

Article Identification of Antibacterial Components and Modes in the Methanol-Phase Extract from a Herbal Plant *Potentilla kleiniana* Wight et Arn

Yingping Tang ^{1,2}, Pan Yu ^{1,2} and Lanming Chen ^{1,2,*}

- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- ² College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
 - * Correspondence: lmchen@shou.edu.cn

Abstract: The increase in bacterial resistance and the decline in the effectiveness of antimicrobial agents are challenging issues for the control of infectious diseases. Traditional Chinese herbal plants are potential sources of new or alternative medicine. Here, we identified antimicrobial components and action modes of the methanol-phase extract from an edible herb *Potentilla kleiniana* Wight et Arn, which had a 68.18% inhibition rate against 22 species of common pathogenic bacteria. The extract was purified using preparative high-performance liquid chromatography (Prep-HPLC), and three separated fragments (Fragments 1–3) were obtained. Fragment 1 significantly elevated cell surface hydrophobicity and membrane permeability but reduced membrane fluidity, disrupting the cell integrity of the Gram-negative and Gram-positive pathogens tested (p < 0.05). Sixty-six compounds in Fragment 1 were identified using Ultra-HPLC and mass spectrometry (UHPLC-MS). The identified oxymorphone (6.29%) and rutin (6.29%) were predominant in Fragment 1. Multiple cellular metabolic pathways were altered by Fragment 1, such as the repressed ABC transporters, protein translation, and energy supply in two representative Gram-negative and Gram-positive strains (p < 0.05). Overall, this study demonstrates that Fragment 1 from *P. kleiniana* Wight et Arn is a promising candidate for antibacterial medicine and food preservatives.

Keywords: *Potentilla kleiniana* Wight et Arn; antibacterial component; antibacterial mode; pathogenic bacteria; transcriptome; traditional Chinese herb

1. Introduction

Infectious diseases caused by pathogenic bacteria continue to be a global concern for public health, causing millions of deaths worldwide per year [1]. Since the introduction of sulfonamides in 1933, a large number of antibiotics have been applied in clinics [2]. Nevertheless, in recent decades, the overuse and/or misuse of antibiotics have accelerated the spread of antibiotic-resistant bacteria, leading to ineffective drug treatment [3]. It was estimated that at least 700,000 people worldwide die each year due to antimicrobial resistance [4].

Pharmacophagous plants are recognized as a rich source of phytochemicals with antimicrobial potential [5]. Phytocompounds extracted from such plants are long known for their therapeutic uses, and characterized by safety and low toxicity [6]. The application of herbal products may be a better choice for the extensive and imprudent use of synthetic antibiotics [7]. For example, In China, approximately 34,984 native higher plant species have been recorded [8]. Of these, the herbal plant *Potentilla kleiniana* Wight et Arn was first recorded in the earliest pharmaceutical book "Divine Farmer's Classic of Materia Medica" during the Warring States period (475–221 B.C.) in China. It belongs to the phylum of Angiospermae, the class of Dicotyledoneae, the order of Rosales Bercht. and J. Presl, and the family of Rosaceae Juss. *P. kleiniana* Wight et Arn is widely distributed in China, and many Asian countries such as Japan, India, Malaysia, Indonesia, and North Korea.

Citation: Tang, Y.; Yu, P.; Chen, L. Identification of Antibacterial Components and Modes in the Methanol-Phase Extract from a Herbal Plant *Potentilla kleiniana* Wight et Arn. *Foods* **2023**, *12*, 1640. https:// doi.org/10.3390/foods12081640

Academic Editors: Loris Pinto and Jesus Fernando Ayala-Zavala

Received: 17 March 2023 Revised: 6 April 2023 Accepted: 7 April 2023 Published: 13 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Its whole plant has been used as a traditional Chinese medicine to treat fever, arthritis, malaria, insect and snake bites, hepatitis, and traumatic injury [9]. Recently, Zhou et al. identified bioactive components from P. kleiniana Wight et Arn with anti-human immunodeficiency virus-1 (HIV-1) protease activity [10]. Liu et al. developed an efficient method for the rapid screening and separation of α -glucosidase inhibitors from *P. kleiniana* Wight et Arn [11]. Li et al. [12] found antihyperglycemic and antioxidant effect of the total flavones of P. kleiniana Wight et Arn in streptozotocin induced diabetic rats, which may be helpful in the prevention of diabetic complications associated with oxidative stress [12]. However, to the best of our knowledge, there are few studies so far in the current literature on antibacterial activity of *P. kleiniana* Wight et Arn. Tao et al. [9] reported that total flavonoids from P. kleiniana Wight et Arn (TFP) inhibited biofilm formation and virulence factor production in methicillin-resistant Staphylococcus aureus (MRSA). The TFP also damaged cell membrane integrity of *Pseudomonas aeruginosa*. These results supported potential application of the TFP as a novel natural bioactive preservative in food processing [13]. Song et al. also reported that bioactive components extracted from P. kleiniana Wight et Arn showed antibacterial effects against S. aureus, Candida albicans, P. aeruginosa, and Escherichia coli, but not against the mold *Aspergillus niger* [14].

To further exploit bioactive nature products in *P. kleiniana* Wight et Arn, in the present study, we extracted bacteriostatic components in *P. kleiniana* Wight et Arn using the methanol and chloroform method [15,16]. Antimicrobial action modes of the methanolphase extract were further investigated. The results of this study provide useful data for potential pharmaceutical application of *P. kleiniana* Wight et Arn against the common pathogenic bacteria.

2. Results and Discussion

2.1. Antibacterial Activity of Crude Extracts from P. kleiniana Wight et Arn

Antibacterial substances in the fresh *P. kleiniana* Wight et Arn were extracted using the methanol and chloroform method [15,16]. The water loss rate of the fresh plant sample was 94.12% after freeze-drying treatment of the sample. The extraction rates of the methanol-phase and chloroform-phase crude extracts were 31.13% and 25.43%, respectively. As shown in Table 1, the chloroform-phase extract from *P. kleiniana* Wight et Arn had a 50.00% inhibition rate, which inhibited one species of Gram-positive bacterium *S. aureus*, and 10 species of Gram-negative bacteria, including *Bacillus cereus* A1-1, *B. cereus* A2-2, *Enterobacter cloacae* ATCC13047, *Salmonella typhimurium* ATCC15611, *Shigella dysenteriae* CMCC51252, *Shigella flexneri* CMCC51572, *Shigella sonnei* ATCC25931, *Vibrio cholerae* Q10-54, *Vibrio mimicus* bio-56759, *Vibrio parahemolyticus* ATCC33847, *V. parahemolyticus* B3-13, *V. parahemolyticus* B5-29, *V. parahemolyticus* B9-35, *V. parahemolyticus* A1-1, and *Vibrio vulnificus* ATCC27562 (Table 1).

Of note, the methanol-phase crude extract from *P. kleiniana* Wight et Arn inhibited the growth of 15 bacterial species, including one species of Gram-positive *S. aureus*, and 14 species of Gram-negative bacteria, *P. aeruginosa* ATCC9027, *S. typhimurium* ATCC15611, *S. dysenteriae* CMCC51252, *S. flexneri* CMCC51572, *S. flexneri* CMCC51574, *S. sonnei* ATCC25931, *V. alginolyticus* ATCC17749, *V. cholerae* Q10-54, *V. fluvialis* ATCC33809, *V. mimicus* bio-56759, *V. parahemolyticus* ATCC17802, and *V. vulnificus* ATCC27562, which showed a 68.18% inhibition rate (Table 1, Figure 1).

In this study, the methanol and chloroform extract method exhibited a broader antibacterial spectrum, consistent with our previous reports [15,16]. Previous studies also reported effective extraction of bioactive compounds from *P. kleiniana* Wight et Arn. For example, Tao et al. [13] extracted TFP in *P. kleiniana* Wight et Arn using an ethanol-water solution, and the obtained extract was further partitioned using petroleum ethers, chloroform and ethyl acetate. The extracted TFP inhibited survival and virulence of *P. aeruginosa*, and MRSA. Song et al. [14] extracted bioactive compounds from *P. kleiniana* Wight et Arn using ethanol and ethyl acetate, and the obtained extract showed antibacterial activity against *P. aeruginosa*, *S. aureus*, *C. albicans*, and *E. coli*. The difference in bioactive compounds ex-

tracted from P. kleiniana Wight et Arn using the different methods may explain the distinct antibacterial profiles between this study and the previous reports [13,14].

Table 1. Antibacterial activity of crude extracts from 1. Kiemunu Wight et An	Table	1. Anti	bacterial	activity c	of crude	e extracts	from 1	P. kleiniana	Wight ef	: Arr
---	-------	---------	-----------	------------	----------	------------	--------	--------------	----------	-------

Strain	Inhibiti (Diame	on Zone ter, mm)	MIC (mg/mL)	
·	CPE	MPE	CPE	MPE
Aeromonas hydrophila ATCC35654	-	-	-	-
Bacillus cereus A1-1	7.03 ± 0.01	10.54 ± 0.48	50	6.25
Bacillus cereus A2-2	7.11 ± 0.02	10.54 ± 0.75	50	1.56
Enterobacter cloacae ATCC13047	7.00 ± 0.11	7.11 ± 0.26	50	50
Enterobacter cloacae C1-1	-	-	-	-
Escherichia coli ATCC8739	-	7.62 ± 0.37	-	25
Escherichia coli ATCC25922	-	-	-	-
Escherichia coli K12	-	7.51 ± 0.29	-	25
Enterobacter sakazakii CMCC45401	-	-	-	-
Klebsiella pneumoniae 8-2-10-8	-	-	-	-
Klebsiella pneumoniae 8-2-1-14	-	-	-	-
Pseudomonas aeruginosa ATCC9027	-	10.51 ± 0.41	-	6.25
Pseudomonas aeruginosa ATCC27853	-	8.14 ± 0.32	-	25
Salmonella enterica subsp. enterica (ex Kauffmann and Edwards)		0.011 ± 0.00		_0
jims-2270933-finalLe Minor and Popoff serovar Choleraesuis	_	-	-	_
ATCC13312				
Salmonella naratunhi-A CMCC50093	_	_	-	_
Salmonellaenterica subsp. enterica (ex Kauffmann and Edwards)				
ijms-2270933-finall e Minor and Popoff serovar Vellore ATCC15611	7.09 ± 0.09	10.11 ± 0.61	50	6.25
Salmonella F1-1	_	_	_	_
Shigella ducenteriae CMCC51252	7.02 ± 0.11	9.29 ± 0.51	50	12 5
Shigella flerneri CMCC51572	7.02 ± 0.11 7.82 ± 0.20	10.17 ± 0.01	25	6 25
Shigella flexneri ATCC 12022	7.02 ± 0.20	10.17 ± 0.20	25	0.20
Shigella flexneri CMCC51574	_	9.17 ± 0.21	_	12 5
Shigella connei ATCC 25021	7.00 ± 0.11	9.17 ± 0.21 8 10 \pm 0 51	50	25
Shigella sonnet CMCC51592	7.00 ± 0.11	0.19 ± 0.01	50	25
Stanbulococcus auraus ATCC 25023	-7.03 ± 0.14	-9.41 ± 0.27	50	12.5
Staphylococcus aureus ATCC25725	7.03 ± 0.14 7.07 ± 0.15	9.41 ± 0.27 10.15 ± 0.24	50	6 25
Stanbulococcus aureus ATCC3093	7.07 ± 0.13 7.78 ± 0.10	0.13 ± 0.24	25	12.5
Staphylococcus aureus ATCC29215	7.76 ± 0.10 7.62 ± 0.61	9.21 ± 0.01 0.55 ± 0.27	25	12.5
Stuphylococcus aureus AICC0556	7.02 ± 0.01 7.11 \ 0.25	9.33 ± 0.37	23 50	12.5
Suppylococcus utreus DI-1 Vibrio aloinaluticus ATCC17740	7.11 ± 0.23	7.00 ± 0.31	50	30 2 1 2
Vibrio alginolyticus ATCC17749	-	10.11 ± 0.24	-	5.15
Vibrio alginoiyiicus AICC55787	-	-700 ± 0.14	-	- E0
Viorio cholerae GIM1.449	-7.02 + 0.10	7.00 ± 0.14	-	50 50
Viorio choierue Q10-54	7.22 ± 0.10	7.02 ± 0.21	50	50
Vibrio fiuolulis ATCC DA A 1117	-	7.12 ± 0.03	-	50
Vibrio harvey AICC BAA-1117	-	-	-	-
Vibrio narveyi AICC33842	-	-	-	-
Vibrio mimicus bio-56/59	7.21 ± 0.41	11.00 ± 0.32	25	3.13
Vibrio paranemolyticus ATCC17802	-	10.67 ± 1.21	-	1.56
Vibrio paranemolyticus AICC33847	8.63 ± 0.24	7.14 ± 0.12	12.5	50
Vibrio paranemolyticus B3-13	7.17 ± 0.29	12.33 ± 0.65	50	3.13
Vibrio paranemolyticus B4-10	-	11.26 ± 0.34	-	6.25
Vibrio paranemolyticus B5-29	7.17 ± 0.04	13.77 ± 0.85	50	3.13
vibrio paranemolyticus B9-35	7.20 ± 0.09	13.15 ± 0.44	25	3.13
Vibrio parahemolyticus A1-1	7.13 ± 0.15	10.35 ± 0.58	50	3.13
Vibrio vulnificus ATCC27562	7.65 ± 0.44	7.01 ± 0.23	25	50

Note: CPE: chloroform-phase extract. MPE: methanol-phase extract. -: no bacteriostasis activity. Inhibition zone: diameter includes the disk diameter (6 mm). MIC: minimum inhibitory concentration. Values were means \pm standard deviation (S.D.) of three parallel measurements.

Figure 1. Inhibition activity of the methanol-phase crude extract from *P. kleiniana* Wight et Arn against the four representative bacterial strains. (**A-1–D-1**) *V. parahemolyticus* B5-29, *V. parahemolyticus* ATCC17802, *S. aureus* ATCC25923, and *S. aureus* ATCC8095, respectively. (**A-2–D-2**) corresponding negative controls, respectively.

We further determined minimum inhibitory concentrations (MICs) of the crude extracts from *P. kleiniana* Wight et Arn, and the results are shown in Table 1. The MICs of the chloroform-phase extract ranged from 12.5 mg/mL to 50 mg/mL against the eleven species of the bacteria. Notably, for the methanol-phase extract, the MICs were between 1.56 mg/mL and 50 mg/mL against the fifteen bacterial species. Of these, the growth of B. cereus A2-2 and V. parahemolyticus ATCC17802 was the most strongly repressed by the methanol-phase extract with the MICs of 1.56 mg/mL, followed by V. alginolyticus ATCC17749, V. mimicus bio-56759, V. parahemolyticus B3-13, V. parahemolyticus B5-29, V. parahemolyticus B9-35, and V. parahemolyticus A1-1 with MICs of 3.13 mg/mL. In addition, the growth of B. cereus A1-1, P. aeruginosa ATCC9027, S. typhimurium ATCC15611, S. flexneri CMCC51572, S. aureus ATCC8095, and V. parahemolyticus B4-10 was also inhibited by the methanol-phase extract with lower MICs (6.25 mg/mL). Of these pathogens, for example, V. alginolyticus is a foodborne marine Vibrio that can cause gastroenteritis, otitis media, otitis externa, and septicemia in humans [17]. V. mimicus can also cause gastroenteritis in humans due to contaminated fish consumption and seafood [18]. P. aeruginosa is an opportunistic pathogen and can cause serious infections, especially in patients with compromised immune systems [19].

Recently, Song et al. [14] reported that the ethyl acetate extract of *P. kleiniana* Wight et Arn inhibited *E. coli*, *P. aeruginosa*, and *C. albicans*, with MICs of 5 mg/mL, 2.5 mg/mL, and 5 mg/mL, respectively. Tao et al. reported the MIC value of the TFP against MRSA was 20 μ g/mL [9].

