disruption of hydrophobic bonds in the core of proteins, as a result
of unfolding, causes the exposure of hydrophobic groups and sulfhydryls (-SH), which
can remain free to interact and form new hydrophobic interactions and disulfide bonds
between proteins [34,35]. Protein–protein interactions, in general, are observed when
higher pressures are used and may reduce the number of sites available for enzyme–protein
interactions and, as a consequence, may decrease the yield of the hydrolysis process [36–38].

3. Utilization Strategies of HHP Associated with Enzymatic Hydrolysis

HHP associated with hydrolysis can be carried out in two different ways: (i) as a
preliminary protein treatment immediately before hydrolysis or (ii) simultaneously with
hydrolysis, as shown in Figure 2A,B, respectively. The use of HHP as a pre-treatment
consists of subjecting proteins to high pressure levels for a given pressure holding time and
then performing hydrolysis at ambient pressure (0.1 MPa) (Figure 2A). However, using
HHP as a pre-treatment can lead to the structural reorganization of proteins after depressur-
izing the system, leading to the ongoing loss of susceptibility to hydrolysis [33,39–41]. More
effective hydrolysis has been observed when the enzyme was mixed with the pressurized
protein immediately after depressurization [42].
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enzymatic hydrolysis (assisted hydrolysis—AH); and (C) conventional hydrolysis at an ambient
temperature.

In the simultaneous HHP hydrolysis process, both protein and enzyme are jointly
pressurized (Figure 2B). In this case, the enzyme acts by breaking the protein molecules at
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the moment when pressure promotes the unfolding of the protein structure, which can po-
tentiate hydrolysis since unfolding enables greater enzyme access to the substrate. A more
extensive hydrolysis is therefore achieved in a shorter time compared with conventional
hydrolysis at ambient pressure (Figure 2C) [32]. Furthermore, the improvement could
also be related to enzyme activation since these can be affected (activated or inactivated)
by pressure through changes in their conformation and/or selectivity [5,22,43]. However,
enzyme stability and sensitivity to pressure and the characteristics of proteins should be
considered to ensure that the enzyme is active during the treatment [44].

4. Effect of HHP on Proteolysis and on the Bioactivity and Allergenicity
of Hydrolysates
4.1. Effect of HHP on Protein Hydrolysis

The degree of hydrolysis (DH) of proteins is an important parameter in monitoring
the production of protein hydrolysates, as the number of peptide bonds broken in a given
proteolysis reaction determines, in quantitative terms, the degree to which a protein source
was hydrolyzed [45].

For the evaluated conditions, using HHP as a pre-treatment or simultaneously with
hydrolysis is an efficient strategy to increase the DH. Protein unfolding induced by pre-
treatment with HHP increases the efficiency of hydrolysis. However, it was observed due
to the particularities that each protein can present in relation to the forces that stabilize
its structure that the pressure level necessary to influence the efficiency of the process can
be different among proteins. Proteins of plant origin, for example, show more expressive
DH values when subjected to HHP pre-treatment using pressures close to 300 MPa than at
pressures above 400 MPa [36,46,47]. The use of high pressure in plant proteins can favor
protein–protein interactions, resulting in a less efficient break of the molecule due to the
reduction in the number of available cleavage sites for enzymatic action [47]. On the other
hand, some studies have shown that pre-treatment pressures ranging from 400 to 800 MPa
favored the production of hydrolysates with a higher DH degree compared with lower
pressures, as observed in studies that evaluated the hydrolysis of pre-treated proteins such
as β-lactoglobulin [37,48], mushroom stalk proteins [49], and egg proteins [50,51].

