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Abstract: Food safety is closely related to human health. However, the regulation and testing
processes for food safety are intricate and resource-intensive. Therefore, it is necessary to address food
safety risks using a combination of deep learning, the Internet of Things, smartphones, quick response
codes, smart packaging, and other smart technologies. Intelligent designs that combine digital
systems and advanced functionalities with biosensors hold great promise for revolutionizing current
food safety practices. This review introduces the concept of Food Safety 4.0, and discusses the impact
of intelligent biosensors, which offer attractive smarter solutions, including real-time monitoring,
predictive analytics, enhanced traceability, and consumer empowerment, helping improve risk
management and ensure the highest standards of food safety.

Keywords: food safety risks; Internet of Things; smart packaging; Food Safety 4.0; digital technology;
advanced functionality

1. Introduction

Ensuring food safety has become increasingly challenging in today’s complex supply
chains and global trade. Traditional food safety testing methods face several challenges,
including long testing cycles, destructiveness, single-point testing, limited quantitative
accuracy, poor reproducibility, unstable detection of large molecules, and the extensive
training required for laboratory operators [1,2]. Food safety monitoring techniques and
equipment are inadequate for meeting the demands of the rapidly evolving food market
in the new era. Traditional food safety practices rely primarily on reactive measures to
address problems. This approach results in delayed food safety risk monitoring, early
warnings, and assessments, thereby limiting its effectiveness in reducing risk. Recently,
the fourth industrial revolution (Industry 4.0) has emerged as a transformative force in the
food industry, driven by technological advancements and an increasing demand for safer
and more transparent food. This signifies the future of food safety practices, and has led to
substantial changes.

Since the advent of the industrial revolution, the evolution of manufacturing has been
denoted as Industry 1.0, a concept that has been further refined with the emergence of
electrification and automation in Industry 2.0. The progression to Industry 3.0 is rooted
in the widespread integration of electronics and information technology, and culminates
in the substantial enhancement of the automation and control aspects of the manufactur-
ing process [3]. Industry 4.0 embodies advanced production technologies, incorporating
contemporary elements such as big data, artificial intelligence, the Internet of Things (IoT),
machine learning, deep learning, cloud computing, system integration, and smart sen-
sors. These technologies are instrumental in collecting, storing, analyzing, and utilizing
extensive datasets within the agricultural and food industries [4,5]. The convergence of
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Industry 4.0 with agriculture is poised to catalyze the fourth agricultural revolution, ex-
erting a profound influence on production-centric models, processes, and supply chains
inherent in the agricultural sector. This synergy has given rise to the conceptualization
of Agriculture 4.0 [6]. IoT and technologies allow access to agricultural information, such
as; crop yield forecasting, pest and disease identification [7,8], automation of agricultural
production through robots and autonomous systems to increase farm productivity [9],
artificial intelligence for animal health detection, pest and disease identification, prediction
of crop yields or weather conditions [10,11], and big data technologies that can provide
farmers with intelligent agricultural recommendations [12]. Blockchain has traced the
agricultural supply chain, enhanced the transparency and credibility of the supply chain,
and improved consumer confidence [13]. These technological advancements are not merely
methodological responses to challenges arising from the industrialized agricultural model;
rather, they are concerted efforts to meet escalating technological demands associated with
food safety issues. In recent years, the food industry has progressively embraced Industry
4.0, introducing several Industry 4.0-based terminologies (Table 1) that collectively steer
the evolution of the food industry.

Table 1. Industry 4.0 based terminology and purpose in the food sector.