These results indicated that the methanol-phase crude extract had a higher inhibition rate (68.18%), showing a more broad inhibitory profile with much lower MICs (1.56–50 mg/mL) against the pathogens tested, as compared to the chloroform-phase crude extract (50.00%; 12.5–50 mg/mL). Thus, the methanol-phase crude extract was chosen for further analysis in this study.

Based on the obtained results, a large amount of the methanol-phase crude from *P. kleiniana* Wight et Arn was prepared and further purified using Prep-HPLC analysis. As shown in Figure S1, three separated fragments (designated Fragments 1–3) were observed via scanning at OD₂₁₁ for 12 min, including Fragment 1 (2.45 min), Fragment 2 (6.75 min), and Fragment 3 (9.83 min). The main peak of the methanol-phase crude was observed to occur at 2.45 min, wherein the absorption peak of Fragment 1 reached its maximum.

The three single fragments were subjected for antibacterial activity analysis. Fragment 1 had strong inhibitory effects on *V. parahemolyticus* ATCC17802, *V. parahemolyticus* B5-29, *V. parahemolyticus* B9-35, *V. parahemolyticus* B3-13, and *V. parahemolyticus* B4-10. In addition, the growth of the other six strains was also effectively repressed, including *B. cereus* A2-2, *V. parahemolyticus* A1-1, *S. flexneri* CMCC51572, *S. aureus* ATCC25923, *S. aureus* ATCC8095, and *S. aureus* ATCC6538 (Table 2). Of these, *V. parahaemolyticus* is a Gram-negative halophilic bacterium that can cause diseases in marine animals, leading to huge economic losses to the aquaculture. *V. parahaemolyticus* can also cause gastrointestinal infections and other health complications in humans [20]. *B. cereus* is a Gram-negative intracellular pathogen that invades colonic cells and causes bloody diarrhea in humans [22]. *S. aureus* is a Gram-positive opportunistic pathogen leading to food poisoning as well as human and animal infectious diseases [23,24].

Table 2. Antibacterial activity of Fragment 1 of the methanol-phase extract from *P. kleiniana* Wight et Arn.

Strain	Inhibition Zone (Diameter, mm)	MIC (mg/mL)
B. cereus A2-2	8.03 ± 0.45	6.25
S. flexneri CMCC51572	7.50 ± 0.50	6.25
S. aureus ATCC25923	8.03 ± 0.40	12.5
S. aureus ATCC8095	9.53 ± 0.35	6.25
S. aureus ATCC6538	7.10 ± 0.36	50.0
V. parahemolyticus ATCC17802	10.31 ± 0.62	6.25
V. parahemolyticus A1-1	8.57 ± 0.60	25.0
V. parahemolyticus B3-13	10.37 ± 0.32	6.25
V. parahemolyticus B4-10	10.30 ± 0.50	12.5
V. parahemolyticus B5-29	11.30 ± 0.26	6.25
V. parahemolyticus B9-35	11.27 ± 0.40	12.5

We also determined MICs of Fragment 1 against the four species of pathogenic bacteria (Table 2). The synergistic effect may explain the observed MICs of Fragment 1 (6.25–50 mg/mL), as compared to the methanol-phase extract from *P. kleiniana* Wight et Arn. Among the Gram-negative pathogens, *V. parahemolyticus* ATCC17802 and *V. parahemolyticus* B5-29 were the most sensitive strains to Fragment 1, with MICs of 6.25 mg/mL. For the Gram-positive pathogen, the growth of *S. aureus* ATCC8095 and *S. aureus* ATCC25923 was also effectively repressed, with MICs of 6.25 mg/mL and 12.5 mg/mL, respectively.

Conversely, the other two peaks (Fragments 2 and 3) showed weak or no antibacterial activity. To further investigate possible antibacterial modes of Fragment 1, the two Gramnegative strains *V. parahemolyticus* ATCC17802 and *V. parahemolyticus* B5-29, and two Grampositive stains *S. aureus* ATCC8095 and *S. aureus* ATCC25923 were chosen for the further analysis in this study.

2.3. Bacterial Cell Surface Hydrophobicity, Membrane Fluidity and Permeability Changes Triggered by Fragment 1 from P. kleiniana Wight et Arn

2.3.1. Cell Surface Hydrophobicity

_

Cell surface hydrophobicity is an important cellular biophysical parameter that affects cell surface interactions and cell–cell communication [25]. In this study, the hexadecane was used as a probe to assess cell surface hydrophobicity change. The difference between

before and after the absorbance value of bacterial fluid can indicate the change of hydrophobicity, and the larger the difference, the more hydrophobicity of the surface [26]. The cell surface hydrophobicity of the four experimental groups ($1 \times$ MIC of Fragment 1) was significantly increased, as compared to the control groups (p < 0.05) (Figure 2A). For instance, after being treated with Fragment 1 for 2 h, bacterial cell surface hydrophobicity was significantly increased, including *V. parahaemolyticus* B5-29 (8.62%, 1.42-fold), *V. parahaemolyticus* ATCC17802 (8.27%, 1.50-fold), *S. aureus* ATCC25923 (10.34%, 1.24-fold), and *S. aureus* ATCC8095 (12.20%, 1.19-fold) (p < 0.05). Increasing treatment time, the cell surface hydrophobicity was the most significantly increased (11.97%, 1.97-fold) in the *V. parahaemolyticus* B5-29 treatment group. The highest increase (15.96%, 2.63-fold) was also observed in *V. parahaemolyticus* B5-29, after treatment for 6 h. The results indicated that Fragment 1 from *P. kleiniana* Wight et Arn can significantly increase the cell surface hydrophobicity of both Gram-negative *V. parahaemolyticus* and Gram-positive *S. aureus* pathogens.

Figure 2. Effects of Fragment 1 (1× MIC) from *P. kleiniana* Wight et Arn on cell surface hydrophobicity, membrane fluidity and outer membrane permeability of the four bacterial strains. (A–C) cell surface hydrophobicity, membrane fluidity, and outer membrane permeability, respectively. *: p < 0.05; **: p < 0.01; and ***: p < 0.001.

2.3.2. Cell Membrane Fluidity

Cell membrane is a natural barrier to prevent extracellular substances from freely entering the cell [27]. In this study, as shown in Figure 2B, when compared to the control groups, the membrane fluidity of *V. parahaemolyticus* B5-29, *S. aureus* ATCC25923, and *S. aureus* ATCC8095 did not change significantly after treatment with Fragment 1 (1× MIC) for 2 h and 4 h. However, a significant decrease (1.16-fold, 1.25-fold, and 1.24-fold) was observed in these three treatment groups after treatment for 6 h, respectively (p < 0.05). In addition, a significant decrease in cell membrane fluidity was only found in *V. parahaemolyticus* ATCC17802 after treatment for 4 h (1.16-fold) and 6 h (1.24-fold), respectively (p < 0.05). These results indicated that Fragment 1 from *P. kleiniana* Wight et Arn can significantly reduce the cell membrane fluidity of both Gram-negative *V. parahemolyticus* and Gram-positive *S. aureus* pathogens.

2.3.3. Cell Membrane Permeability

 β -galactosidase is a macromolecular protein naturally found in the interior of cells that can hydrolyze the substrate o-nitrophenyl- β -D-galactopyranosi (ONPG) to galactose and o-nitrophenol in yellow. If the inner membrane of bacterial cells is damaged, ONPG will quickly enter the cell [28]. In this study, the ONPG was used as a probe to assess whether the bacterial inner membrane is damaged. As illustrated in Figure 3D, the inner cell membrane permeability of *S. aureus* ATCC8095 did not change significantly after treatment with Fragment 1 (1× MIC) from *P. kleiniana* Wight et Arn for 2 h (p > 0.05); conversely, significant increases were observed in *V. parahaemolyticus* B5-29, *V. parahaemolyticus* ATCC17802, and *S. aureus* ATCC25923 treatment groups (1.15-fold, 1.18-fold, and 1.04-fold), respectively (p < 0.05). After being treated for 4 h, the highest increase was found in *V. parahaemolyticus* B5-29 (1.22-fold). After treatment for 6 h, significant increases were also observed in *V. parahaemolyticus* B5-29, *V. parahaemolyticus* ATCC17802, *S. aureus* ATCC25923, and *S. aureus* ATCC8095 (1.20-fold, 1.17-fold, 1.07-fold, and 1.08-fold), respectively (p < 0.05). These results indicated that Fragment 1 from *P. kleiniana* Wight et Arn can significantly increase the inner cell membrane permeability of both Gram-negative *V. parahemolyticus* and Gram-positive *S. aureus* pathogens.

Figure 3. Effects of Fragment 1 (1× MIC) from *P. kleiniana* Wight et Arn on the bacterial inner cell membrane permeability. (**A–D**) *V. parahaemolyticus* B5-29, *V. parahaemolyticus* ATCC17802, *S. aureus* ATCC25923, and *S. aureus* ATCC8095, respectively. The treatment groups were overall significantly different from the control groups (p < 0.05), except the *S. aureus* ATCC8095 group treated for 2 h (**D**).

Outer membrane permeability was assessed by measuring the uptake of a hydrophobic fluorescent probe N-phenyl-1-naphthylamine (NPN) [29]. The outer membrane permeability increased significantly in the four treatment groups, after being treated with Fragment 1 for 2 h (1.38-fold to 1.66-fold) (p < 0.01), and 4 h (1.77-fold to 2.72-fold), respectively (p < 0.001) (Figure 2C). The highest increase was found in *V. parahaemolyticus* ATCC17802 (2.70-fold), after treatment for 6 h. These results indicated that Fragment 1 from *P. kleiniana* Wight et Arn can significantly increase the outer cell membrane permeability of the Gramnegative *V. parahemolyticus* and Gram-positive *S. aureus* pathogens. Recently, Tao et al. also reported that the TFP from *P. kleiniana* Wight et Arn increased cell membrane permeability of MRSA [13].

Taken together, the results of this study demonstrated that Fragment 1 (1× MIC) from *P. kleiniana* Wight et Arn can significantly increase the cell surface hydrophobicity and membrane permeability, but decreases the cell membrane fluidity of both

Gram-negative *V. parahemolyticus* and Gram-positive *S. aureus* pathogens. Antibacterial compounds (e.g., flavonoids) in Fragment 1 from *P. kleiniana* Wight et Arn may have interacted with lipid components of the bacterial cell membrane. The disorder in lipid chains resulted in changed permeability and fluidity of the bacterial cell membrane [30]. The compounds may also have interacted with the bacterial cell surface proteins, leading to the altered nanomechanical properties, which consequently changed cell surface hydrophobicity and fluidity [31]. The two common pathogens *V. parahemolyticus* and *S. aureus* were chosen for further analysis in this study. The former is the leading sea foodborne pathogen worldwide [20], while the latter leads to food poisoning, as well as human and animal infections [23].

2.4. Bacterial Cell Surface Structure Changes Triggered by Fragment 1 from P. kleiniana Wight et Arn

Based on the obtained results in this study, the representative Gram-negative *V. parahaemolyticus* ATCC17802 and Gram-positive *S. aureus* ATCC25923 strains were chosen for further scanning electron microscope (SEM) analysis. As shown in Figure 4, the cells of *V. parahaemolyticus* ATCC17802 were intact in shape with a flat surface, showing a typical rod-like structure, while those of *S. aureus* ATCC25923 were also intact and clear, showing a typical spherical structure. In remarkable contrast to the control groups, the bacterial morphological structures were altered to varying degrees in the treatment groups triggered by Fragment 1 (1× MIC) for different times.

For the Gram-negative *V. parahaemolyticus* ATCC17802, its cell surface was slightly shrunken after being treated with Fragment 1 for 2 h. After 4 h of treatment, the cell surface was more wrinkled and was slightly depressed, the cell membrane was folded and some contents were exuded. After 6 h of the treatment, the cells were severely deformed and crumpled, with a large amount of content leaked.

For the Gram-positive *S. aureus* ATCC25923, its cell surface was rough and slightly wrinkled, but certain cells were depressed, with a small amount of content leaked after the treatment for 2 h. Upon the increased treatment time (4 h), more cells were obviously wrinkled and deformed with the irregularly spherical, and more content leaked out. The cell morphological structure was seriously damaged after being treated for 6 h.

Figure 4. The SEM observation of cell surface structure of the two bacterial strains treated with the $1 \times$ MIC of Fragment 1 for different times. (A): *V. parahaemolyticus* ATCC17802; (B): *S. aureus* ATCC 25923.

These results demonstrated that Fragment 1 (1× MIC) from *P. kleiniana* Wight et Arn can severely damage the cell surface structure of both Gram-negative *V. parahaemolyticus* and Gram-positive *S. aureus* after treatment for 6 h.

2.5. Identification of Potential Antibacterial Compounds in Fragment 1 from P. kleiniana Wight et Arn

Potential antibacterial components in Fragment 1 from *P. kleiniana* Wight et Arn were further identified using UHPLC-MS analysis. As shown in Table 3, a total of 66 different compounds were identified. The highest relative percentage of the compounds was D-maltose (6.77%), followed by oxymorphone (6.29%), rutin (6.29%), D-proline (5.41%), and L-proline (5.41%). In addition, alkaloids, flavonoids, phenols, sesquiterpenoids, fatty acyls, and organic acids were also detected (Table 3).

Highly concentrated sugar solutions, such as the D-maltose identified in this study, are known to be effective antimicrobial agents [32]. Previous research has indicated that the antibacterial activity of phenanthrenes and derivatives, such as the oxymorphone identified in this study, was primarily related to the destruction of the bacterial cell wall structure [33]. Plant extracts contain a large number of bioactive compounds, mainly polyphenols including flavonoids and phenolic compounds. Flavonoids, such as the rutin identified in this study, could exert antibacterial activity via damaging the cytoplasmic membrane, inhibiting energy metabolism and synthesis of nucleic acids [34]. Tao et al. also reported the major compounds of the TFP were 3-O-methylducheside A, naringenin, rutin and quercetin [9,13]. Phenols, such as the p-octopamine identified in this study, are potent antibacterial agents against both Gram-positive and Gram-negative bacteria via the disruption of the bacterial membrane, leading to bacterial lysis and leakage of intracellular contents [35]. Indole alkaloids, such as the indole identified in this study, possess not only intriguing structural features but also biological/pharmacological activities e.g., antimicrobial activity [36]. Additionally, amino acids and its derivatives, such as the D-proline, L-proline, glutamic acid, 5-aminovaleric acid, lysine, pipecolic acid, and L-valine identified in this study, are a kind of antibacterial agent with the advantages of being not easily drug-resistant, and having low toxicity or harmless metabolites [37].