In many studies cited in this review, it has been shown that HHP-assisted hydrolysis
(AH) is also an efficient strategy to potentiate the catalytic reaction and significantly reduce
the processing time, especially compared with the conventional process [32,41,52–54].
However, in hydrolysis-assisted treatments, both enzyme and protein are subjected to
the same pressure level, and the enzyme’s sensitivity to pressure is a relevant factor that
should be considered when evaluating process parameters since the enzyme can undergo
changes that result in denaturation and, consequently, the loss of activity. In various
studies, the alcalase enzyme, one of the most known in the food production area, increased
the DH when subjected to pressures under 200 MPa in different food sources such as
lentil proteins [55] and sweet potato protein [53,55–57]. On the other hand, the pressure
range of 300 to 400 MPa was more efficient in producing hydrolysates from whey proteins,
flaxseed protein, and sweet potato protein when the enzymes pepsin and trypsin were the
promoting agents of hydrolysis [25,40,52,57].

4.2. Effect of HHP on the Antihypertensive Activity of Hydrolysates

High blood pressure is one of the main risk factors for cardiovascular disease, which is
one of the most prevalent causes of death in adults [58]. The interest in alternative therapies
has grown considerably in recent years, especially due to the adverse reactions that conven-
tional treatments can offer [4]. From this perspective, protein hydrolysates prepared from
different food sources have been extensively studied for potentially containing biologically
active peptides that can be used to treat high blood pressure [59,60].

Peptides have antihypertensive activity through different mechanisms of action [61],
as shown in Figure 3. However, the primary mechanism studied for peptides generated
from food sources is inhibiting the angiotensin-converting enzyme (ACE). The renin–
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angiotensin system is an essential regulator of blood pressure. Renin, secreted by kidney
cells, converts angiotensinogen into an inactive peptide, angiotensin I [62]. ACE hydrolyzes
this decapeptide into angiotensin II, which has intense vasoconstrictor activity, regulating
electrolyte balance and exerting a pro-inflammatory state [62,63] (Figure 3). Furthermore,
ACE also acts on the kallikrein–kinin system by promoting the degradation of bradykinin,
a peptide known for its vasodilating action [58]. Therefore, inhibition of ACE action is a
therapeutic alternative to prevent arterial hypertension, and peptides have been extensively
studied regarding their ability to inhibit these systems (Figure 3) [64–66].
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Figure 3. Mechanisms of action of antihypertensive peptides (A); regulation of blood pressure by the
renin–angiotensin (B) and kallikrein–kinin (C) systems.

Although there is evidence showing that HHP is suitable for increasing efficiency in
hydrolytic terms, few studies have evaluated the influence of HHP on the antihyperten-
sive activity of hydrolysates, especially compared with the production of conventional
hydrolysates, as can be seen in Table 1. Despite this, studies show that the use of HHP
associated with hydrolysis increases the yield of peptides with ACE-inhibitory activity and
can potentiate these results, as observed in hydrolysates from sweet potato protein [57],
soybean [54], common bean [34], lentil [55], peas [67], and eggs [68], as seen in Table 1.

The production of ACE-inhibitor peptides can be influenced by several variables,
including the type and source of protein to be hydrolyzed, the enzyme, and its specificity.
Furthermore, the parameters employed in the HHP process are also important factors,
as can be seen in Table 1. Studies have shown that to obtain hydrolysates with a greater
antihypertensive activity, different pressure levels may be required depending on the
enzyme used (Table 1). This difference may be related to the fact that each enzyme discussed
can respond differently to high pressures, depending on the levels of pressure, temperature,
and substrate, showing an increase or decrease in its activity and, consequently, in the
production of a functional peptide [23].
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Table 1. Influence of HHP on the production of hydrolysates with antihypertensive activity.

Source HHP Parameter (Pressure/Time) Enzyme Main Results Reference

Sweet potato 100, 200, and 300 MPa/60 min (AH) Papain, Pepsin,
and Alcalase

Pressure increased the ACE-inhibitory activity
in all treatments. However, for the papain and
alcalase hydrolysates, the maximum inhibitory

activity was obtained with pressures lower
than 200 MPa and below 300 MPa for pepsin.