Terminology Purpose References

Food quality 4.0 To ensure high food quality, save time and labor, and increase efficiency in
the food industry [14]

Food Logistics 4.0 To minimize resources and waste and effectively manage the transport of
food from farm to fork while meeting consumer demand [15]

Food Flavor Analysis 4.0 To achieve rapid detection of food additives, quality, and authenticity in
food, and to accurately predict the flavor of unknown food samples [16]

Food Traceability 4.0 To ensure the authenticity, safety, and high quality of food [17]

Food processing 4.0 To improve the quality and safety of processed foods, reduce production
costs and time, save energy and resources, and reduce food loss and waste [18]

Agri-food 4.0 To support better supply chain decision-making processes [19]
Sustainable Supply Chain 4.0 To organize a closed-loop product life cycle [20]

Meat 4.0 To advance meat processing, preservation, quality, safety, and authenticity
analysis techniques [21]

Birth of Dairy 4.0 For more automation and optimization in the dairy industry [22]

Packaging 4.0 For decentralized data collection in the supply chain, in-store and
post-purchase phases, leading to consistent lifecycle monitoring [23]

Based on our previous work [24,25], and inspired by the industrial changes caused
by the information technology of Industry 4.0, and the impact of Agriculture 4.0 on food
safety in the process of industrialized agriculture, we further developed the concept of
“Food Safety 4.0”. Food Safety 4.0 advances traditional food safety practices by embracing
a proactive data-driven approach that harnesses advanced digital technologies to predict,
prevent, and swiftly address potential food safety risks. This represents a contemporary
paradigm in food safety management, marking its evolution into a more sophisticated
stage. Food Safety 4.0 prioritizes a proactive and predictive stance over reactive responses.
Instead of relying solely on post-incident countermeasures and product recall, it integrates
innovative technologies and data-driven strategies. These leverage the capabilities of
digital technologies to facilitate continuous real-time monitoring across the entire food
supply chain, fostering analytics-driven decision making. This innovative paradigm, Food
Safety 4.0, aims to revolutionize the food industry by enhancing its resilience, efficiency,
and capacity to provide consumers with safe and high-quality food. The foundational
pillars of Food Safety 4.0 encompass real-time monitoring, predictive analytics, enhanced
traceability, and consumer empowerment.

In the context of Food Safety 4.0, intelligent biosensors play a pivotal role in transform-
ing conventional methodologies into proactive data-driven strategies. These biosensors
facilitate early identification of potential hazards, including pathogens, contaminants,
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allergens, and quality parameters. This capability empowers organizations to preemp-
tively recognize and address potential food safety risks, thus facilitating the continuous
enhancement of safety standards. Intelligent biosensors contribute to the identification of
contamination sources and quality issues by generating digital records of the food flow
and conditions. This, in turn, increases traceability and transparency in the food industry.
The applications of intelligent biosensors in the food industry are diverse and seamlessly
integrated into all stages of food production, processing, distribution, and consumption.
Through constant monitoring of the entire food supply chain, from production to consump-
tion, these biosensors provide invaluable data. In turn, these data enable stakeholders
to make well-informed decisions, ensuring both food safety and quality. Notably, their
integration into personalized nutritional applications can address individual dietary needs,
including allergies and sensitivity. This integration ensures that food is not only safer and
more precisely targeted, but also affords consumers a secure and tailored food experience.

The main objective of this review was to explore the transformative potential of
intelligent biosensors within the framework of Food Safety 4.0. Our examination delves into
the purpose and scope of biosensor technology, comprehends the distinctive capabilities
of intelligent biosensors, employs case studies to illustrate their real-world applications,
evaluates the advantages and challenges linked to the incorporation of intelligent biosensor
technology, and offers insight into the integration of these sensors into established food
safety initiatives.

2. Intension and Extension Intelligent Biosensors

A biosensor is an analytical device comprising a biological element and signal con-
verter. Biological elements, such as enzymes, antibodies, nucleic acids, or entire cells,
generate a measurable signal when they interact with a target analyte, thus providing
valuable information about its presence, concentration, or activity [9]. The sensor in the
biosensor converts the biometric signal into a quantified electrical formula, which is critical
for enabling biosensors to interact with smart technologies, and has become an important
part of Food Safety 4.0 data-driven solutions.