Peak No.	Identified Compound	Compound Nature	Rt (min)	Formula	Exact Mass	Peak Area (%)
1	D-Maltose	Carbohydrates	0.76	C12H22O11	342.1162	6.77%
2	Oxymorphone	Phenanthrenes and derivatives	11.18	C17H19NO4	301.1314	6.29%
3	Rutin	Flavonoids	12.99	$C_{27}H_{20}O_{16}$	281.0899	6.29%
4	D-Proline	Amino acid and derivatives	0.76	$C_5H_0NO_2$	115.0633	5.41%
5	L-Proline	Amino acid and derivatives	0.73	C ₅ H ₉ NO ₂	115.0633	5.41%
6	L-Glutamic acid	Amino acid and derivatives	0.66	$C_{E}H_{0}NO_{4}$	147.0532	5.20%
7	Sucrose	Carbohydrates	0.89	$C_{12}H_{22}O_{11}$	342 1162	3.62%
8	Cynaroside	Flavonoids	12.98	$C_{12}H_{22}O_{11}$	282 162	3.37%
9	Piperlonguminine	Alkaloids	10.57	$C_{12}H_{20}O_{11}$	273 1365	3.21%
10	5-Aminovaleric acid	Amino acid and derivatives	1 11	$C_{16}H_{11}NO_{2}$	117 079	3.12%
11	D-Glutamine	Carboxylic acids and derivatives	0.66	$C_{T}H_{10}N_{2}O_{2}$	146 0691	2 99%
12	I -I vsine	Amino acid and derivatives	0.64	$C_{14}N_{2}O_{3}$	146 1055	2.99%
12	n-Octonamine	Phenols	3.84	$C_0H_{14}NO_2$	153 079	2.95%
10	Oleic acid	Fatty acyls	13.03	$C_{10}H_{24}O_2$	282 2559	2.90%
15	Isoquercitrin	Flavonoids	10.58	$C_{18}H_{34}O_{2}$	274 1933	2.91%
16	I -Pipecolic acid	Amino acid and derivatives	0.69	$C_2H_{20}O_{12}$	129 079	2.11%
17	Moracin C	Phenols	0.67	$C_{10}H_{10}O_4$	129.0426	2.31%
18	Kojibiose	Fatty acyle	0.72	CiaHaaOia	342 1162	2.0170
10	Glucopic acid	Carbobydrates	0.69	$C_{12}H_{22}O_{11}$	196.0583	1.97%
20	Betaine	Alkaloida	1.06	$C_6H_{12}O_7$	117 079	1.57%
20	I -Valine	Amino acid and derivatives	0.93	$C_{2}H_{11}NO_{2}$	117.079	1.01/0
21	D-alpha-Aminohuturic acid	Carboxylic acids and derivatives	0.95	$C_{1111002}$	103 0633	1.4970
22	cis-Acopitic acid	Organic acids and derivatives	0.05	$C_4 H_1 O_2$	174 0164	1.40/0
23	Lastulasa	Organic acids and derivatives	0.77	$C_{6}II_{6}O_{6}$	242 1162	1.3470
24	Turanasa	Fatty agyle	0.77	$C_{12}T_{22}O_{11}$	242.1102	1.33 /0
25	L Pipocolic acid	Amino acid and derivatives	0.79	$C_{12}T_{22}O_{11}$	120 070	1.55%
20	DI Normalina	Amino acid and derivatives	1.47	$C_{6}\Pi_{11}NO_{2}$	129.079	1.13 /0
27	L Asperacine	Amino acid and derivatives	1.05	C H N O	122 0525	1.11/0
20	L-Asparagine Malia agid	Hudrowy agida and derivatives	0.04	$C_4 \Pi_8 \Pi_2 U_3$	132.0355	1.11 /0
29	Trigonalling	Alkalaida	0.8	$C_4 \Pi_6 O_5$	134.0213	0.90%
30 21	Asstamida	Alkaloida	12.05	$C_7 \Pi_7 NO_2$	137.0477	0.90%
31	Reta D (maters 2 mb smb sta	Alkalolus	13.95	$C_2 \Pi_5 NO$	39.03711	0.00 %
32	22 Debudre elementerel	Organooxygen compounds	0.75	С6П13О9Р	260.0297	0.77%
33	22-Denydroclerosterol	Steroids	12.59	$C_{29}H_{46}O$	410.3349	0.76%
25	Artennisinin Vacamataral 2 O mutinagida	Sesquiterpenoids	6.20	$C_{15} \Pi_{22} O_5$	202.1407	0.7270
33	L Homosorino	Aming agid and derivatives	0.29	$C_{27}T_{30}O_{15}$	110 0582	0.54 /0
30 27	L-Homoserine	Amino acid and derivatives	0.67	$C_4 \Pi_9 NO_3$	119.0362	0.52%
37	L-Infeonine Dalmitia acid	Linida	0.04	$C_4 \Pi_9 NO_3$	256 2402	0.30%
30	Ω A sofulational amina	Alkaloida	12.92	$C_{16} \Pi_{32} O_2$	102 0622	0.49%
39	Calastana 1 what what	Alkalolus	0.67	$C_4 \Pi_9 N O_2$	105.0655	0.40%
40	Galaciose 1-phosphate	Organooxygen compounds	0.05	$C_6\Pi_{13}O_9\Gamma$	260.0297	0.46%
41	A demosing E' monophagehote	Nucleatide and its derivates	1.3	$C_6 \Pi_{13} U_9 \Gamma$	200.0297	0.43%
42	Adenosine 5 -monophosphate	Amino acid and derivatives	1.56	$C_{10} I_{14} I_{5} O_{7} I_{14} I_{5} O_{7} I_{14} I_{5} O_{7} O_{7} I_{5} O_{7} $	174 1117	0.43%
43	L-Aignine Maltotriasa	Organoovygan compounds	1.22	$C_{6}\Pi_{14}\Pi_{4}O_{2}$	504 160	0.43 %
44	Indolo	Alkalaida	1.23	$C_{18}\Pi_{32}U_{16}$	304.109 117.0579	0.40%
43	D Chusses (phosphate	Alkalolus	5.6Z	$C_8 \Pi_7 N$	260.0207	0.30%
40	D Aspartia acid	Alkalaida	0.03	C H NO	122 0275	0.37 /0
47	Vitovin rhamposido	Flavonoida	6.78		578 1626	0.3078
40	I - Aspartic acid	Amino acid and dorivatives	0.78	$C_{27}T_{30}O_{14}$	133 0375	0.33%
49	Maltal	Flavonoida	0.03		135.0375	0.33%
51	Astragalin	Flavonoids	6.52	$C_{6} H_{16} O_{3}$	120.0517	0.33%
51	3-Hudrovy 3-mothylpontono-	Thavonoids	0.52	$C_{21}T_{20}O_{11}$	440.1000	0.5278
52	1,5-dioic acid	Amino acid and derivatives	2.32	$C_6H_{10}O_5$	162.0528	0.31%
53	Campesterol	Steroids and steroid derivatives	12.18	$C_{28}H_{48}O$	400.3705	0.30%
54	L-Ornithine	Amino acid and derivatives	0.55	$C_5H_{12}N_2O_2$	132.0899	0.30%
55	Adenosine	Nucleotide and its derivates	2.58	$C_{10}H_{13}N_5O_4$	267.0968	0.29%
56	Vidarabine	Purine nucleosides	2.28	$C_{10}H_{13}N_5O_4$	267.0968	0.27%
57	Nicotinic acid	Nicotinic acid derivatives	0.73	$C_6H_5NO_2$	123.032	0.27%
58	Pelargonidin-3-O-glucoside	Flavonoids	1.11	$C_{21}H_{20}O_{1}O$	100.0524	0.26%
59	L-Citruline	Amino acid and derivatives	0.66	$C_6H_{13}N_3O_3$	175.0957	0.26%
60	Diallyl disulfide	Miscellaneous	0.68	$C_6H_{10}S_2$	146.0224	0.26%
61	Sarracine	Alkaloids	13.14	$C_{18}H_{27}NO_5$	337.1889	0.22%
62	N-Acetylputrescine	Phenolamides	1.79	$C_6H_{14}N_2O$	130.1106	0.22%
63	Salicylic acid	Organic acid	7.06	$C_7H_6O_3$	138.0317	0.22%
64	5-Methylcytosine	Nucleotide and its derivates	2.26	$C_5H_7N_3O$	125.0589	0.21%
65	Ellagic acid	Phenols	6.12	$C_{14}H_6O_8$	302.0063	0.21%
66	Isodiospyrin	Quinones	11.28	$C_{22}H_{14}O_{6}$	374.079	0.21%

Table 3. Compounds identified in Fragment 1 from *P. kleiniana* Wight et Arn via UHPLC–MS analysis.

2.6. Differential Transcriptomes Triggered by Fragment 1 from P. kleiniana Wight et Arn

To obtain the genome-wide gene expression changes triggered by Fragment 1 from *P. kleiniana* Wight et Arn, we determined transcriptomes of the Gram-negative *V. parahaemolyticus* ATCC17802 and the Gram-positive *S. aureus* ATCC25923 pathogens treated with Fragment 1 ($1 \times$ MIC) for 6 h using the Illumina RNA sequencing technology. A complete list of differently expressed genes (DEGs) in the two strains are available in the National Center for Biotechnology Information (NCBI) SRA database under the accession number PRJNA906658.

2.6.1. The Major Changed Metabolic Pathways in V. parahaemolyticus ATCC17802

Approximately 13.07% (580 of 4436 genes) of *V. parahaemolyticus* ATCC17802 genes were differentially expressed in the treatment group, as compared to the control group. Of these, 238 DEGs showed higher transcriptional levels (fold change \geq 2.0), whereas 342 DEGs were significantly down-regulated (fold change \leq 0.5) (p < 0.05). Sixteen significantly altered metabolic pathways were identified in *V. parahaemolyticus* ATCC 17802, including the citrate cycle; glyoxylate and dicarboxylate metabolism; fatty acid degradation; glycine, serine, and threonine metabolism; oxidative phosphorylation; pyruvate metabolism; propanoate metabolism; beta-Lactam resistance; ABC transporters; two-component system; alanine, aspartate, and glutamate metabolism; phosphotransferase system (PTS); butanoate metabolism; lysine degradation; quorum sensing (QS); and nitrogen metabolism (Figure 5, Table 4).

Figure 5. The major changed metabolic pathways in *V. parahaemolyticus* ATCC 17802 mediated by Fragment 1 from *P. kleiniana* Wight et Arn. (**A**) The Volcano plot of the DEGs. (**B**) The significantly altered metabolic pathways in the bacterium. Different colors represented significant levels of the enriched genes.

In the citrate cycle, all the DEGs (n = 14) were significantly repressed (0.146-fold to 0.35-fold) (p < 0.05) in *V. parahaemolyticus* ATCC17802 after treatment by Fragment 1 from *P. kleiniana* Wight et Arn. For instance, the DEGs (*sucABCD*, *WU75_19785* and

WU75_19790, *WU75_19795*, and *WU75_19800*), encoding a 2-oxoglutarate dehydrogenase, a dihydrolipoamide succinyltransferase, and succinyl-CoA synthetase subunits alpha and beta, respectively, were highly inhibited (0.146-fold, 0.133-fold, 0.134-fold, and 0.16-fold) (p < 0.05). Moreover, the DEGs (*sdhABCD*, *WU75_19775*, *WU75_19780*, *WU75_19765*, and *WU75_19770*) encoding a succinate dehydrogenase were also highly repressed (0.144-fold to 0.199-fold) (p < 0.05), which links two essential energy-producing processes, the citrate cycle and oxidative phosphorylation [38]. The inhibited key enzymes in the citrate cycle highlighted inactive energy production in *V. parahaemolyticus* ATCC17802 triggered by Fragment 1.

Table 4. The major altered metabolic pathways in V. parahaemolyticus ATCC17802.