[57]

Soybean 80, 100, 120, 200, and 300 MPa/1, 2, 3,
4, and 5 h (AH) Colorase PP®

The hydrolysates obtained under high pressure
showed a higher ACE-inhibitory activity than

conventional hydrolysis. The treatment at
200 MPa for 5 h resulted in the

greatest inhibition.

[54]

Common
bean 100 and 200 MPa/15 min (AH) Alcalase and

Savinase

HHP-assisted hydrolysis increased the
ACE-inhibitory activity at 100 and 200 MPa for

alcalase and at 200 MPa for savinase, in
addition to reducing the hydrolysis time.

[34]

Lentil 100, 200, 300, and 400 and 500 MPa/
15 min (AH)

Alcalase,
Savinase,

Promatex, and
Colorase PP®

The treatment had no effect on the hydrolysate
obtained from alcalase. The pressure of
200 MPa for promatex and 300 MPa for

colorase and savinase resulted in hydrolysates
with a higher ACE-inhibitory activity.

[55]

Peas 200, 400, and 600 MPa/5 min (PT) Alcalase
Pre-treatment at 600 MPa favored an increase

in peptides with ACE-inhibitory capacity, even
when using low enzyme concentrations.

[67]

Eggs 100–400 MPa/5, 10 and 20 min (AH)
100–400 MPa/20 min (PT)

Pepsin,
Chymotrypsin,

and Trypsin

High pressure hydrolysis accelerated the
process and increased the release of peptides

identified with ACE-inhibitory activity.
[68]

PT—pre-treatment; AH—assisted hydrolysis; ACE—angiotensin-converting enzyme.

Moreover, as discussed earlier, HHP disrupts the tertiary and even secondary con-
formations of proteins, increasing the rate of hydrolysis and favoring the production of
greater amounts of bioactive peptides [5,22]. This protein unfolding may also allow the
hydrolysis process to occur more quickly [54], and with the use of a lower enzyme:substrate
ratio [67], and still present a greater antihypertensive activity compared with the process
that does not use HHP. In addition, HHP also contributes to the production of peptides with
a lower molecular mass, which is directly correlated with the increase in ACE-inhibitory
activity [69].

This has been confirmed by further studies summarized in Table 1 carried out at
laboratory scale across a number of substrates, enzymes, and processing conditions. Some
processing times seem long and further scaling-up work should consider reducing the
processing times, according to the commercial value added to the product. Thus, in
general, HHP has been shown to favor the production of hydrolysates with a greater
antihypertensive activity in a shorter process time, in some cases with a lower concentration
of enzymes. Further cost–benefit analysis is required to demonstrate whether these benefits
translate into a scalable and more economical process that will enable commercialization.

4.3. Effect of HHP on the Antioxidant Capacity of Hydrolysates

Peptides with antioxidant capacity have received significant attention from the in-
dustry and can be incorporated into foods for conservation or improving bioactive prop-
erties [54,55,68]. They can act in different ways to inhibit oxidation, mainly through the
inactivation of reactive oxygen species, free radical scavenging, chelation of pro-oxidative
transition metals, and reduction of hydroperoxides [70].

Among the functionalities of peptides, the antioxidant capacity is the most studied
regarding the use of HHP, as shown in Table 2. HHP shows promising applications
for the production of hydrolysates with a high antioxidant capacity [53,67]. Different
researchers have demonstrated that pre-treatment of proteins or HHP-assisted hydrolysis
can increase the antioxidant capacity of hydrolysates (Table 2). In addition, high pressure
can also influence the different mechanisms of action of hydrolysates with antioxidant
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activity. Girgih et al. [38] observed that a pressure of 200 MPa favored the production of
hydrolysates with a greater capacity to eliminate superoxide and hydroxyl radicals, while
a pressure of 400 MPa was more effective in increasing the ability to sequester the DPPH
radical. The different pressure levels used on the protein before hydrolysis, or on the protein
and enzymes in assisted hydrolysis, can lead to different structural changes, altering the
number of available cleavage sites in the peptide chain, as well as the activity and selectivity
of the enzymes, resulting in a change in the profile of generated peptides, and consequently
in the mechanism of action, according to the level of pressure used [38,54,55]. This change
was observed by Guan et al. [54], who reported that pre-treatment using pressures of 200
and 300 MPa favored the production of peptides not obtained in conventional hydrolysis.
This difference can also be observed between the different pressure levels, since at 200 MPa
some peptides were identified that were not present in the treatment at 300 MPa.