Intelligent biosensors are innovative devices that combine biosensing technologies
with digital systems and other advanced functionalities. The relationship between the
various digital technologies is shown in Figure 1. Digital technologies enhance the capacity
of biosensors to detect and analyze specific substances or biological processes with a high
degree of sophistication. Concurrently, advanced functionalities, including smartphones,
quick response (QR) codes, and smart packaging enable these sensors to detect and quantify
specific substances but also execute a range of advanced functions such as real-time data
analysis, processing, and communication. This multifaceted capability positions them as
transformative tools with heightened effectiveness across various food safety applications.

Traditional biosensors typically require manual intervention for data retrieval and
processing, which results in inefficiencies in swiftly changing the food safety landscape. In
contrast, intelligent biosensors distinguish themselves from their traditional counterparts in
terms of sophistication, connectivity, and autonomy. Notably, they offer real-time insights,
facilitate proactive measures, and bolster decision-making capabilities in response to food
safety risks. These distinctions arise from the integration of intelligent biosensors with
digital systems, artificial intelligence, and other advanced technologies, which enables
them to overcome the constraints inherent in traditional biosensors. The variances between
intelligent and traditional biosensors are presented in Table 2.

Biosensors are increasingly being combined with digital technologies and advanced
features, such as artificial intelligence and the Internet of Things, to enable smart functions
with the assistance of smart devices. Ongoing data collection and secure storage provide
detailed insights into the entire process of a product, from production to consumption.
Thus, intelligent biosensors can transform food safety practices and contribute to the
development of Food Safety 4.0 initiatives through a more efficient and proactive approach.
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Table 2. Differences between intelligent biosensors and traditional biosensors.

Features Traditional Biosensors Intelligent Biosensors

Multiplexing and
Specificity Usually, they only detect a single analyte Multiple substances can be detected simultaneously and

higher sensitivity and specificity can be achieved

Data analysis and
connection

The signals generated usually require external
equipment for manual interpretation or processing

Autonomous analysis by intelligent devices and
connectivity to digital systems and networks, enabling

seamless integration and real-time data transfer

Real-time Monitoring and
Alerts

Requires manual activation and data retrieval, which
may require more time to collect and analyze data,

resulting in delays in detecting and addressing problems

Continuous real-time monitoring of specific substances
or conditions and triggering of alarms or notifications

when specific thresholds are exceeded

Decision-making Usually provides passive data, detects and reports on
specific substances as prompted

Autonomous decision-making through continuous
monitoring and real-time analysis of data

Remote Accessibility / Remote access and monitoring via web interface or
mobile app

Predictive Analytics /
Intelligent biosensors can be integrated with AI and data

analytics, enabling them to analyze complex data
patterns and make predictions

3. Applications of Intelligent Biosensors in Food Safety
3.1. Deep Learning-Based Intelligent Biosensors

Machine learning, sometimes called deep learning, is at the cutting-edge of artificial
intelligence. There is a relationship between artificial intelligence, machine learning, and
deep learning. This relationship can be understood as follows: artificial intelligence is
the end, machine learning is the means, and deep learning is the best way to achieve this
goal [26,27]. Owing to its strong ability to fit functions, deep learning has been widely
researched as an effective machine-learning algorithm [28,29], with a large number of
successful cases in the fields of medicine, agriculture, and hydrology [30–32].