Citrate cycleWU75_19785suc.A0.146 $-2 \cos glutarate dehydrogenaseWU75_01725pcd.A0.465Phosphoenopyruvate caboxykinaseWU75_11750suc.B0.133Dihydrolipoamide succinyltransferaseWU75_11750suc.B0.143Bifunctional aconitate hydratase 2/2-methylisocitrateWU75_11750suc.D0.16Succinyl-CoA synthetase subunit lebtaWU75_11770sith0.199Succinitate dehydrogenaseWU75_11770sith0.119Succinitate dehydrogenaseWU75_11770sith0.119Succinitate dehydrogenaseWU75_11775sith0.129Succinitate dehydrogenaseWU75_11775sith0.129Succinitate dehydrogenaseWU75_10765sith0.129Succinitate dehydrogenaseWU75_10750sith0.114Succinitate dehydrogenaseWU75_10750sith0.129Type II citrate synthaseWU75_10760gltA0.129Type II citrate synthaseWU75_10760gltA0.129Type II citrate synthaseWU75_10770gltA0.129Type II citrate synthaseWU75_10780gltB0.352Malate synthaseWU75_10780gltB0.351Malate synthaseWU75_10780gltB0.351Multifunctional fatty acid oxidation complex subunit alphaWU75_1075sidd0.0363-ketocyl-CoA dehydrogenaseWU75_1075gltB0.131Glycine dehydrogenaseWU75_1075gltB0.1273-ketocyl-CoA dehydroge$	Metabolic Pathway	Gene ID	Gene Name	Fold Change	Gene Description
	Citrate cvcle	WU75 19785	sucA	0.146	2-oxoglutarate dehvdrogenase
		WU75_07425	nckA	0.465	Phosphoenolpyruvate carboxykinase
		WU75 19790	sucB	0.133	Dihydrolipoamide succinyltransferase
		WU75_11550	acnB	0.143	Bifunctional aconitate hydratase 2/2-methylisocitrate
$Fatty acid degradation WU75_19180 successful to the submit of the sector of spin team set and the sector of spin team set and the set an$		W/1175 19795	sucC	0 134	Succinvil-CoA synthetase subunit beta
$Fatty acid degradation WU75_1970 solution Subclinity-CoA synthetass solutin alpha WU75_19770 solution Synthetass solutin alpha WU75_19770 solution Synthetass solutin alpha WU75_19770 solution Synthetass with the synthas with the synthas solutin alpha WU75_19786 solution Synthetass with the synthas solutin alpha WU75_19786 solution Synthetass with the synthase with the$		WI 175 19800	suce	0.154	Succinyl-CoA synthetase subunit alpha
$Fatty acid degradation WU75_19780 shift 0.159 Succinate dehydrogenase WU75_19780 shift 0.152 Succinate dehydrogenase WU75_19760 shift 0.152 Succinate dehydrogenase WU75_09605 icd 0.179 Isocitrate dehydrogenase WU75_09605 icd 0.179 Isocitrate dehydrogenase WU75_19775 shift 0.144 Succinate dehydrogenase WU75_1050 mdh 0.177 Malate dehydrogenase WU75_10500 tpd 0.35 Dihydrolipoamide dehydrogenase WU75_19150 aceA 0.37 Isocitrate lyase WU75_19150 aceA 0.37 Isocitrate lyase WU75_19150 aceA 0.37 Isocitrate lyase WU75_10500 aceB 0.315 Malate synthase WU75_00400 mpibb 0.277 3-ketoacyI-ACP reductase WU75_00400 mpibb 0.277 3-ketoacyI-ACP reductase WU75_00206 katE 2.389 Catalase Synthase WU75_00266 katE 2.389 Catalase Synthase WU75_00266 fadE 0.151 Multifunctional fatty acid oxidation complex subunit alpha WU75_22230 fadA 0.208 3-ketoacyI-ACP reductase WU75_22230 fadA 0.208 3-ketoacyI-ACP tholiase WU75_22230 fadA 0.208 3-ketoacyI-CAA thiolase WU75_22230 fadA 0.208 3-ketoacyI-CAA thiolase WU75_22230 fadA 0.305 3-ketoacyI-CAA thiolase WU75_20180 fadA 0.305 3-ketoacyI-CAA thiolase WU75_10445 AcetyI-CoA acetyItransferase WU75_1045 atoB 0.443 AcetyI-CoA acetyItransferase WU75_119885 fadD 0.493 Long-chain fatty acid—CoA ligase Glycine, serine and threonine metabolism WU75_14910 gcvP 0.113 Glycine dehydrogenase WU75_14910 gcvP 0.113 Glycine dehydrogenase WU75_14910 gcvP 0.113 Glycine dehydrogenase WU75_14910 gv/A 0.203 Serine hydroxymethyltransferase WU75_14920 glyA 0.203 Serine hydroxymethyltransferase WU75_14910 gv/A 0.203 Serine hydroxymethyltransferase WU75_16145 ectA 0.224 Diaminobutyrate 2-0x0glutarate aminotransferase WU75_16145 ectA 0.224 Serine hydroxymethyltran$		WU75_15000	such	0.10	Succinyi-CoA synthetase subunit alpha
$ Fatty acid degradation WU75_19765 sdhC 0.182 Succinate dehydrogenase WU75_13785 fumA 0.497 Fumarate hydratase WU75_09605 icd 0.179 Isocitrate dehydrogenase WU75_09605 ind 0.177 Malate dehydrogenase WU75_0630 mdh 0.177 Malate dehydrogenase WU75_0630 ipd 0.35 Dihydrolipomide dehydrogenase WU75_055 fab 0.177 Malate dehydrogenase WU75_0530 lpd 0.35 Dihydrolipomide dehydrogenase WU75_0797 gltA 0.129 Type II citrate synthase WU75_0790 gltA 0.129 Type II citrate synthase WU75_0790 gltA 0.129 Type II citrate synthase WU75_0790 accB 0.315 Malate synthase WU75_07970 accB 0.315 Malate synthase WU75_0790 gltA 0.127 3-ketoacyl-ACP reductase WU75_0720 accB 0.315 Malate synthase WU75_0720 fadE 0.184 Acyl-CoA dehydrogenase WU75_03265 fadB 0.151 Multifunctional fatty acid oxidation complex subunit alpha WU75_20175 fadI 0.204 Multifunctional fatty acid oxidation complex subunit alpha WU75_20175 fadI 0.204 Multifunctional fatty acid oxidation complex subunit alpha WU75_20175 fadI 0.204 Multifunctional fatty acid oxidation complex subunit alpha WU75_20175 fadI 0.204 Multifunctional fatty acid oxidation complex subunit alpha WU75_20175 fadI 0.208 3-ketoacyl-CoA thiolase WU75_20175 fadI 0.208 3-ketoacyl-CoA thiolase WU75_20175 fadI 0.445 Acetyl-CoA acetyltransferase WU75_10835 atoB 0.433 Acetyl-CoA acetyltransferase WU75_10835 atoB 0.433 Acetyl-CoA acetyltransferase WU75_10835 atoB 0.443 Acetyl-CoA acetyltransferase WU75_10835 btA 0.162 Choline dehydrogenase WU75_10830 gcoT 0.184 Glycine cleavage system protein H WU75_10835 btA 0.162 Choline dehydrogenase WU75_16130 gcoT 0.184 Glycine cleavage system protein T AvyT.5_16130 gcoT 0.184 Glycine cleavage system protein T WU75_16130 gcoT 0.184 Glycine cleavage system protein T WU75_16130 gcoT 0.184 Glycine cleavage system protein T WU75_16130 gcoT 0.184 Glycine cleavage system protein T AvyT.5_16130 gcoT 0.184 Glycine cleavage system protein T MV75_1613$		WU75_19770	sunD	0.199	Succinate deliverogenase
		WU75_19760	sund all C	0.137	Succinate denydrogenase
		WU/5_19765	sanc	0.182	Succinate denydrogenase
		WU/5_15/85	JUMA	0.497	Fumarate nydratase
Gly oxylate and		WU75_09605	1Cd	0.179	Isocitrate dehydrogenase
		WU/5_19//5	sdhA	0.144	Succinate dehydrogenase
		WU75_06430	mdh	0.177	Malate dehydrogenase
Clyoxylate and dicarboxylate metabolismWIJ75_19760gltA0.129Type II citrate synthaseWU75_19150accA0.37Isocitrate lyaseWU75_19145accB0.352Malate synthaseWU75_00290accB0.315Malate synthaseWU75_00290accB0.315Malate synthaseWU75_00290accB0.315Malate synthaseWU75_00255katE2.389CatalaseVU75_0255fadB0.151Multifunctional fatty acid oxidation complex subunit alphaWU75_02055fadA0.2083-ketoacyl-CoA dehydrogenaseWU75_22230fadA0.2083-ketoacyl-CoA thiolaseWU75_22180fadA0.3053-ketoacyl-CoA thiolaseWU75_10455atoB0.433Acetyl-CoA acetyltransferaseWU75_10450fadA0.3053-ketoacyl-CoA thiolaseWU75_10455fadD0.493Long-chain fatty acid—CoA ligaseWU75_11450gcrP0.113Glycine dehydrogenaseWU75_14910gcrP0.113Glycine cleavage system protein HWU75_14910gcrP0.184Glycine cleavage system protein HWU75_16130lycC0.187Aspartate kinaseWU75_16140glyc0.187Aspartate kinaseWU75_16145ectB0.222Diaminobutyritate-2-oxoglutarate aminotransferaseWU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_16145ectB0.257Serine hydrogenaseWU75_16145		WU/5_16530	lpd	0.35	Dihydrolipoamide dehydrogenase
	Glyoxylate and dicarboxylate metabolism	WU75_19760	gltA	0.129	Type II citrate synthase
		WU75_19150	aceA	0.37	Isocitrate lyase
WU75_00290 $aceB$ 0.315Malate synthaseWU75_03265 $katE$ 2.389CatalaseFatty acid degradationWU75_023265 $katE$ 2.389CatalaseWU75_023255 $fadB$ 0.151Multifunctional fatty acid oxidation complex subunit alphaWU75_022035 $fadB$ 0.184Acyl-CoA dehydrogenaseWU75_22230 $fadA$ 0.204Multifunctional fatty acid oxidation complex subunit alphaWU75_20175 $fadA$ 0.2083-ketoacyl-CoA thiolaseWU75_10805 $fadA$ 0.3053-ketoacyl-CoA thiolaseWU75_10835 $atoB$ 0.433Acetyl-CoA acetyltransferaseWU75_10845 $atoB$ 0.445Acetyl-CoA acetyltransferaseWU75_10450 $fadA$ 0.452Acetyl-CoA dehydrogenaseWU75_10455 $fadD$ 0.493Long-chain fatty acid—CoA ligaseGlycine, serine and threonine metabolismWU75_14910 $gcvP$ 0.113Glycine cleavage system protein HWU75_14910 $gcvP$ 0.113Glycine cleavage system protein TWU75_14930 $gcvT$ 0.184WU75_14930 $gcvT$ 0.184Glycine cleavage system protein TWU75_16140 $kuT5_16140$ $kctA$ 0.222WU75_16140 $ectA$ 0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16145 $ectA$ 0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_16145 $ectA$ 0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_16145 $ectC$ 0.277Ectoine synthase		WU75_19145	aceB	0.352	Malate synthase
Fatty acid degradation $WU75_10840$ $phbb$ 0.277 3 -ketoacyl-ACP reductase CatalaseFatty acid degradation $WU75_203265$ $katE$ 2.389 Catalase $WU75_20855$ $fadB$ 0.151 Multifunctional fatty acid oxidation complex subunit alpha $Acyl-CoA$ dehydrogenase $WU75_20175$ $fadI$ 0.204 Multifunctional fatty acid oxidation complex subunit alpha $WU75_20175$ $WU75_20175$ $fadA$ 0.208 3 -ketoacyl-CoA thiolase $WU75_20180$ $fadA$ 0.305 3 -ketoacyl-CoA thiolase $WU75_20180$ $fadA$ 0.305 3 -ketoacyl-CoA thiolase $WU75_10835$ $atoB$ 0.433 Accetyl-CoA acetyltransferase $WU75_10455$ $fadD$ 0.445 Accetyl-CoA acetyltransferase $WU75_19855$ $fadD$ 0.493 Long-chain fatty acid—CoA ligaseGlycine, serine and threonine metabolism $WU75_14910$ $gcvP$ 0.113 Glycine cleavage system protein H $WU75_14910$ $gcvT$ 0.184 Glycine cleavage system protein H $WU75_14920$ $gtvA$ 0.162 Choline dehydrogenase $WU75_16130$ $lysC$ 0.187 Aspartate kinase $WU75_16140$ $ectB$ 0.222 Diaminobutyrate-2-oxoglutarate aminotransferase $WU75_1000$ $betB$ 0.226 Serine hydroxymethyltransferase $WU75_1035$ $ectC$ 0.27 Ectoine synthase $WU75_10300$ $betB$ 0.259 Betain-aldehyde dehydrogenase $WU75_10300$ $betB$ 0.259 Beta		WU75_00290	aceB	0.315	Malate synthase
WU75_03265kat E2.389CatalaseFatty acid degradationWU75_22235fad B0.151Multifunctional fatty acid oxidation complex subunit alphaWU75_20235fad E0.184Acyl-CoA dehydrogenaseWU75_20175fad J0.204Multifunctional fatty acid oxidation complex subunit alphaWU75_20230fad A0.2083-ketoacyl-CoA thiolaseWU75_20180fad A0.3053-ketoacyl-CoA thiolaseWU75_10835atoB0.433Accetyl-CoA acetyltransferaseWU75_10845fad D0.445Acetyl-CoA acetyltransferaseWU75_12560fad E0.452Acyl-CoA dehydrogenaseWU75_129885fad D0.493Long-chain fatty acid—CoA ligaseGlycine, serine and threonine metabolismWU75_14910gcvP0.113Glycine cleavage system protein HWU75_10305betA0.162Choline dehydrogenaseWU75_16130lysC0.187Aspartate kinaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16135ectC0.24Serine dehydrogenaseWU75_16135ectC0.27Ectoine synthaseWU75_16135ectC0.27Fertoine synthase		WU75_10840	phbB	0.277	3-ketoacyl-ACP reductase
Fatty acid degradation $WU75_22235$ fadB0.151Multifunctional fatty acid oxidation complex subunit alpha $WU75_08655$ fadE0.184Acyl-CoA dehydrogenase $WU75_20175$ fadJ0.204Multifunctional fatty acid oxidation complex subunit alpha $WU75_20175$ fadA0.2083-ketoacyl-CoA thiolase $WU75_20180$ fadA0.3053-ketoacyl-CoA thiolase $WU75_20180$ fadA0.3053-ketoacyl-CoA thiolase $WU75_10835$ atoB0.433Acetyl-CoA acetyltransferase $WU75_10445$ atoB0.445Acetyl-CoA acetyltransferase $WU75_10445$ fadD0.493Long-chain fatty acid —CoA ligase $WU75_10495$ fadD0.493Colycine dehydrogenase $WU75_14910$ gcvP0.113Glycine cleavage system protein H $WU75_14910$ gcvP0.184Glycine cleavage system protein T $WU75_14930$ gcvT0.184Glycine cleavage system protein T $WU75_14920$ glyA0.203Serine hydroxymethyltransferase $WU75_16130$ lysC0.187Aspartate kinase $WU75_16140$ ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferase $WU75_10400$ belB0.259Betaine-aldehyde dehydrogenase $WU75_10400$ belB0.259Betaine-aldehyde dehydrogenase $WU75_10400$ belB0.259Betaine-aldehyde dehydrogenase $WU75_10400$ belB0.259Betaine-aldehyde dehydrogenase $WU75_10400$ belB0.259 <td< td=""><td></td><td>WU75_03265</td><td>katE</td><td>2.389</td><td>Catalase</td></td<>		WU75_03265	katE	2.389	Catalase
$ \begin{array}{c} WU75_08655 & fadE \\ WU75_20175 & fadI \\ WU75_22230 & fadA \\ WU75_20180 & fadA \\ WU75_20180 & fadA \\ WU75_10835 & atoB \\ WU75_10835 & atoB \\ WU75_10835 & atoB \\ WU75_10445 & atoB \\ WU75_10445 & atoB \\ WU75_12560 & fadE \\ WU75_12560 & fadE \\ WU75_12560 & fadE \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_10445 & gcvP \\ WU75_10440 & gctP \\ WU75_10440 & gcvP \\ WU75_10445 & gcvP \\ WU75_10440 & gcvP \\ WU75_10445 & gcvP $	Fatty acid degradation	WU75_22235	fadB	0.151	Multifunctional fatty acid oxidation complex subunit alpha
$ \begin{array}{c} WU75_20175 & fadJ \\ WU75_22230 & fadA \\ WU75_22230 & fadA \\ WU75_22230 & fadA \\ WU75_20180 & fadA \\ WU75_20180 & fadA \\ WU75_20180 & fadA \\ WU75_20180 & fadA \\ WU75_20183 & atoB \\ WU75_10835 & atoB \\ WU75_10835 & atoB \\ WU75_10445 \\ WU75_10445 \\ WU75_10445 \\ WU75_12560 & fadE \\ WU75_12560 & fadE \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_10395 & betA \\ WU75_10395 & betA \\ WU75_14910 & gcvP \\ WU75_16130 & lysC \\ WU75_16130 & lysC \\ WU75_16145 & gcvH \\ WU75_16130 & lysC \\ WU75_16145 & ectA \\ WU75_16145 & ectA \\ WU75_16145 & ectA \\ WU75_16135 & ectC \\ WU75_16135 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 & ectC \\ 0.27 \\ WU75_methenserview when black \\ WU75_16145 \\ WU75_$, ,	WU75 08655	fadE	0.184	Acvl-CoA dehvdrogenase
$ \begin{array}{c} WU75_22230 & fad A \\ WU75_20180 & fad A \\ WU75_10835 & atoB \\ WU75_10845 & atoB \\ WU75_10445 & atoB \\ WU75_10445 & atoB \\ WU75_10445 & atoB \\ WU75_12560 & fad E \\ WU75_12560 & fad E \\ WU75_19885 & fad D \\ WU75_10395 & betA \\ WU75_10395 & betA \\ WU75_10395 & betA \\ WU75_16130 & lysC \\ WU75_16130 & lysC \\ WU75_16130 & lysC \\ WU75_16130 & lysC \\ WU75_16140 & ectB \\ WU75_16140 & ectB \\ WU75_16141 & ectA \\ WU75_16145 & ectA \\ WU75_1040 & betB \\ WU75_1040 & betB \\ WU75_1040 & betB \\ WU75_00565 & sdaA \\ WU75_00565 & sdaA \\ WU75_1040 & betB \\ WU75_00565 & sdaA \\ WU75_10645 & ectC \\ WU75_10640 & betB \\ WU75_00565 & sdaA \\ WU75_00565 $		WU75 ²⁰¹⁷⁵	fad]	0.204	Multifunctional fatty acid oxidation complex subunit alpha
		WU75 ²²²³⁰	fadA	0.208	3-ketoacyl-CoA thiolase
$ \begin{array}{c} WU75_10835 & atoB \\ WU75_10835 & atoB \\ WU75_10445 & atoB \\ WU75_10445 & atoB \\ WU75_12560 & fadE \\ WU75_12560 & fadE \\ WU75_12560 & fadE \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_19885 & fadD \\ WU75_14910 & gcvP \\ WU75_14910 & gcvP \\ WU75_14915 & gcvH \\ WU75_14915 & gcvH \\ WU75_14915 & gcvT \\ WU75_14910 & gcvT \\ WU75_14910 & gcvT \\ WU75_14930 & gcvT \\ WU75_14930 & gcvT \\ WU75_14930 & gcvT \\ WU75_14920 & glyA \\ WU75_16130 & lysC \\ WU75_16130 & lysC \\ WU75_16140 & ectB \\ WU75_16140 & ectB \\ WU75_16145 & ectA \\ WU75_10400 & betB \\ WU75_00565 & sdaA \\ WU75_00565 & sdaA \\ WU75_00500 & tmP \\ WU75_0070 & tmP \\ WU75_$		WU75 20180	fad A	0.305	3-ketoacyl-CoA thiolase
WU75_1045atoB0.445Acetyl-CoA acetyltransferaseWU75_12560fadE0.452Acyl-CoA dehydrogenaseWU75_19885fadD0.493Long-chain fatty acid—CoA ligaseWU75_19885fadD0.493Long-chain fatty acid—CoA ligaseWU75_14910gcvP0.113Glycine dehydrogenaseWU75_14915gcvH0.127Glycine cleavage system protein HWU75_14910gcvT0.184Glycine cleavage system protein TWU75_16130gcvT0.184Glycine cleavage system protein TWU75_16130lysC0.187Aspartate kinaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_10400betB0.259Betaine-aldehyde dehydrogenaseWU75_00565sdaA0.264Serine dehydrataseWU75_00565sdaA0.264Serine dehydrataseWU75_00565sdaA0.264Serine dehydrataseWU75_00565sdaA0.264Serine dehydrataseWU75_00565sdaA0.264Serine dehydrataseWU75_00565sdaA0.27Ectoine synthaseWU75_00565sdaA0.27Turmtorhon use here it betr		WU75_10835	atoB	0.433	Acetyl-CoA acetyltransferase
Glycine, serine and threonine metabolismWU75_12560 fadEfadE0.452 0.493Acyl-CoA dehydrogenaseGlycine, serine and threonine metabolismWU75_14910gcvP0.113Glycine dehydrogenaseWU75_14915gcvH0.127Glycine cleavage system protein HWU75_10395betA0.162Choline dehydrogenaseWU75_14930gcvT0.184Glycine cleavage system protein TWU75_16130lysC0.187Aspartate kinaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_16130betB0.259Betaine-aldehyde dehydrogenaseWU75_16135ectC0.27Ectoine synthaseWU75_16136ectC0.27Ectoine synthase		WU75_10445	atoB	0.445	Acetyl-CoA acetyltransferase
Glycine, serine and threonine metabolismWU75_19885fadD0.493Long-chain fatty acid—CoA ligaseGlycine, serine and threonine metabolismWU75_14910gcvP0.113Glycine dehydrogenaseWU75_14915gcvH0.127Glycine cleavage system protein HWU75_10395betA0.162Choline dehydrogenaseWU75_16130lysC0.187Aspartate kinaseWU75_16130lysC0.187Aspartate kinaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_10400betB0.259Betaine-aldehyde dehydrogenaseWU75_16135ectC0.27Ectoine synthaseWU75_16135ectC0.27Ectoine synthase		WU75_12560	fadE	0.452	Acyl-CoA dehydrogenase
$ \begin{array}{c} \text{Glycine, serine and} \\ \text{threonine metabolism} \end{array} \begin{array}{c} WU75_14910 \\ WU75_14910 \\ WU75_14915 \\ WU75_10395 \\ WU75_10395 \\ WU75_10395 \\ WU75_16130 \\ WU75_16130 \\ WU75_16130 \\ WU75_16130 \\ WU75_16140 \\ WU75_16140 \\ WU75_16145 \\ WU75_00565 \\ sdaA \\ 0.264 \\ \end{array} \begin{array}{c} \text{L-2,4-diaminobutyric acid acetyltransferase} \\ \text{Being chain hitry ded Correspondence} \\ WU75_16145 \\ WU75_16135 \\ ectC \\ 0.27 \\ \end{array} $		W1175_19885	fadD	0.493	Long-chain fatty acid—CoA ligase
Chychie, schlie and threonine metabolismWU75_14910gcvP0.113Glycine dehydrogenaseWU75_14915gcvH0.127Glycine cleavage system protein HWU75_10395betA0.162Choline dehydrogenaseWU75_14930gcvT0.184Glycine cleavage system protein TWU75_16130lysC0.187Aspartate kinaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_10400betB0.259Betaine-aldehyde dehydrogenaseWU75_16135ectC0.27Ectoine synthaseWU75_16135ectC0.27Ectoine synthase	Clycine serine and	Warb_10000	JuuD	0.190	Long chain futty acta Corringase
$WU75_14915$ $gcoH$ 0.127 Glycine cleavage system protein H $WU75_10395$ $betA$ 0.162 Choline dehydrogenase $WU75_14930$ $gcvT$ 0.184 Glycine cleavage system protein T $WU75_16130$ $lysC$ 0.187 Aspartate kinase $WU75_14920$ $glyA$ 0.203 Serine hydroxymethyltransferase $WU75_16140$ $ectB$ 0.222 Diaminobutyrate-2-oxoglutarate aminotransferase $WU75_16145$ $ectA$ 0.246 L-2,4-diaminobutyric acid acetyltransferase $WU75_10400$ $betB$ 0.259 Betaine-aldehyde dehydrogenase $WU75_00565$ $sdaA$ 0.264 Serine dehydratase $WU75_16135$ $ectC$ 0.27 Ectoine synthase $WU75_0026$ $starP$ 0.207 Trustenkone synthase	threonine metabolism	WU75_14910	gcvP	0.113	Glycine dehydrogenase
$WU75_10395$ betA0.162Choline dehydrogenase $WU75_14930$ $gcvT$ 0.184Glycine cleavage system protein T $WU75_16130$ $lysC$ 0.187Aspartate kinase $WU75_114920$ $glyA$ 0.203Serine hydroxymethyltransferase $WU75_16140$ $ectB$ 0.222Diaminobutyrate-2-oxoglutarate aminotransferase $WU75_16145$ $ectA$ 0.246L-2,4-diaminobutyric acid acetyltransferase $WU75_10400$ $betB$ 0.259Betaine-aldehyde dehydrogenase $WU75_00565$ $sdaA$ 0.264Serine dehydratase $WU75_16135$ $ectC$ 0.27Ectoine synthase $WU75_00260$ tmB 0.207Turntenkone yurlhase		WU/5_14915	gcvH	0.127	Glycine cleavage system protein H
$WU75_14930$ $gcvT$ 0.184 Glycine cleavage system protein T $WU75_16130$ $lysC$ 0.187 Aspartate kinase $WU75_14920$ $glyA$ 0.203 Serine hydroxymethyltransferase $WU75_16140$ $ectB$ 0.222 Diaminobutyrate-2-oxoglutarate aminotransferase $WU75_16145$ $ectA$ 0.246 L-2,4-diaminobutyric acid acetyltransferase $WU75_10400$ $betB$ 0.259 Betaine-aldehyde dehydrogenase $WU75_00565$ $sdaA$ 0.264 Serine dehydratase $WU75_16135$ $ectC$ 0.27 Ectoine synthase $WU75_0202$ tmR 0.207 Turntenkon synthase		WU75_10395	betA	0.162	Choline dehydrogenase
$WU75_16130$ $lysC$ 0.187 Aspartate kinase $WU75_14920$ $glyA$ 0.203 Serine hydroxymethyltransferase $WU75_16140$ $ectB$ 0.222 Diaminobutyrate-2-oxoglutarate aminotransferase $WU75_16145$ $ectA$ 0.246 L-2,4-diaminobutyric acid acetyltransferase $WU75_10400$ $betB$ 0.259 Betaine-aldehyde dehydrogenase $WU75_00565$ $sdaA$ 0.264 Serine dehydratase $WU75_16135$ $ectC$ 0.27 Ectoine synthase $WU75_0202$ tmR 0.207 Turntenberg with a star		WU75_14930	gcvT	0.184	Glycine cleavage system protein T
WU75_14920glyA0.203Serine hydroxymethyltransferaseWU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_10400betB0.259Betaine-aldehyde dehydrogenaseWU75_00565sdaA0.264Serine dehydrataseWU75_16135ectC0.27Ectoine synthaseWU75_0200tmB0.207Turntenbergen suches when it hete		WU75_16130	lysC	0.187	Aspartate kinase
WU75_16140ectB0.222Diaminobutyrate-2-oxoglutarate aminotransferaseWU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_10400betB0.259Betaine-aldehyde dehydrogenaseWU75_00565sdaA0.264Serine dehydrataseWU75_16135ectC0.27Ectoine synthaseWU75_02020tmpB0.207Turntenberg up is hete		WU75_14920	glyA	0.203	Serine hydroxymethyltransferase
WU75_16145ectA0.246L-2,4-diaminobutyric acid acetyltransferaseWU75_10400betB0.259Betaine-aldehyde dehydrogenaseWU75_00565sdaA0.264Serine dehydrataseWU75_16135ectC0.27Ectoine synthaseWU75_0200tmp0.207Turntenberg up is beta		WU75_16140	ectB	0.222	Diaminobutyrate-2-oxoglutarate aminotransferase
WU75_10400bet B0.259Betaine-aldehyde dehydrogenaseWU75_00565sda A0.264Serine dehydrataseWU75_16135ect C0.27Ectoine synthaseWU75_0200tmB0.207Trustonican synthase		WU75_16145	ectA	0.246	L-2,4-diaminobutyric acid acetyltransferase
WU75_00565sdaA0.264Serine dehydrataseWU75_16135ectC0.27Ectoine synthaseWU75_0200tmP0.207Truntophon surthase		WU75_10400	betB	0.259	Betaine-aldehyde dehydrogenase
WU75_16135 ectC 0.27 Ectoine synthase WU75_02020 tmP 0.207 Trantophon surplus to be to		WU75_00565	sdaA	0.264	Serine dehydratase
$M_{11}T_{7} = 0.2020$ two $P = 0.207$ Transform to the second state to the second state of the second st		WU75_16135	ectC	0.27	Ectoine synthase
vvu/5_02050 trpb 0.597 Iryptopnan Synthase subunit beta		WU75_02030	trpB	0.397	Tryptophan synthase subunit beta
WU75_05755 thrC 0.429 Threonine synthase		WU75_05755	thrC	0.429	Threonine synthase
WU75_05760 thrB 0.47 Serine kinase		WU75_05760	thrB	0.47	Serine kinase
WU75_05330 glxK 0.495 Glycerate kinase		WU75_05330	glxK	0.495	Glycerate kinase
Oxidative WU75_06010 petC 0.195 Cytochrome C	Oxidative phosphorylation	WU75_06010	petC	0.195	Cytochrome C
<i>WU75_06015 petB</i> 0.209 Cytochrome B		WU75_06015	petB	0.209	Cytochrome B
WU75_14570 ccoO 0.228 Peptidase S41		WU75_14570	ccoO	0.228	Peptidase S41
WU75_14575 ccoN 0.272 Cbb3-type cytochrome c oxidase subunit I		WU75_14575	ccoN	0.272	Cbb3-type cytochrome c oxidase subunit I
WU75 14560 ccoP 0.301 Cvtochrome Cbb3		WU75 14560	ccoP	0.301	Cytochrome Cbb3
WU75 06485 ppa 0.339 Inorganic pyrophosphatase		WU75 06485	рра	0.339	Inorganic pyrophosphatase
WU75_06020 petA 0.442 Ubiquinol-cytochrome C reductase		WU75_06020	petA	0.442	Ubiquinol-cytochrome C reductase