Table 2. Influence of HHP on the production of hydrolysates with antioxidant capacity.

Source HHP Parameter
(Pressure/Time) Assay Enzyme Main Results Reference

Whey 100, 250, 400 MPa/5, 20, and
35 min (AH and PT)

ORAC and
ABTS Pepsin

PT resulted in hydrolysates with a higher
antioxidant capacity than
conventional treatment.

[32]

Lentil 300, 400, and 600 MPa/
15 min (PT) DPPH Alcalase

PT at 300 MPa/15 min increased the
hydrolysate’s ability to reduce the

DPPH radical.
[46]

Common
bean

300, 400, and 600 MPa/
15 min (PT) DPPH Alcalase PT at 300 MPa produced hydrolysates

with a greater antioxidant capacity. [36]

Soybean 80, 100, 120, 200, and
300 MPa/1, 2, 3, 4, and 5 h

ABTS
Reducing

power
Colorase PP®

The treatment with 200 MPa/5 h resulted
in a hydrolysate capable of reducing the

ABTS radical by 62%.
[54]

Flaxseed 100 and 300 MPa/5 and
10 min (AH) ORAC Trypsin

Pressure and time were important factors
in increasing bioactivity, with treatment at

300 MPa/10 min increasing the
antioxidant capacity by 20%.

[52]

Phosvitin 50 and 100 MPa/6, 12, and
24 h (AH)

DPPH,
FRAP,

SRSA, and
MCA

Alcalase, trypsin

HHP improved the ability to reduce the
DPPH radical, the superoxide radical

scavenging, and the iron reduction
capacity of the alcalase hydrolysate. The
iron chelation capacity was improved for

alcalase and trypsin.

[71]

β-
lactoglobulin

100, 200, 300, and 400 and
500 MPa/15 min (AH) ORAC

Alcalase,
Savinase,

Promatex, and
colorase

HHP improved the antioxidant capacity of
the hydrolysates. [72]

Flaxseed 600 MPa/5, 10, and
20 min (PT) ORAC Trypsin and

trypsin-pronase

PT at 600 MPa/20 min resulted in the
greatest increase in the antioxidant

activity of the hydrolysates.
[47]

Sweet potato 100, 200, and 300 MPa/
30 and 60 min (AH) ORAC Alcalase

The hydrolysate obtained in the
HHP-assisted hydrolysis using

300 MPa/20 min resulted in the highest
antioxidant capacity.

[7]

Common
bean

100 and 200 MPa/
15 min (AH)

ORAC,
FRAP,
ABTS

Alcalase and
Savinase

The highest ORAC and ABTS values of
the hydrolysates were observed in the

treatments at 200 MPa for savinase and
100 MPa for alcalase. HHP had no

influence on the ability of the hydrolysates
to reduce iron for both enzymes.

[34]

Lentil 100, 200, 300, 400, and
500 MPa/15 min (AH) ORAC

Alcalase,
Savinase,
Promatex.
Colorase

Treatment at 100 MPa produced
hydrolysates with a higher antioxidant

capacity from alcalase, and 300 MPa
exhibited greater effects for savinase

and colorase.

[55]
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Table 2. Cont.