Copious real-time data generated by intelligent biosensors pose challenges in data
management, storage, and analysis, requiring robust data infrastructure and analytics
capability. Deep learning has emerged as a potent method and tool for data analysis and
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processing and offers distinct advantages. First, it efficiently processes large datasets,
which is particularly beneficial for deep learning-based biosensors that handle complex
matrices or extensive sensor detection data. In contrast, traditional biosensors often link a
single data feature to an indicator for sample concentration detection. Deep learning-based
biosensors employing data visualization discern the intricate relationship between sample
parameters and sensor signals [26]. Second, deep learning excels in extracting high-quality
signals from noisy ones, facilitating the removal of contaminants from real samples and
enhancing the performance of traditional biosensors [33]. Given the proficiency of deep
learning in feature learning, various architectures such as convolutional neural networks
(CNN), recurrent neural networks, deep neural networks (DNN), deep convolutional
neural networks (DCNN), backpropagation neural networks (BPNN), long short-term
memory networks, and transfer learning have been proposed. Among these, CNN, which
are renowned for their advantages in image analysis, have become popular [34]. The core
components of a CNN include a convolutional layer, pooling layer, convolutional kernel,
activation function, and fully connected layer. The convolutional layer, which is crucial
for image extraction, typically comprises multiple convolutional layers with kernels of
varying sizes, which are strategically designed for feature extraction across the image.
The fully connected layers serve as outputs and are adapted to different layers for model
classification or regression tasks. CNN-assisted biosensors exhibit superior prediction
accuracy for moderate-to-large datasets. For instance, a CNN-based surface-enhanced
Raman scattering biosensor demonstrated exceptional capability by accurately identifying
minute oligonucleotide damage on a gold grid substrate, which is a challenge for other
techniques. This biosensor achieved a classification accuracy of 98% and confidence level
exceeding 95% [35]. However, when processing fluorescent dot matrix images, challenges
arise owing to variations in the light intensity in the testing environment, leading to
potential false positives or false negatives.

Deep learning is instrumental in directly, accurately, and expeditiously enhancing
biosensor readings, thereby advancing the qualitative identification of intricate overlapping
signals, the quantitative prediction of trace analytes, and effectively addressing food safety
challenges. The proposed CNN model architecture, trained through image processing,
learns from diverse color solutions of the pesticide dichlorolyphenol (DCV) to predict the
DCV concentration in the test solution. This approach achieved superior quantitative DCV
detection with an accuracy of 97.6% and a detection range of 0–60 mM [36]. Applicable to
on-site detection of contaminants in water and fruit juices, this method provides swift and
quantitative insights into contamination. Hu et al. [37] devised a fluorescent biosensor uti-
lizing a low-gradient magnetic field for highly sensitive detection of Salmonella typhimurium
(Figure 2). Influenced by a magnetic field, the labeled magnetic bacteria transform from
a three-bit spatial distribution to a two-dimensional planar distribution. Deep learning
employing a faster region-based CNN (R−CNN) identifies fluorescence spots on bacterial
cells for the identification of target bacteria. The model was built using the complete
fluorescence image dataset and harnessed numerous convolutional layers for effective
feature extraction, achieving quantitative detection of Salmonella typhimurium in the range
of 6.9 × 101–1.1 × 103 colony forming units (CFU)/mL, with a lower limit of detection
of 55 CFU/mL in 2.5 h. This method allows for the simultaneous detection of multiple
foodborne pathogens by utilizing distinct antibodies and fluorescent materials of various
colors. Deep learning methodologies open novel avenues for predicting bacteria in food
products. Nehal et al. [38] simulated an optical biosensor based on a CNN deep-learning
model of photonic crystals, generating training data for predicting samples with features,
but no labels. This model explicitly predicted the presence of E. coli in water, achieving a
detection accuracy of 95% based on the output spectrum and identification of training data.
Smart sensors play a pivotal role in field testing and ensuring the accuracy and reliability of
biosensor readings requires regular calibration and maintenance. This entails adhering to
proper maintenance procedures and engaging qualified personnel to maintain an optimal
biosensor performance.
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Figure 2. Schematic of this fluorescent biosensor. (A) Formation of fluorescent bacteria in the
fluorescent biosensor. (B) Recognition and detection of fluorescent bacteria using a low-gradient
magnetic field and deep learning via faster R-CNN [37].