Table 4. Cont.

Metabolic Pathway	Gene ID	Gene Name	Fold Change	Gene Description
	WU75_14565	ссоQ	0.475	Cytochrome C oxidase
	WU75_02240	суоС	0.478	Cytochrome o ubiquinol oxidase subunit III
	WU75_19125	ppk2	2.159	Polyphosphate kinase
	WU75_09420	cydA	3.637	Cytochrome d terminal oxidase subunit 1
	WU75_09415	cydB	4.11	Cytochrome d ubiquinol oxidase subunit 2
	WU75_09410	cydX	5.362	Membrane protein
Pyruvate metabolism	WU75_01940	yiaY	0.171	Alcohol dehydrogenase
	WU75_03655	lldD	0.276	Lactate dehydrogenase
	WU/5_22155	dld	0.322	Lactate dehydrogenase
	WU/5_16665	oaaA	0.324	
	WU75_10000	ala A	0.397	Aldenyde denydrogenase
	WU75_20855 WI175_12805	gioA	2.431	Phoenbata acostultransforase
	WU75_02150	ackA	8 851	Acetate kinase
	WU75 12810	ackA	10.365	Acetate kinase
	WU75 09685	pflD	12.853	Pyruvate formate-lyase
	WU75_00810	gloA	13.536	Glyoxalase
Propanoate metabolism	WU75_15760	prpF	0.402	3-methylitaconate isomerase
1	WU75_15770	prpC	0.435	Methylcitrate synthase
beta-Lactam resistance	WU75_09315	acrA	6.699	Hemolysin D
	WU75_09310	acrB	8.911	Multidrug transporter
	WU75_09925	acrA	40.366	Hemolysin D
ABC transporters	WU75_10385	proW	0.106	ABC transporter permease
	WU75_16175	proX	0.116	Glycine/betaine ABC transporter substrate-binding protein
	WU/5_10390	proX	0.122	Glycine/betaine ABC transporter substrate-binding protein
	WU/5_12//5	oppC	0.133	Peptide ABC transporter permease
	WU75_10380	prov	0.138	ABC transporter AIP-binding protein
	WU75_09655	actI	0.143	Amino acid AbC transporter permease
	WI 175_03003	uorj vei A	0.144	Diguanylate cyclase
	WU75_12770	onnB	0.151	Oligopentide transporter permease
	WU75_12780	oppD	0.172	Oligopeptide transporter ATP-binding component
	WU75_09660	aotO	0.176	ABC transporter
	WU75 16170	proW	0.199	Glycine/betaine ABC transporter permease
	WU75_08085	oppA	0.201	Peptide ABC transporter substrate-binding protein
	WU75_07210	yejA	0.204	Diguanylate cyclase
	WU75_12765	oppA	0.214	Peptide ABC transporter substrate-binding protein
	WU75_07220	yejB	0.22	Hypothetical protein
	WU75_07215	yejE	0.221	Peptide ABC transporter permease
	WU75_09670	aotP	0.228	Amino acid transporter
	WU75_12785	oppF	0.228	Peptide ABC transporter ATP-binding protein
	WU/5_04/20	oppA	0.341	Peptide ABC transporter substrate-binding protein
	WU/5_16165	prov	0.343	Glycine/betaine ABC transporter ATP-binding protein
	WU/5_14/65	uupQ malE	0.377	Amino acid AbC transporter permease
	WI 175_03180	aanP	0.4	ABC transporter ATP-binding protein
	W1175_04605	wapi wcaM	0.405	Multidrug ABC transporter ATP-binding protein
	WU75_14055	mdlB	0.411	Multidrug ABC transporter ATP-binding protein
	WU75 10275	rbsD	0.438	D-ribose pyranase
	WU75_05845	btuF	0.487	Vitamin B12-binding protein
	WU75_14760	aapJ	0.491	Amino acid ABC transporter substrate-binding protein
	WU75_03185	malK	2.175	Maltose/maltodextrin transporter ATP-binding protein
	WU75_19815	znuA	2.204	Zinc ABC transporter substrate-binding protein
	WU75_19810	znuC	2.491	Zinc ABC transporter ATPase
	WU75_02265	artP	2.617	Arginine ABC transporter ATP-binding protein
	WU75_19805	znuB	2.666	Membrane protein
	WU75_00425	macB	14.353	Macrolide transporter
Two-component system	WU/5_0/480	glnG	0.186	Nitrogen regulation protein NR(I)
	WU/5_13/35	mcp	0.218	
	WU/5_15/95 WI 175_21750		0.23/	ICID C4-dicarboxylata ABC transmoutor
	WI175 13155	истD +++R	0.200	4Fe-4S forred ovin
	WH75 21770	dc+P	0.31	C4-dicarboxylate ABC transporter
	WU75_01920	mcn	0.32	Chemotaxis protein
	WU75 21745	dctB	0.352	ATPase
	WU75 10200	phoA	0.353	Alkaline phosphatase
	WU75_21765	dctQ	0.368	C4-dicarboxylate ABC transporter permease
	WU75_00210	dctD	0.406	C4-dicarboxylate ABC transporter