Source HHP Parameter
(Pressure/Time) Assay Enzyme Main Results Reference

Peas 200, 400, 600 MPa/
5 min (PT)

ORAC,
DPPH, FRAP,
MCA, SRSA

Alcalase
Improved DPPH scavenging capacity at

400 MPa. Improved ORAC activity at 400
and 600 MPa.

[38]

Chickpea
100, 200, 300, 400,

500, and 600 MPa (PT); 100,
200, 300 MPa (AH)

SRSA, FRAP Alcalase

PT 300 and 400 MPa and assisted
hydrolysis at 200 MPa/30 min were more

effective in increasing the antioxidant
capacity of hydrolysates.

[73]

PT—pre-treatment; AH—assisted hydrolysis; MCA—metal chelating activity; SRSA—superoxide radical
scavenging activity; ORAC—oxygen radical absorbance capacity; FRAP—ferric reducing antioxidant power;
DPPH—DPPH radical method; ABTS—ABTS radical method.

In the HHP-assisted hydrolysis process, pressure can trigger different effects depend-
ing on the enzyme used, as observed by Garcia-Mora [34], who reported that this procedure
for bean protein did not increase the donating capacity of hydrogen atoms when the en-
zyme alcalase was used, whereas the use of savinase in a pressurized system increased the
antioxidant capacity of the hydrolysates as pressure increased. On the other hand, pressure
potentiated the electron donation capacity of the hydrolysates obtained when using both
enzymes, resulting in the highest values for alcalase in assisted hydrolysis at 100 MPa
and at 200 MPa for savinase. Similar results were found by Garcia-Mora et al. [55], in
whose study the different enzymes used produced hydrolysates with improved antioxidant
capacity in different pressure ranges, highlighting the importance of optimizing the time
and pressure parameters to which the reaction is subjected, taking into account the enzyme
used in the process.

The increased bioactivity of pressurized hydrolysates is evident, although it is still
unclear how HHP influences this property. Different studies associate this phenomenon
with protein unfolding or enzymatic activation, which potentiates the production of pep-
tides in qualitative and quantitative terms, granting a greater antioxidant capacity through
different mechanisms. In addition, the generation of low molecular weight peptides, as-
sociated with the release of free amino acids, may also increase the antioxidant capacity
of hydrolysates [74,75], since HHP can intensify the presence of free amino acids. Vilela
et al. [76] verified a greater quantity and variety of free amino acids in the pressurized
hydrolysates, indicating that the pressure also favors a more intense hydrolysis and, con-
sequently, a greater release of amino acids, which may contribute to a greater antioxidant
capacity. Several amino acids present antioxidant capacity, but the majority of two reactive
amino acids have side chains with a nucleophilic environment (cysteine and methionine)
or aromatic side chains (tryptophan, tyrosine, and phenylalanine), which cause hydrogen
abstraction [70,77]. Therefore, HHP can intensify antioxidant capacity in the presence of
these free amino acids in hydrolysates, as well as influencing their specific position in the
peptide sequence, or it can also contribute to their bioactivity.

4.4. Effect of HHP on the Allergenicity of Hydrolysates

Food allergy is characterized by a disordered response of the immune system to certain
molecules present in food, especially proteins, known as allergens [78]. Many studies have
been carried out aiming to reduce the antigenicity of food proteins through different
processes that can reduce the presence of allergenic epitopes [79,80]. The epitope is the
region of the protein that binds to cell receptors and antibodies. Two types of epitopes can
be identified in proteins: linear epitopes, which are specific amino acid sequences located
in the primary structure of proteins, and conformational epitopes, which are formed from
the tertiary conformation of proteins, in which non-linear amino acid sequences become
close, generating the epitope [81].