As heightened concern for food safety has gained prominence, there is a growing
demand for real-time monitoring to promptly detect issues and effectively take corrective
actions in response to food safety risks. Jia et al. [39] pioneered the development of an
innovative colorimetric sensor array designed for real-time monitoring of beef freshness.
Sensor tag videos were captured in a color controller lightbox using an a smartphone
to obtain image sets. These images were then randomly divided into training and test
sets and imported into convolutional neural networks (CNNs) to train the food freshness
classification system. The results demonstrated that all four CNN architectures successfully
distinguished freshness with an accuracy exceeding 96%, thereby enhancing the accuracy
of biosensor recognition. In another study, Ma et al. [40] used UiO-66-Br (selected for
its highest binding energy) on an ice-templated chitosan substrate (ice-templated dye
@UiO) to construct sensor arrays (Figure 3A). They established a sensitive, non-destructive
product platform, enabling customers to easily monitor shrimp freshness in real time using
the Wide-Slice Residual Network 50, which achieved an impressive accuracy of up to
99.94%. Four state-of-the-art DCNN models were trained with 31,584 labeled images, and
13,537 images were reserved for testing. Furthermore, deep learning systems integrated
into the computer vision can be employed to monitor food production. Iheonye et al. [41]
successfully employed computer vision, combined with deep learning systems, to address
the issue of the fluidized bed food drying process, which poses challenges in capturing
food images.
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Intelligent biosensors that leverage deep learning have found effective applications
in food classification, thereby advancing food safety management practices and fortifying
consumer rights. The method for discriminating the age of Pu’er tea using a voltammet-
ric electronic tongue is shown (Figure 3B) [42]. One-dimensional CNN (1−D CNN) was
employed for automatic feature extraction and classification, with transfer learning incor-
porated to reduce the model training complexity and enhance the generalization capacity
of CNN for electronic tongue applications. The efficacy of this method was compared with
that of traditional machine learning techniques, including support vector machines, back-
propagation neural networks, and limiting learning machines. These results highlight the
superior performance of the proposed model for the Pu’er tea classification. In a separate
study, Yang et al. [43] developed a transfer learning framework based on a BPNN for clas-
sifying various wine types. This framework refines only the output layer, demonstrating
robust performance in recognizing diverse wine types based on their characteristics. This
approach has been extended to the classification of different Chinese white wines, thereby
mitigating the costs associated with model training.
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In conclusion, the incorporation of deep learning into predictive analytics, particu-
larly in biosensor applications, provides novel opportunities for precise and efficient data
analysis. The resilience of deep learning architectures and their ability to address various
data challenges establish them as essential instruments for enhancing the capabilities of
predictive analytics.

3.2. IoT-Based Intelligent Biosensors

IoT refers to a network that combines the Internet, traditional telecommunications
networks, and other information carriers, facilitating interconnection and interoperability
among various physical devices, each of which is independently addressable. Essentially,
it constitutes a network expanding through the Internet to realize the interconnectivity
of devices, people, and things globally and at all times. IoT encompasses intelligent
objects equipped with sensors, networking, and processing technologies that are harmo-
niously integrated to deliver intelligent services, presenting unprecedented opportunities
for addressing large-scale challenges in application areas such as precision agriculture,
environmental monitoring, smart manufacturing, smart cities, and smart health [44,45].

Sensors within the IoT framework can precisely detect factors affecting food quality,
monitor perishable items, identify food adulteration, and gather real-time product infor-
mation. The collected data are shared across a network of interconnected smart devices to
enable early warnings and enhance the reliability of food safety tracking and tracing [46,47].
Seo et al. [48] presented a compact immune-sensing system for monitoring foodborne
pathogens managed by a dedicated application. This application uploads the results to a
server via a wireless network for public access, such as the presence of pathogens such as
Vibrio parahaemolyticus. This approach not only addresses the challenge of using diverse
mobile devices in the field, but also exemplifies pathogen monitoring through IoT. To
address the diminishing activity of immobilized enzymes over time in certain biosensors,
an intelligent portable biosensor was developed (Figure 4A) [49]. This biosensor comprises
an enzyme-based three-electrode electrochemical unit, signal processing and wireless data
transmission unit, iOS platform-based application, decision-making unit, and unit for
sharing results via an IoT cloud server. The nitrate determination results were transferred
to a server for storage in the cloud, facilitating biosensor commercialization and remote
monitoring. However, stakeholders must address concerns about data security and privacy
arising from digital integration, emphasizing the need to safeguard sensitive information
related to food, consumers, and operations.