Table 4	I. Cor	ıt.
---------	--------	-----

Metabolic Pathway	Gene ID	Gene Name	Fold Change	Gene Description
	WU75_16210	qseC	0.423	Histidine kinase
	WU75_23015	fliC	0.435	Flagellin
	WU75_07100	тср	0.453	Chemotaxis protein
	WU75_13380	crp	0.457	Transcriptional regulator
	WU75_09825	тср	0.471	Chemotaxis protein
	WU75_16525	hapR	0.477	LuxR family transcriptional regulator
	WU75_15800	tctA	0.485	Tripartite tricarboxylate transporter TctA
	WU75_14800	тср	0.491	Chemotaxis protein
	WU75_06085	tolC	2.068	Outer membrane channel protein
	WU75_15630	dcuB	2.125	C4-dicarboxylate transporter
	WU75_06045	degP	2.148	Serine endoprotease DegQ
	WU75_04355	тср	2.163	Chemotaxis protein
	WU75_10915	luxQ	3.377	ATPase
	WU75_22175	тср	4.001	Chemotaxis protein
	WU75_02450	pfeR	4.828	Transcriptional regulator
	WU75_18570	cpxA	10.981	Two-component sensor protein
	WU75_18575	cpxR	26.5	Transcriptional regulator
Alanine, aspartate and glutamate metabolism	WU75_06265	glmS	0.037	Glucosamine-fructose-6-phosphate Aminotransferase
	WU75_07465	glnA	0.123	Glutamine synthetase
	WU75_04655	putA	0.145	Pyrroline-5-carboxylate dehydrogenase
	WU75_14680	-	0.286	NAD-glutamate dehydrogenase
	WU75_05875	carB	0.343	Carbamoyl phosphate synthase large subunit
	WU75_05820	gltB	0.414	Glutamate synthase
	WU75_05825	gltD	0.44	Glutamate synthase
	WU/5_05880	carA	0.46	Carbamoyl phosphate synthase small subunit
	WU75_18095	pyrI	0.462	Aspartate carbamoyltransferase regulatory subunit
	WU/5_18090	pyrB	0.466	Aspartate carbamoyltransferase catalytic subunit
	WU75_20915	ansA	2.141	
	WU75_01110	unsB acm A	2./18	L-asparaginase II
DTC	WU75_16550	uspA mtcN	7.015	Aspartate animonia-iyase
F15	WU75_05265	pisin ntcC	0.462	PTS alugoes transporter subunit IIRC
	WU75_12990	pisG celC	0.3	Molocular chapterone TerD
	Wu75_17510	leic	2.50	Bifunctional PTS system fructose-Specific transporter subunit
	WU75_14970	fruB	2.451	IIA/HPr protein
	WU75_19555	ptsH	3.973	PTS sugar transporter
	WU75_00455	ulaB	3.977	PTS ascorbate transporter subunit IIB
	WU75_19550	ptsI	4.075	Phosphoenolpyruvate-protein Phosphotransferase
	WU75_00460	cmtB	4.118	PTS system mannitol-specific Transporter subunit IIA
	WU75_01640	cmtB	4.539	PTS mannitol transporter subunit IIA
	WU75_14960	fruA	5.096	PTS fructose transporter subunit IIBC
	WU75_00450	ulaA	6.946	PTS beta-glucoside transporter subunit IIBC
Butanoate metabolism	WU75_01985	acsA	0.334	Acetoacetyl-CoA synthetase
	WU75_10825	phaC	0.336	Poly(3-hydroxyalkanoate) synthetase
Lysine degradation	WU/5_21960	ldcC	7.207	Lysine decarboxylase LdcC
QS	WU/5_0/805	-	0.109	Cytochrome C
	WU/5_0/800	-	0.181	ABC transporter permease
	WU/5_0//95	-	0.202	ABC transporter permease
	WU/5_0/810	aapD	0.216	ABC transporter ATP-binding protein
	WU75_11620	-	0.218	Peptide ADC transporter permease
	WU75_11650	-	0.233	Peptide ABC transporter substrate-binding protein
	WU13_11023 WI175_11610	- ddnE	0.201	Chomotavia protein
	WIT25 11610	ddnD	0.336	Sugar ABC transporter ATP hinding protoin
	WILT5 21/10	anh A	0.404	Transcriptional regulator
Nitrogen metabolism	W1175_00760	upriA ncd2	2.200 0.276	2-nitropropane diovygenase
initiogen metabolism	W1175 10810	ncuz nan A	2 286	2-innopiopane dioxygenase
	W1175 15655	nupA nirD	2.200	Nitrite reductase
	WI I75 10815	nanR	6 27	Nitrate reductase
	WU75_08850	hcp	63.107	Hydroxylamine reductase

In the propanoate metabolism, all the DEGs (n = 2) were significantly inhibited (0.402-fold to 0.435-fold) in the *V. parahaemolyticus* ATCC17802 treatment group (p < 0.05). For example, the DEG (*prpC*, *WU75_15770*) encoding a 2-methylcitrate synthase was significantly inhibited (0.435-fold) (p < 0.05). It has been reported that the strategic inhibition of

organic acid catabolism in *P. aeruginosa* through inhibition of PrpC activity may be a potent mechanism to halt the growth of this pathogen [39].

In the glyoxylate and dicarboxylate metabolism, five of the six DEGs were significantly repressed (0.129-fold to 0.277-fold) (p < 0.05). For instance, the DEGs (*aceAB*, *WU75_19150*, *WU75_19145*, and *WU75_00290*), encoding an isocitrate lyase and a malate synthase of the glyoxylate shunt (GS) carbon cycle, were significantly inhibited (0.315-fold to 0.370-fold) (p < 0.05). The GS could avoid unnecessary reactive oxygen species (ROS) generation by bypassing nicotinamide adenine dinucleotide (NADH) production, and respiration, eventually helping cells to survive in harsh conditions [40,41].

In the glycine, serine, and threonine metabolism, all the DEGs (n = 15) were significantly inhibited (0.113-fold to 0.495-fold) in *V. parahaemolyticus* ATCC17802 (p < 0.05). For example, the DEGs (*ectBAC*, *WU75_16140*, *WU75_16145*, and *WU75_16135*), encoding a diaminobutyrate-2-oxoglutarate aminotransferase, a 2% 2C4-diaminobutyric acid acetyltransferase, and an ectoine synthase, which are involved in the synthesis of ectoine that is commonly found in halophilic and halotolerant microorganisms to maintain cell osmotic balance [42]. Additionally, in the alanine, aspartate, and glutamate metabolism, ten of the thirteen DEGs were significantly down-regulated (0.037-fold to 0.466-fold) in *V. parahaemolyticus* ATCC17802 as well (p < 0.05). Conversely, the DEGs (*ansAB*, *WU75_20915*, and *WU75_01110*) were up-regulated (2.141-fold and 2.718-fold) (p < 0.05), which encoded a cytoplasmic asparaginase I and a L-asparaginase II. The asparaginase I is required for bacterial growth on asparagine as the sole nitrogen source [43], while asparaginases are important in maintaining nitrogen balance and the levels of amino acids within cells [43]. These results indicated that the amino acid synthesis was inhibited in *V. parahaemolyticus* ATCC17802 mediated by Fragment 1.

For the ABC transporters, 29 of the 35 DEGs were significantly down-regulated (0.106-fold to 0.491-fold) in V. parahaemolyticus ATCC17802 (p < 0.05). Of these, the DEGs (proVXW, WU75_10380, WU75_10390, and WU75_10385), encoding a choline ABC transporter ATP-binding protein, a choline ABC transporter substrate-binding protein, and a choline ABC transporter permease subunit that are responsible for the choline transport, were all significantly repressed (0.106-fold to 0.138-fold). The DEGs (oppABCDF, WU75_12765, WU75_12770, WU75_12775, WU75_12780, and WU75_12785) encoding a peptide ABC transporter substrate-binding protein, an oligopeptide transporter permease, a peptide ABC transporter permease, an oligopeptide transporter ATP-binding component, and a peptide ABC transporter ATP-binding protein, respectively, were all highly repressed (0.172-fold and 0.214-fold). Additionally, the DEGs (yejABE, WU75_13090, WU75_07210, WU75_07220, and WU75_07215) encoding a diguarylate cyclase, an ABC transporter permease subunit, and a peptide ABC transporter permease, respectively, were highly repressed as well (0.151-fold and 0.220-fold). The ABC transporter YejABEF is required for resistance to antimicrobial peptides and virulence of Brucella melitensis [44]. These results indicated that the inhibited ABC transporters likely led to the repressed substance transport and harmful substances discharged in V. parahaemolyticus ATCC17802.

In the oxidative phosphorylation, nine of the thirteen DEGs were significantly down-regulated in *V. parahaemolyticus* ATCC17802 (0.195-fold to 0.478-fold) (p < 0.05). Oxidative phosphorylation is a major metabolic pathway to obtain energy required for cell growth and proliferation [45] (Huang et al., 2019). For instance, the DEGs (*ccoNOQ*, WU75_14575, WU75_14570, and WU75_14565) were significantly inhibited (0.228-fold to 0.475-fold) (p < 0.05), which regulated the bacterial adhesion in environmental stresses in *V. alginolyticus* [45].

In the QS, most DEGs (n = 9) were significantly inhibited (0.109-fold to 0.484-fold) (p < 0.05), e.g., cytochrome c ($WU75_06010$), cytochrome B ($WU75_06015$), and peptidase S41 ($WU75_14570$). For instance, the cytochrome c mediates electron-transfer in the respiratory chain and acts as a detoxifying agent to dispose of reactive oxygen species (ROS) [46].

In contrast, in the PTS, nine of the eleven DEGs were significantly up-regulated (2.36-fold to 6.946-fold) in the *V. parahaemolyticus* ATCC17802 treatment group (p < 0.05).

Of these, the DEGs (*fruA*, WU75_14960; *ulaA*, WU75_00450), encoding a PTS fructose transporter subunit IIBC and a PTS beta-glucoside transporter subunit IIBC, respectively, were highly up-regulated (5.096-fold and 6.946-fold) (p < 0.05).

In the nitrogen metabolism, most of the DEGs (n = 4) were significantly up-regulated (2.286-fold to 63.107-fold) (p < 0.05). Remarkably, the DEG (hcp, $WU75_08850$) encoding a hydroxylamine reductase was strongly up-regulated (63.107-fold) (p < 0.05), and is involved in the processes of scavenging hydroxylamine with NO detoxification [47].

In the two-component system, 19 DEGs were significantly inhibited (0.186-fold to 0.491-fold), whereas 9 DEGs were significantly enhanced (2.068-fold to 26.5-fold) (p < 0.05). The two-component system is one of the primary pathways by which bacteria adapt to environmental stresses [48]. For instance, the DEGs (cpxAR, $WU75_18570$, and $WU75_18575$) encoding a two-component sensor protein and a transcriptional regulator were strongly up-regulated (10.981-fold and 26.500-fold) (p < 0.05). The CpxAR is a key modulator of capsule export that facilitates *Actinobacillus pleuropneumoniae* survival in the host [49]. It also regulates cell membrane permeability and efflux pump activity and induces multidrug resistance (MDR) in *Salmonella enteritidis* [50].

Additionally, in the beta-lactam resistance, all the DEGs (*acrAB*, WU75_09925, WU75_09315, and WU75_09310) were strongly up-regulated (6.699-fold to 40.366-fold) in the *V. parahaemolyticus* ATCC17802 treatment group (p < 0.05), which encoded a multidrug efflux resistance nodulation division (RND) transporter periplasmic adaptor subunit and a multidrug transporter. The RND family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance [51].

Taken together, these results indicated that Fragment 1 from *P. kleiniana* Wight et Arn can significantly change sixteen metabolic pathways in the Gram-negative *V. parahaemolyticus* ATCC17802, which consequently led to repressed substance transporting, energy production, and protein translation, but enhanced stringent response, and harmful substance discharging, and thereby cell death.

2.6.2. The Major Changed Metabolic Pathways in S. aureus ATCC25923

Approximately 7.3% (196 of 2672 genes) of *S. aureus* ATCC25923 genes were differentially expressed in the treatment group, as compared to the control group. Of these, 156 DEGs showed higher transcriptional levels (fold changes \geq 2.0), whereas 40 DEGs were significantly down-regulated (fold changes \leq 0.5) (p < 0.05). Based on the comparative transcriptomic analysis, seven significantly altered metabolic pathways were identified in *S. aureus* ATCC25923, including the two-component system; nitrogen metabolism; riboflavin metabolism; arginine and proline metabolism; atrazine degradation; alanine, aspartate and glutamate metabolism; and pyrimidine metabolism (Figure 6, Table 5).

In the arginine and proline metabolism, all the DEGs (n = 4) were significantly downregulated at the transcription levels (0.109-fold to 0.461-fold) in *S. aureus* ATCC25923 (p < 0.05). The arginine metabolism converts L-arginine to urea and L-ornithine, which are further metabolized into proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively [52]. For instance, the DEG (*rocF*, *KQ76_11235*) encoding an arginase was significantly down-regulated (0.461-fold) (p < 0.05), and was associated with the ability of *Helicobacter pylori* to establish chronic infections [53].

All the DEGs (n = 4) in the riboflavin metabolism were also significantly inhibited (*ribBADEH*, 0.3734-fold to 0.480-fold) (p < 0.05). In this pathway, the redox cofactors flavin mononucleotide and flavin adenine dinucleotide and their precursor riboflavin play important roles in many cellular processes, such as respiration, DNA repair, biosyntheses of heme groups, cofactors and nucleotides, fatty acid beta-oxidation, and bioluminescence [54].

Bacteria use two-component signal transduction systems to elicit adaptive responses to environmental changes [55]. In this study, seven DEGs in the two-component system were significantly up-regulated (2.117-fold to 28.924-fold) in *S. aureus* ATCC25923 (p < 0.05). For instance, the DEGs (*agrB*, *KQ76_10520*; and *graS*, *KQ76_03245*) encoding histidine kinases

were significantly up-regulated by 2.565-fold and 2.989-fold, respectively (p < 0.05). The accessory gene regulator (agr) quorum-sensing system contributes to its pathogenicity of *S. aureus* [56]. GraS, the sensor histidine kinase of the GraXRS system, has been suggested to directly activate the response regulator ArlR [53]. Loss of the ArlR alone impairs the ability of *S. aureus* to respond to host-imposed manganese starvation and glucose limitation [57].

Figure 6. The major changed metabolic pathways in *S. aureus* ATCC25923 triggered by Fragment 1 from *P. kleiniana Wight et Arn.* (A) The Volcano plot of the DGEs. (B) The significantly altered metabolic pathways in the bacterium.

Interestingly, expression of all the DEGs (n = 7) in the nitrogen metabolism was significantly increased at the transcription level (3.529-fold to 10.404-fold) in *S. aureus* ATCC25923 (p < 0.05). The seven DEGs (*nirBD*, *narHIJZT*) were all involved in nitrate reduction [58–60]. Of these, the NirD ($KQ76_{-}12515$) was a small subunit of cytoplasmic NADH-dependent nitrite reductase complex NirBD [61,62]. Over-expression of *nirD* limits RelA-dependent accumulation of guanosine 5'-triphosphate 3'-diphosphate ((p)ppGpp) in vivo and can prevent activation of the stringent response during amino acid starvation in *E. coli* [62].

In the alanine, aspartate, and glutamate metabolism, two DEGs (*carBA*, *KQ76_05770* and *KQ76_05765*) encoding carbamoyl phosphate synthase were significantly up-regulated (2.154-fold and 3.084-fold) in *S. aureus* ATCC25923 (p < 0.05). The interface residues located near the CarB region of carboxy phosphate synthetic domain plays a key role in carbamoyl phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) complex regulation in the pyrimidine biosynthesis [63]. Correspondingly, in the pyrimidine metabolism, four DEGs (*pyrBCR*, *KQ76_05755*, *KQ76_05760*, and *KQ76_05745*) were also significantly up-regulated (2.968-fold to 3.213-fold) (p < 0.05), and encoded an aspartate carbamoyltransferase, a dihydroorotase, and a phosphoribosyl transferase, respectively. The pyrimidines are involved in the synthesis of DNA, RNA, lipids, and carbohydrates. The pyrimidine metabolism is involved in the synthesis, degradation, salvage, interconversion, and transport of these compounds [64].