Conformational epitopes can be disrupted when changes are generated in the tertiary
structure or with protein aggregation. However, linear epitopes remain intact from these
changes, since the primary structure is not altered [82]. In order to reduce the presence
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of linear epitopes, it is necessary to use processes that cause changes in the primary
protein structure, e.g., enzymatic hydrolysis, which is effective in reducing allergenicity [83].
Nevertheless, food proteins can be resistant to proteolysis, and their fragments can maintain
or even increase the sensitization capacity after hydrolysis if the epitope sequence is
preserved, despite partial protein hydrolysis [84]. Thus, combining HHP with enzymatic
hydrolysis becomes an interesting strategy to reduce or even exempt the allergenic response
to various food sources, as shown in Table 3.

Table 3. Influence of HHP on the production of hydrolysates with reduced allergenicity.

Source HHP Parameter (Pressure/Time) Enzyme Main Results Reference

Whey 100, 250, 400 MPa/5, 20, and
35 min (PT)

Novo Pro-D and
Ficin

PT contributes to reducing the antigenicity of
the hydrolysates obtained by ficin and reduced

the hydrolysis time from 60 min to 15 min
necessary to achieve a complete reduction in

immunoreactivity.

[85]

Whey 400 MPa/30 min (AH) Pepsin

Maximum hydrolysis with peptides ranging
from 10 to 3 kDa (50%), with a reduction in
intact allergens and no induction of clinical

signs in sensitized mice.

[25]

β-lactoglobulin 100, 200, 300, and 400 MPa/
120 min (PT and AH) Pepsin

PT did not influence the immunoreactivity of
hydrolysates. Assisted hydrolysis progressively
reduced antigenicity with increasing incubation

times and pressures.

[86]

Whey 200 and 400 MPa/10, 30, and
60 min (AH)

Pepsin and
Chymotrypsin

HHP favored a reduction in b-LG
immunoreactivity with the use of the pepsin

enzyme, which was progressive with the
incubation time and increasing pressure

(400 MPa/30 min).

[39]

Whey 100 and 200 MPa/min
(PT and AH)

Alcalase,
Neutrase,

Colorase 7089,
and Colocarase

PN-L

The treatment influenced the reduction in
antigenicity only in the hydrolysate obtained
from the enzyme Colorase PN-L at 300 MPa.

[87]

Soybean 100,200, and 300 MPa/15 min (AH)
Alcalase,

Neutrase, and
Colorase

The treatment using the pressure of 300 MPa
contributed to reducing the immunoreactivity
of the hydrolysates obtained from Colorase.

[88]

β-lactoglobulin 600 MPa/10 min (PT) Trypsin and
Chymotrypsin

Decreased immunoreactivity after combination
treatment, which was greater when

chymotrypsin was used.
[89]

PT—pre-treatment; AH—assisted hydrolysis.

Compared with conventional hydrolysis, the association of HHP with enzymatic hy-
drolysis has shown significant effects in reducing the allergenicity of whey proteins [87,88],
in addition to studies showing that, even without hydrolysis, HHP alone can reduce the
allergenic response [29].

The strategy of using HHP for protein hydrolysis can affect the immunochemical
characteristics of the hydrolysates, as reported by Chicón et al. [86], in whose study the pre-
treatment of β-lactoglobulin by HHP showed no difference in immunoreactivity compared
with the conventional hydrolysate. However, when the hydrolysis was simultaneously
conducted with the use of HHP at the pressure of 400 MPa for 20 min, the hydrolysates did
not show significant IgE immune responses [39]. Additionally, in the case of using HHP as
a previous treatment of proteins, pressures above 600 MPa followed by hydrolysis can also
reduce the in vitro reactivity with IgE of allergic individuals [89]. Landim et al. [85] verified
that pre-treatment of whey proteins at 400 MPa was important to decrease the hydrolysis
time necessary to reduce 100% of the immunoreactivity of the hydrolysates produced by
the Novo Pro-D enzyme, also favoring a greater reduction in the immunoreactivity of the
hydrolysates obtained by the ficin enzyme compared with the hydrolysate obtained in the
conventional process.
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In addition, the time of hydrolysis is another important parameter. In general, the use
of HHP may favor the hydrolysis of the native protein in the first minutes of the reaction.
However, it may not be sufficient to reduce the immunoreactivity of hydrolysates, since
the protein fragments generated at the beginning of the reaction may still contain the im-
munoreactive epitopes intact [90]. López-Expósito [90] reported that the immunoreactivity
of ovalbumin proteins hydrolyzed under pressure decreased with increasing treatment
times but still maintained a small perceptible residual binding to IgE in egg-allergic pa-
tients. Similar results were found by Chicón et al. [39,86], in whose studies whey proteins
hydrolyzed at 400 MPa showed progressive antigenicity reduction with treatment time,
especially in relation to non-pressurized protein hydrolyzed at ambient pressure. However,
reactions against IgE were still noticeable.