The IoT can leverage biosensors integrated with wireless transmission technology and
wearable devices. In a livestock health application, an implantable biosensor system was
employed for the real-time measurement of the subcutaneous temperature at the base of a
cow’s ear with the aim of mitigating the risk of disease in cows (Figure 4B) [50]. This real-
time monitoring system comprises an implantable biosensor, a wearable radio frequency
identification (RFID) scanner, and a long−range (LoRa) hub. LoRa radio technology
facilitates the transmission of signals from the RFID scanner to the LoRa hub, whereas
WiFi technology is employed to transmit data from the hub to the cloud server. Compared
to Bluetooth devices, LoRa wireless technology demonstrates lower energy consumption
and a broader transmission range. Wearable sensors are portable and are ideal platforms for
continuous real-time health monitoring. They can detect substances such as lactic acid or
alcohol in sweat or tissue fluids, thus playing a significant role in health and medicine [51].
The real-time and portable nature of wearable biosensors has fostered a growing need for their
application in on-site food safety detection. Ma et al. [52] developed a flexible electrochemical
biosensor and supercapacitor using smart ink and screen-printing technology for efficient
detection of hydrogen peroxide and ascorbic acid (AA). This technology is effective for
monitoring juice and VC tablet samples for hydrogen peroxide and AA. Mishra et al. [53]
proposed a glove-based, flexible electrochemical biosensor. The biosensing system on the
index finger can be used for the on-site detection of organophosphate nerve agents by swiping,
and the results can be transmitted in real time to a smartphone device via wireless data.
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Figure 4. Schematic of IOT−based intelligent biosensor. (A) A schematic view of the proposed
intelligent biosensor: 1⃝ Electrochemical nitrate biosensing unit; 2⃝ Signal processing unit and
wireless data transfer; 3⃝ Decision making unit; 4⃝ Sharing the results through an Internet of Things-
based cloud server, adapted with permission from [49], copyright 2023, Elsevier (B) A schematic of
the method tested: 1⃝ the wearable RFID scanner reads the temperature data sent from the implanted
biosensor; 2⃝ the transmitted temperature data sent from each scanner are collected by the central
LoRa Hub; 3⃝ a single temperature data string formed by the hub is sent to the cloud server (at fixed
intervals); 4⃝ the temperature data are plotted (and can thus be visualized by any personal computing
devices), adapted with permission from [50], copyright 2023, Elsevier.
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The integration of the IoT into traceability technology enhances food safety moni-
toring, promotes information transparency, and contributes to rebuilding trust between
consumers and the market [54]. Food enterprises should optimize the use of the IoT for
informed decision-making and establish a transparent digital food supply chain. This
boosts consumer confidence by providing real-time ingredient tracking from the field to the
dinner table, offering consumers with comprehensive information about their purchased
ingredients. However, to ensure the seamless operation of intelligent biosensors integrated
into existing food safety systems and supply chain processes, adjustments and compatibil-
ity assessments may be necessary. The initial investment required to acquire and integrate
such technologies may pose a significant challenge for small food businesses with limited
resources, potentially acting as a barrier to market entry.

3.3. Smartphone-Based Intelligent Biosensors

Smartphones have become ubiquitous in modern life. Their applications extend to
mere communication tools, with functional boundaries continually expanding owing to
increased computing power, 5G connectivity, and the integration of multiple sensors [55].
For example, smartphone applications can be used to assist with tsunami evacuation,
accelerate forest inventories, and determine sodium intake [56–68].