Metabolic Pathway	Gene ID	Gene Name	Fold Change	Gene Description
Two-component system	KQ76_00500	-	0.373	Capsular biosynthesis protein
1 2	KQ76_00560	wecC	0.490	UDP-N-acetyl-D-mannosamine dehydrogenase
	KO76 12475	mraC	2 117	Nitrate respiration regulation response
	KQ70_12475	niec	2.117	regulator NreC
	KQ76_12480	nreB	2.276	Nitrate respiration regulation sensor histidine
				Kinase Inred
	KQ76_12485	nreA	2.433	sensor NreA
	KQ76_10520	agrB	2.565	Histidine kinase
	KQ76_03245	graS	2.989	Histidine kinase
	KQ76_10785	kdpF	5.371	ATPase
	KQ76_04230	dltC	28.924	Alanine-phosphoribitol ligase
Nitrogen metabolism	KQ76_12490	narI	3.529	Nitrate reductase
Ū.	KQ76_12515	nirD	4.199	Nitrite reductase
	KQ76_12520	nirB	5.060	Nitrite reductase
	KQ76_12460	narT	6.376	Nitrate transporter NarT
	KQ76_12500	narH	5.799	Nitrate reductase
	KQ76_12505	narZ	8.442	Nitrate reductase
	KQ76_12495	narJ	10.404	Nitrate reductase
Riboflavin metabolism	KQ76_09200	ribÉ	0.373	Riboflavin synthase subunit alpha
	KQ76_09195	ribBA	0.413	GTP cyclohydrolase
	KQ76_09205	ribD	0.430	Diaminohydroxyphosphoribosylaminopyrimidine
	K076 09190	rihH	0.480	6.7-dimethyl-8-ribityllumazine synthase
Arginine and proline	KQ70_00100	11011	0.400	0,7-anneury1-0-nonynaniazine syntiase
metabolism	KQ76_09185	fadM	0.109	Proline dehydrogenase
	KQ76_00580	-	0.218	Aldehyde dehydrogenase
	KQ76_13360	-	0.303	1-pyrroline-5-carboxylate dehydrogenase
	KQ76_11235	rocF	0.461	Arginase
Atrazine degradation	KQ76_11915	ureC	0.406	Urease subunit alpha
	KQ76_11910	ureB	0.412	Urease subunit beta
Alanine, aspartate and glutamate metabolism	KQ76_13360	-	0.303	1-pyrroline-5-carboxylate dehydrogenase
8	KO76 05770	carB	2,158	Carbamovl phosphate synthase large subunit
	KO76_05765	carA	3.084	Carbamovl phosphate synthase small subunit
Pyrimidine metabolism	KO76_05745	pyrR	2.968	Phosphoribosyl transferase
, finitance inclusionisin	KO76_05760	nurC	3 115	Dihydroorotase
	KO76_05755	pyr C murB	3.213	Aspartate carbamovltransferase
	1.2.0_00,00	<i>Pyi b</i>	0.210	i ispurate carbanto j transferabe

Table 5. The major altered metabolic pathways in S. aureus ATCC25923.

Taken together, these results indicate that Fragment 1 from *P. kleiniana* Wight et Arn can significantly influence seven metabolic pathways in the Gran-positive *S. aureus* ATCC25923. Of these, the two-component system, alanine, aspartate and glutamate metabolism, and nitrogen metabolism were also changed in the Gram-negative *V. parahaemolyticus* ATCC17802, which led to the enhanced regulation of stringent response in the two pathogens. On the other hand, we also found distinct transcriptomic profiles between the Gram-positive and Gram-negative pathogens triggered by Fragment 1. For example, consistent with the results obtained from the cell structure analysis, *V. parahaemolyticus* ATCC17802 was more sensitive to Fragment 1 treatment, as more metabolic pathways were altered, such as the citrate cycle, glyoxylate and dicarboxylate metabolism, fatty acid degradation, glycine, serine and threonine metabolism, oxidative phosphorylation, pyruvate metabolism, propanoate metabolism, beta-lactam resistance, ABC transporters, PTS, butanoate metabolism, lysine degradation, and QS, which resulted in cell destruction and even death.

In addition, to validate the transcriptome data, we tested 16 representative DEGs (Table S1) via reverse transcription real time-quantitative PCR (RT-qPCR) analysis, and the resulting data were generally correlated with those yielded from the transcriptome analysis (Table S2).

3. Materials and Methods

3.1. Bacterial Strains and Culture Conditions

The bacterial strains and culture media used in this study are listed in Table S3. *Vibrio* strains and non-*Vibrio* strains were incubated as described in our recent studies [15,16,65].

3.2. Extraction of Bioactive Substances from P. kleiniana Wight et Arn

Fresh *P. kleiniana* Wight et Arn was purchased from the Qian Shan Zhen Pin shop in Guiyang City (26°36′5.01″ N, 106°41′19.90″ E), Guizhou Province, China, in October of 2021. Bioactive substances were extracted from the samples using the methanol and chloroform method described in our recent reports [15,16,66]. Briefly, aliquot of a 500 g of the whole plant sample was lyophilized, pulverised, powded, sonicated, and then filtered and collected for the secondary extraction. The methanol and chloroform phases were separated and then concentrated using the Rotary Evaporator (IKA, Staufen, Germany) [15,16].

3.3. Antimicrobial Susceptibility Assay

The susceptibility of the bacterial strains (Table S3) to the extracts from *P. kleiniana* Wight et Arn were determined according to the standard method issued by the Clinical and Laboratory Standards Institute, USA (CLSI, M100-S23, 2018). The antibacterial activity was defined as described previously [15,16]. Broth dilution testing (microdilution) (CLSI, M100-S18, 2018) was used to determine MICs of the extracts. The MIC was defined as described previously [15,16].

3.4. Prep-HPLC Analysis

Aliquots of the extracted samples (10 mg/mL) were resolved, centrifuged, filtered, and subjected for the Prep-HPLC Analysis, using Waters 2707 (Waters, Milford, MA, USA) linked with UPLC Sunfire C18 column (5 μ m, 10 \times 250 mm) (Waters, Milford, MA, USA) with the same parameters and elution conditions described in our recent reports [15,16].

3.5. UHPLC-MS Analysis

The UHPLC–MS analysis was conducted using the EXIONLC System (Sciex, Framingham, MA, USA) by Shanghai Hoogen Biotech, Shanghai, China [67].

3.6. Bacterial Cell Surface Hydrophobicity and Membrane Fluidity Assays

The cell surface hydrophobicity was measured according to the method of Cui et al. [68]. The cell membrane fluidity was measured according to the method of Kuhry et al. [69], using the 1,6-diphenyl-1,3,5-hexatriene (DPH, Sangon, Shanghai, China).

3.7. Cell Membrane Permeability Analysis

Cell outer membrane permeability was measured according to the method of Wang et al. [70], with the NPN solution (Sangon, Shanghai, China). The inner membrane permeability was measured according to the method of Huang et al. [71], with the ONPG solution (Sangon, Shanghai, China).

3.8. Scanning Electron Microscope (SEM) Assay

The preparation of the samples for the SEM analysis was performed using the method described in our recent reports [15,16,72]. The samples were observed using the Scanning Electron Microscope (Tescan Mira 3 XH, Tescan, Brno, Czech Republic, 5.0 kV, $30,000 \times$).

3.9. Illumina RNA Sequencing

The bacterial cell culture at the mid-LGP was treated with Fragment 1 ($1 \times$ MIC) from *P. kleiniana* Wight et Arn for 6 h, and then collected via centrifugation for the total RNA preparation [15,16,72]. Three independently prepared RNA samples for each strain were subjected for the Illumina RNA sequencing analysis, using Illumina HiSeq 2500 platform (Illumina, Santiago, CA, USA) [72].

3.10. RT-qPCR Assay

The RT-qPCR assay was performed according to the method described in our recent reports [15,16,72]. The oligonucleotide primers were designed (Table S1), and synthesized via Sangon (Shanghai, China).

3.11. Data Analysis

The DEGs were analyzed as described in our recent reports [15,16,72]. All tests were carried out in triplicate. The data were analyzed using the SPSS statistical analysis software version 17.0 (SPSS Inc., Armonk, NY, USA). One-way analysis of variance (ANOVA) was performed using the least-significant difference (LSD) method and homogeneity of variance test. There was no significant difference between the control and the treatment groups if the generalized *p*-values were more than 0.05; conversely, there was significant difference if *p*-values were less than 0.05.

4. Conclusions

In this study, the methanol-phase extract from *P. kleiniana* Wight et Arn showed an inhibition rate of 68.18% against 22 species of common pathogenic bacteria. The methanolphase extraction inhibited the growth of one species of Gram-positive S. aureus, and 14 species of Gram-negative bacteria, including B. cereus, E. cloacae, E. coli, P. aeruginosa, S. typhimurium 1, S. dysenteriae, S. flexneri, S. flexneri, S. sonnei, V. alginolyticus, V. cholerae, V. fluvialis, V. mimicus, V. parahemolyticus, and V. vulnificus strains. This extract was further purified using the Prep-HPLC, and three separated fragments were obtained. Fragment 1 significantly increased bacterial cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, disrupting the cell integrity of the Grampositive and Gram-negative bacteria such as S. aureus ATCC25923, S. aureus ATCC8095, V. parahaemolyticus ATCC17802, and V. parahaemolyticus B5-29. The MIC values of Fragment 1 ranged from 6.25 mg/mL to 50 mg/mL. A total of 66 different compounds in Fragment 1 were identified. The highest relative percentage of the compounds was D-maltose (6.77%), followed by oxymorphone (6.29%), rutin (6.29%), D-proline (5.41%), and L-proline (5.41%). Highly concentrated sugar solutions, such as the D-maltose identified in Fragment 1, are known to be effective antimicrobial agents. The identified oxymorphone and rutin could exert antibacterial activity via damaging the bacterial cell wall and cytoplasmic membrane, respectively. Multiple cellular metabolic pathways altered by Fragment 1 in the representative Gram-negative V. parahaemolyticus ATCC17802 and Gram-positive S. aureus ATCC25923 pathogens after treatment with Fragment 1 (1× MIC) for 6 h (p < 0.05). These results indicated that the energy supply and protein translation of the tested strains was inhibited, the signal transduction was blocked, and the ability to pump foreign harmful substances was reduced, leading to cell death. Overall, the results of this study demonstrate that Fragment 1 from P. kleiniana Wight et Arn is a promising candidate for antibacterial medicine and food preservatives.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/foods12081640/s1, Table S1: The oligonucleotide primers designed and used in the RT-qPCR assay; Table S2: The relative expression of representative DEGs by the RT-qPCR assay; Table S3: The bacterial strains and media used in this study; Figure S1: The Prep-HPLC diagram of purifying the methanol-phase crude extract from *P. kleiniana* Wight et Arn.

Author Contributions: Y.T.: major experiments, data curation, and writing—original draft; P.Y.: writing—review and editing; L.C.: funding acquisition, conceptualization, and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Shanghai Municipal Science and Technology Commission, grant number 17050502200, and National Natural Science Foundation of China, grant number 31671946.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or Supplementary Materials. The complete lists of DEGs in the two strains are available in the NCBI SRA database (https://submit.ncbi.nlm.nih.gov/subs/bioproject/, accessed on 29 November 2022) under the accession number PRJNA906658.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bueno, E.; Pinedo, V.; Cava, F. Adaptation of Vibrio cholerae to hypoxic environments. Front. Microbiol. 2020, 11, 739. [CrossRef]
- 2. Stocco, G.; Lucafò, M.; Decorti, G. Pharmacogenomics of antibiotics. Int. J. Mol. Sci. 2020, 21, 5975. [CrossRef]
- Bombaywala, S.; Mandpe, A.; Paliya, S.; Kumar, S. Antibiotic resistance in the environment: A critical insight on its occurrence, fate, and eco-toxicity. *Environ. Sci. Pollut. Res. Int.* 2021, 28, 24889–24916. [CrossRef]
- 4. Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. *Pathogens* **2021**, *10*, 1310. [CrossRef] [PubMed]
- 5. Gomes, F.; Rodrigues, M.E.; Martins, N.; Ferreira, I.C.F.R.; Henriques, M. Phenolic plant extracts versus penicillin G: In vitro susceptibility of *Staphylococcus aureus* isolated from bovine mastitis. *Pharmaceuticals* **2019**, *12*, 128. [CrossRef]
- 6. Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. *Int. J. Mol. Sci.* **2018**, *19*, 1578. [CrossRef]
- Chandra, G.; Mukherjee, D.; Ray, A.S.; Chatterjee, S.; Bhattacharjee, I. Phytoextracts as antibacterials: A review. *Curr. Drug Discov. Technol.* 2020, 17, 523–533. [CrossRef] [PubMed]
- Volis, S. Securing a future for China's plant biodiversity through an integrated conservation approach. *Plant Divers.* 2018, 40, 91–105. [CrossRef] [PubMed]
- Tao, J.; Yan, S.; Zhou, C.; Liu, Q.; Zhu, H.; Wen, Z. Total flavonoids from *Potentilla kleiniana* Wight et Arn inhibits biofilm formation and virulence factors production in methicillin-resistant *Staphylococcus aureus* (MRSA). *J. Ethnopharmacol.* 2021, 279, 114383. [CrossRef]
- Zhou, Y.Q.; Li, S.M.; Wei, X.; Yang, X.; Xiao, J.W.; Pan, B.W.; Xie, S.X.; Zhou, Y.; Yang, J.; Wei, Y. Identification and quantitative analysis of bioactive components from *Potentilla kleiniana* Wight et Arn with anti HIV-1 proteases activity. *Nat. Prod. Res.* 2022, 1–4. [CrossRef] [PubMed]
- Liu, M.; Huang, X.; Liu, Q.; Li, X.; Chen, M.; Zhu, Y.; Chen, X. Separation of α-glucosidase inhibitors from *Potentilla kleiniana* Wight et Arn using solvent and flow-rate gradient high-speed counter-current chromatography target-guided by ultrafiltration HPLC-MS screening. *Phytochem. Anal.* 2019, 30, 661–668. [CrossRef]
- 12. Li, S.; Tan, J.; Zeng, J.; Wu, X.W.X.; Zhang, J. Antihyperglycemic and antioxidant effect of the total flavones of *Potentilla kleiniana* Wight et Arn. in streptozotocin induced diabetic rats. *Pak. J. Pharm. Sci.* **2017**, *30*, 171–178.
- Tao, J.; Yan, S.; Wang, H.; Zhao, L.; Zhu, H.; Wen, Z. Antimicrobial and antibiofilm effects of total flavonoids from *Potentilla kleiniana* Wight et Arn on *Pseudomonas aeruginosa* and its potential application to stainless steel surfaces. *LWT-Food Sci. Technol.* 2022, 154, 112631. [CrossRef]
- 14. Xuan, S.H.; Hong, I.K.; Lee, Y.J.; Kim, J.W.; Park, S.N. Biological activities and chemical components of *Potentilla kleiniana* Wight & Arn. *Nat. Prod. Res.* 2020, 34, 3262–3266. [CrossRef] [PubMed]
- 15. Liu, Y.; Yang, L.; Liu, P.; Jin, Y.; Qin, S.; Chen, L. Identification of antibacterial components in the methanol-phase extract from edible herbaceous plant *Rumex madaio* Makino and their antibacterial action modes. *Molecules* **2022**, *27*, 660. [CrossRef]
- 16. Fu, J.; Wang, Y.; Sun, M.; Xu, Y.; Chen, L. Antibacterial activity and components of the methanol-phase extract from rhizomes of pharmacophagous plant *Alpinia officinarum* Hance. *Molecules* **2022**, *27*, 4308. [CrossRef]
- Wang, J.; Ding, Q.; Yang, Q.; Fan, H.; Yu, G.; Liu, F.; Bello, B.K.; Zhang, X.; Zhang, T.; Dong, J.; et al. *Vibrio alginolyticus* triggers inflammatory response in mouse peritoneal macrophages via activation of NLRP3 inflammasome. *Front. Cell. Infect. Microbiol.* 2021, 11, 769777. [CrossRef] [PubMed]
- Hernández-Robles, M.F.; Natividad-Bonifacio, I.; Álvarez-Contreras, A.K.; Tercero-Alburo, J.J.; Quiñones-Ramírez, E.I.; Vázquez-Salinas, C. Characterization of potential virulence factors of *Vibrio mimicus* isolated from fishery products and water. *Int. J. Microbiol.* 2021, 2021, 8397930. [CrossRef]
- 19. Dey, R.; Rieger, A.M.; Stephens, C.; Ashbolt, N.J. Interactions of *Pseudomonas aeruginosa* with *Acanthamoeba polyphaga* observed by imaging flow cytometry. *Cytom. Part A* 2019, *95*, 555–564. [CrossRef]
- 20. Liu, J.; Qin, K.; Wu, C.; Fu, K.; Yu, X.; Zhou, L. *De Novo* sequencing provides insights into the pathogenicity of foodborne *Vibrio parahaemolyticus. Front. Cell. Infect. Microbiol.* **2021**, *11*, 652957. [CrossRef] [PubMed]
- 21. Huang, Y.; Flint, S.H.; Palmer, J.S. *Bacillus cereus* spores and toxins—The potential role of biofilms. *Food Microbiol.* **2020**, *90*, 103493. [CrossRef]
- 22. Ojha, R.; Dittmar, A.A.; Severin, G.B.; Koestler, B.J. *Shigella flexneri* diguanylate cyclases regulate virulence. *J. Bacteriol.* **2021**, 203, e0024221. [CrossRef] [PubMed]
- 23. Li, H.; Tang, T.; Stegger, M.; Dalsgaard, A.; Liu, T.; Leisner, J.J. Characterization of antimicrobial-resistant Staphylococcus aureus from retail foods in Beijing, China. *Food Microbiol.* **2021**, *93*, 103603. [CrossRef] [PubMed]
- 24. Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in *Staphylococcus aureus*. *Front. Cell. Infect. Microbiol.* **2020**, *10*, 107. [CrossRef]
- 25. Danchik, C.; Casadevall, A. Role of cell surface hydrophobicity in the pathogenesis of medically-significant fungi. *Front. Cell. Infect. Microbiol.* **2020**, *10*, 594973. [CrossRef] [PubMed]