HHP changes the conformation of proteins that alter conformational epitopes, po-
tentiating enzymatic hydrolysis and, consequently, reducing the presence of linear epi-
topes [26,29,84]. However, even after carrying out the protein hydrolysis process, it is
still necessary to evaluate the immunoreactivity to IgE of the peptides formed in order to
guarantee the reduction or exemption of an allergenic response. Studies in vivo conducted
by López-Expósito [91] in sensitized mice proved that β-lactoglobulin protein hydrolysates
under high hydrostatic pressure (400 MPa) are immunologically inert. In a study conducted
by Lozano-Ojalvo [25], whey protein hydrolysates treated at 400 MPa showed allergenic
epitopes of β-lactoglobulin and α-lactalbumin. However, changes in the immune response
were not perceptible in the tests performed in vivo, e.g., changes in body temperature,
anaphylaxis, and signs or release of markers in mice sensitized with the allergen. The study
showed that HHP can produce hypoallergenic hydrolysate in a short time, i.e., which does
not promote reactions mediated by IgE and IgG.

Finally, protein unfolding induced by HHP treatment facilitates enzymatic hydrolysis,
resulting in shorter peptide fragments, with between 7 and 10 amino acid residues, which
may not be recognized as epitopes, leading to reduced allergenicity [48,92]. Therefore,
it is possible to obtain peptides with a lower allergenic response using HHP combined
with enzymatic hydrolysis, since the peptide pattern and the immunoreactivity of the
hydrolysates obtained under HHP can be altered by selecting the enzyme, pressure, and
time of hydrolysis [25,91].

5. Conclusions

High hydrostatic pressure, when combined with enzymatic hydrolysis, is an emerging
process that shows promising results in the production of protein hydrolysates. The use
of HHP, either as a pre-treatment or simultaneously with hydrolysis, is an alternative to
improve the process efficiency. In general, the combination of HHP and enzymatic hydroly-
sis potentiates catalysis in different protein sources, in a significantly shorter process time
and allowing the use of a smaller amount of enzyme in relation to the substrate compared
with conventional hydrolysis carried out at ambient pressure. Furthermore, the protein hy-
drolysates obtained show improved properties in terms of antihypertensive activity, mainly
regarding the in vitro ACE-inhibitory activity and greater in vitro antioxidant capacity.
HHP is also an important technology in the production of hypoallergenic hydrolysates.
However, in order to obtain optimal results, it is important to individually evaluate the
processing parameters in relation to the HHP technology, e.g., the way in which it is used
(pre-treatment or simultaneously with hydrolysis), the selection of the enzyme, and the
process parameters (pressure level and processing time), since all these factors can signifi-
cantly impact the allergenic response. In addition, most of the research that has evaluated
the effect of HHP on the health-promoting properties of hydrolysates has used in vitro
assays. Thus, it becomes important to use clinical trials to provide evidence that the claimed
properties are actually enhanced and have in vivo effects, making protein hydrolysates
ingredients with an even greater market potential for the industry that seeks to meet a
niche of consumers who are increasingly concerned about the relationship between health
and food.
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