- 26. Soundharrajan, I.; Kim, D.; Kuppusamy, P.; Muthusamy, K.; Lee, H.J.; Choi, K.C. Probiotic and triticale silage fermentation potential of *Pediococcus pentosaceus* and *Lactobacillus brevis* and their impacts on pathogenic bacteria. *Microorganisms* **2019**, *7*, 318. [CrossRef]
- Yu, X.; Sha, L.; Liu, Q.; Zhao, Y.; Fang, H.; Cao, Y.; Zhao, J. Recent advances in cell membrane camouflage-based biosensing application. *Biosens. Bioelectron.* 2021, 194, 113623. [CrossRef]
- Zhang, M.; Yu, Y.; Lian, L.; Li, W.; Ren, J.; Liang, Y.; Xue, F.; Tang, F.; Zhu, X.; Ling, J.; et al. Functional mechanism of antimicrobial peptide bomidin and its safety for *Macrobrachium rosenbergii*. *Probiotics Antimicrob*. *Proteins* 2022, 14, 169–179. [CrossRef]
- Bojkovic, J.; Richie, D.L.; Six, D.A.; Rath, C.M.; Sawyer, W.S.; Hu, Q.; Dean, C.R. Characterization of an *acinetobacter baumannii* lptD deletion strain: Permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. *J. Bacteriol.* 2015, 198, 731–741. [CrossRef]
- Veiko, A.G.; Olchowik-Grabarek, E.; Sekowski, S.; Roszkowska, A.; Lapshina, E.A.; Dobrzynska, I.; Zamaraeva, M.; Zavodnik, I.B. Antimicrobial activity of quercetin, naringenin and catechin: Flavonoids inhibit *Staphylococcus aureus*-induced hemolysis and modify membranes of bacteria and erythrocytes. *Molecules* 2023, *28*, 1252. [CrossRef]
- Zdybicka-Barabas, A.; Stączek, S.; Pawlikowska-Pawlęga, B.; Mak, P.; Luchowski, R.; Skrzypiec, K.; Mendyk, E.; Wydrych, J.; Gruszecki, W.I.; Cytryńska, M. Studies on the interactions of neutral *Galleria mellonella* cecropin D with living bacterial cells. *Amino Acids* 2019, *51*, 175–191. [CrossRef]
- Mizzi, L.; Maniscalco, D.; Gaspari, S.; Chatzitzika, C.; Gatt, R.; Valdramidis, V.P. Assessing the individual microbial inhibitory capacity of different sugars against pathogens commonly found in food systems. *Lett. Appl. Microbiol.* 2020, 71, 251–258. [CrossRef]
- 33. Fan, X.; Kong, D.; He, S.; Chen, J.; Jiang, Y.; Ma, Z.; Feng, J.; Yan, H. Phenanthrene derivatives from *asarum heterotropoides* showed excellent antibacterial activity against phytopathogenic bacteria. *J. Agric. Food Chem.* **2021**, *69*, 14520–14529. [CrossRef]
- 34. Tan, Z.; Deng, J.; Ye, Q.; Zhang, Z. The antibacterial activity of natural-derived flavonoids. *Curr. Top. Med. Chem.* **2022**, *22*, 1009–1019. [CrossRef]
- 35. Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. *Crit. Rev. Food Sci. Nutr.* **2020**, *60*, 3042–3053. [CrossRef]
- 36. Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. marine-derived indole alkaloids and their biological and pharmacological activities. *Mar. Drugs* **2021**, *20*, 3. [CrossRef]
- 37. Li, H.; Li, Y.; Wang, Y.; Liu, L.; Dong, H.; Satoh, T. Membrane-active amino acid-coupled polyetheramine derivatives with high selectivity and broad-spectrum antibacterial activity. *Acta Biomater.* **2022**, *142*, 136–148. [CrossRef] [PubMed]
- 38. Sharma, P.; Maklashina, E.; Cecchini, G.; Iverson, T.M. The roles of SDHAF2 and dicarboxylate in covalent flavinylation of SDHA, the human complex II flavoprotein. *Proc. Natl. Acad. Sci. USA* **2020**, *117*, 23548–23556. [CrossRef] [PubMed]
- Dolan, S.K.; Wijaya, A.; Kohlstedt, M.; Gläser, L.; Brear, P.; Silva-Rocha, R.; Wittmann, C.; Welch, M. Systems-wide dissection of organic acid assimilation in *Pseudomonas aeruginosa* Reveals a Novel Path to Underground Metabolism. *Mbio* 2022, 13, e0254122. [CrossRef]
- 40. Park, C.; Shin, B.; Park, W. Alternative fate of glyoxylate during acetate and hexadecane metabolism in *Acinetobacter oleivorans* DR1. *Sci. Rep.* **2019**, *9*, 14402. [CrossRef] [PubMed]
- Durall, C.; Kukil, K.; Hawkes, J.A.; Albergati, A.; Lindblad, P.; Lindberg, P. Production of succinate by engineered strains of *Synechocystis* PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt. *Microb. Cell Factories* 2021, 20, 39. [CrossRef]
- 42. Zhang, H.; Liang, Z.; Zhao, M.; Ma, Y.; Luo, Z.; Li, S.; Xu, H. Metabolic engineering of *Escherichia coli* for ectoine production with a fermentation strategy of supplementing the amino donor. *Front. Bioeng. Biotechnol.* **2022**, *10*, 824859. [CrossRef] [PubMed]
- 43. Yun, M.K.; Nourse, A.; White, S.W.; Rock, C.O.; Heath, R.J. Crystal structure and allosteric regulation of the cytoplasmic *Escherichia coli* L-asparaginase I. *J. Mol. Biol.* **2007**, *369*, 794–811. [CrossRef]
- 44. Wang, Z.; Bie, P.; Cheng, J.; Lu, L.; Cui, B.; Wu, Q. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of *Brucella melitensis*. *Sci. Rep.* **2016**, *6*, 31876. [CrossRef] [PubMed]
- 45. Huang, L.; Huang, L.; Zhao, L.; Qin, Y.; Su, Y.; Yan, Q. The regulation of oxidative phosphorylation pathway on *Vibrio alginolyticus* adhesion under adversities. *Microbiologyopen* **2019**, *8*, e00805. [CrossRef]
- 46. Santucci, R.; Sinibaldi, F.; Cozza, P.; Polticelli, F.; Fiorucci, L. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. *Int. J. Biol. Macromol.* 2019, 136, 1237–1246. [CrossRef]
- 47. Maza-Márquez, P.; Lee, M.D.; Detweiler, A.M.; Bebout, B.M. Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins. *ISME J.* **2022**, *16*, 1119–1129. [CrossRef] [PubMed]
- Tierney, A.R.; Rather, P.N. Roles of two-component regulatory systems in antibiotic resistance. *Future Microbiol.* 2019, 14, 533–552. [CrossRef]
- 49. Liu, F.; Yao, Q.; Huang, J.; Wan, J.; Xie, T.; Gao, X.; Sun, D.; Zhang, F.; Bei, W.; Lei, L. The two-component system CpxA/CpxR is critical for full virulence in *Actinobacillus pleuropneumoniae*. *Front. Microbiol.* **2022**, *13*, 1029426. [CrossRef]
- 50. Hu, M.; Huang, X.; Xu, X.; Zhang, Z.; He, S.; Zhu, J.; Liu, H.; Shi, X. Characterization of the role of two-component systems in antibiotic resistance formation in *Salmonella enterica* Serovar Enteritidis. *mSphere* **2022**, *7*, e0038322. [CrossRef]

- 51. Blair, J.M.A.; Siasat, P.; McNeil, H.E.; Colclough, A.; Ricci, V.; Lawler, A.J.; Abdalaal, H.; Buckner, M.M.C.; Baylay, A.; Busby, S.J.; et al. EnvR is a potent repressor of acrAB transcription in *Salmonella*. *J. Antimicrob. Chemother.* **2022**, *78*, 133–140. [CrossRef]
- 52. Oberlies, J.; Watzl, C.; Giese, T.; Luckner, C.; Kropf, P.; Müller, I. Regulation of NK cell function by human granulocyte arginase. *J. Immunol.* **2009**, *182*, 5259–5267. [CrossRef]
- 53. Kim, S.H.; Sierra, R.A.; McGee, D.J.; Zabaleta, J. Transcriptional profiling of gastric epithelial cells infected with wild type or arginase-deficient *Helicobacter pylori*. *BMC Microbiol*. **2012**, *12*, 175. [CrossRef]
- 54. Yurgel, S.N.; Johnson, S.A.; Rice, J.; Sa, N.; Bailes, C.; Baumgartner, J.; Pitzer, J.E.; Roop, R.M., II; Roje, S. A novel formamidase is required for riboflavin biosynthesis in invasive bacteria. *J. Biol. Chem.* **2022**, *298*, 102377. [CrossRef]
- Lai, R.Z.; Parkinson, J.S. Monitoring two-component sensor kinases with a chemotaxis signal readout. *Methods Mol. Biol.* 2018, 1729, 127–135. [CrossRef]
- 56. Tan, L.; Huang, Y.; Shang, W.; Yang, Y.; Peng, H.; Hu, Z.; Wang, Y.; Rao, Y.; Hu, Q.; Rao, X.; et al. Accessory gene regulator (*agr*) allelic variants in cognate *Staphylococcus aureus* strain display similar phenotypes. *Front. Microbiol.* **2022**, *13*, 700894. [CrossRef]
- 57. Párraga Solórzano, P.K.; Shupe, A.C.; Kehl-Fie, T.E. The sensor histidine kinase ArlS is necessary for *Staphylococcus aureus* to activate ArlR in response to nutrient availability. *J. Bacteriol.* **2021**, 203, e0042221. [CrossRef]
- Loiseau, L.; Vergnes, A.; Ezraty, B. Methionine oxidation under anaerobic conditions in *Escherichia coli*. Mol. Microbiol. 2022, 118, 387–402.
 [CrossRef]
- Fang, J.; Yan, L.; Tan, M.; Li, G.; Liang, Y.; Li, K. Nitrogen removal characteristics of a marine denitrifying *Pseudomonas stutzeri* BBW831 and a simplified strategy for improving the denitrification performance under stressful conditions. *Mar. Biotechnol.* 2023, 25, 109–122. [CrossRef]
- 60. Alvarez, L.; Sanchez-Hevia, D.; Sánchez, M.; Berenguer, J. A new family of nitrate/nitrite transporters involved in denitrification. *Int. Microbiol.* **2019**, *22*, 19–28. [CrossRef]
- 61. Harborne, N.R.; Griffiths, L.; Busby, S.J.; Cole, J.A. Transcriptional control, translation and function of the products of the five open reading frames of the *Escherichia coli* nir operon. *Mol. Microbiol.* **1992**, *6*, 2805–2813. [CrossRef]
- 62. Léger, L.; Byrne, D.; Guiraud, P.; Germain, E.; Maisonneuve, E. NirD curtails the stringent response by inhibiting RelA activity in *Escherichia coli. Elife* **2021**, *10*, e64092. [CrossRef] [PubMed]
- Kanagarajan, S.; Dhamodharan, P.; Mutharasappan, N.; Choubey, S.K.; Jayaprakash, P.; Biswal, J.; Jeyaraman, J. Structural insights on binding mechanism of CAD complexes (CPSase, ATCase and DHOase). J. Biomol. Struct. Dyn. 2021, 39, 3144–3157. [CrossRef] [PubMed]
- 64. Garavito, M.F.; Narváez-Ortiz, H.Y.; Zimmermann, B.H. Pyrimidine metabolism: Dynamic and versatile pathways in pathogens and cellular development. *J. Genet. Genom.* 2015, 42, 195–205. [CrossRef] [PubMed]
- 65. Xu, M.; Fu, H.; Chen, D.; Shao, Z.; Zhu, J.; Alali, W.Q.; Chen, L. Simple visualized detection method of virulence-associated genes of *Vibrio cholerae* by loop-mediated isothermal amplification. *Front. Microbiol.* **2019**, *10*, 2899. [CrossRef]
- 66. Wang, Y.; Chen, L.; Pandak, W.M.; Heuman, D.; Hylemon, P.B.; Ren, S. High Glucose Induces Lipid Accumulation via 25-Hydroxycholesterol DNA-CpG Methylation. *iScience* 2020, 23, 101102. [CrossRef]
- Shan, X.; Fu, J.; Li, X.; Peng, X.; Chen, L. Comparative proteomics and secretomics revealed virulence, and coresistance-related factors in non O1/O139 *Vibrio cholerae* recovered from 16 species of consumable aquatic animals. *J. Proteom.* 2022, 251, 104408. [CrossRef]
- 68. Cui, J.; Hölzl, G.; Karmainski, T.; Tiso, T.; Kubicki, S.; Thies, S.; Blank, L.M.; Jaeger, K.E.; Dörmann, P. The glycine-glucolipid of *Alcanivorax borkumensis* is resident to the bacterial cell wall. *Appl. Environ. Microbiol.* **2022**, *88*, e0112622. [CrossRef]
- 69. Kuhry, J.G.; Duportail, G.; Bronner, C.; Laustriat, G. Plasma membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. *Biochim. Biophys. Acta.* **1985**, *845*, 60–67. [CrossRef]
- Wang, Z.; Qin, Q.; Zheng, Y.; Li, F.; Zhao, Y.; Chen, G.Q. Engineering the permeability of *Halomonas bluephagenesis* enhanced its chassis properties. *Metab. Eng.* 2021, 67, 53–66. [CrossRef]
- Huang, B.; Liu, X.; Li, Z.; Zheng, Y.; Wai Kwok Yeung, K.; Cui, Z.; Liang, Y.; Zhu, S.; Wu, S. Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. *Chem. Eng. J.* 2021, 414, 128805. [CrossRef]
- Yang, L.; Wang, Y.; Yu, P.; Ren, S.; Zhu, Z.; Jin, Y.; Yan, J.; Peng, X.; Chen, L. Prophage-related gene VpaChn25_0724 contributes to cell membrane integrity and growth of Vibrio parahaemolyticus CHN25. Front. Cell. Infect. Microbiol. 2020, 10, 595709. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.