A portable and user-friendly smartphone-based biosensor for detecting ochratoxin
A (OTA) in wine and instant coffee is proposed (Figure 5A) [59]. The smartphone camera
serves as a light detector, and a low-cost disposable analytical column contains lateral flow
immunoassay test strips and necessary reagents, allowing non-professional operators to
perform analyses as needed through simple manual operations. The biosensor generated a
signal that was inversely proportional to the amount of OTA in the sample, enabling reliable
quantification in compliance with the current regulations for rapid and confirmatory prod-
uct identification. Wang et al. [60] developed a smartphone-based fluorescent biosensor for
the rapid detection of S. typhimurium. A smartphone application using an inter-frame differ-
ence algorithm enables the online counting of fluorescent spots to determine the number of
target bacteria. By leveraging smartphones’ analytical and graphical processing capabilities,
optical signals, including red, green, blue [61], and hue-saturated luminance [62], can be
analyzed in real time, facilitating the detection and evaluation of targeted food products
to enhance food safety. Smartphone-based biosensors excel in image acquisition, but face
the challenge of ambient light interference, which is typically addressed by adopting 3D
printing technology. The sensor incorporated a 3D-printed cassette as a smartphone signal
adapter, and the reusable sensing paper holder was 3D-printed to ensure standardized, fast,
and robust smartphone detection of all three biosensing responses [63]. Montali et al. [64]
developed a smartphone-based collapsible biosensor to detect acetylcholine inhibitors
(Figure 5B). A small 3D-printed black box minimizes the influence of ambient light and
features a slot for insertion into the holder and an adapter for connection to the smartphone
as a portable light detector. While intelligent biosensors are progressing towards greater
portability and ease of handling, their successful implementation necessitates adequate
training for those interacting with the technology.

Currently, smartphone-based biosensors predominantly target food safety detection,
whereas bionic sensors such as electronic noses and tongues are emerging as potential
tools for food safety assessment [65]. Electronic noses identify volatile compounds in
food to assess their quality, and electronic tongues analyze their chemical properties.
Integrating smartphone-based biosensors with bionic sensors can enhance the overall
identification capabilities of the sensing system [66]. Wei et al. [67] devised a smartphone-
controlled electronic nose-sensing array comprising 12 sensors to collect taste and aftertaste
information (Figure 6). These data were then transmitted to a network platform via IEEE
802.11 (WiFi), facilitating on-site detection of yellow wine of various ages. In addition, IoT
has the potential to transform smartphone-processed results from specialized tests into
real-time and rapid tests. This transformation not only aids in food safety regulation but
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also empowers each consumer to become a guardian of Food Safety 4.0 through information
sharing.

Overall, smartphone-based biosensors, coupled with advancements in bionic sensors
and IoT integration, have significant potential for improving food safety assessments,
fostering consumer empowerment, and facilitating the realization of Food Safety 4.0. It
is essential to provide adequate training for users interacting with these technologies to
ensure their successful implementation in practical scenarios.

3.4. QR Codes-Based Intelligent Biosensors

QR codes serve as a link between physical products and digital information, and
are deemed advantageous tools for augmenting consumer empowerment. Consumers
promptly access a wealth of information through a smartphone scan of QR codes, which
enables them to evaluate the authenticity and safety of a product [68–71].

QR codes serve not only as a conduit for transmitting fundamental product infor-
mation but are also a subject of ongoing research for direct involvement in food safety
inspections. Yuan et al. [72] proposed the integration of paper-based microfluidics with
QR codes to enable optical scanning using a smartphone. The chromaticity of QR codes
has been harnessed to facilitate reliable reading. This was achieved by strategically immo-
bilizing the target analyte antibodies in the decoding region of the QR code. In addition,
gold nanorods labeled with antibody markers served as the signal elements within the
system. Signal enhancement was attained through the application of pyrocatechol, which
reduced the nanosilver to metallic silver on the surface of gold nanorods. This synergistic
amalgamation of techniques ensures a legible and distinguishable QR code, enhancing
its functionality as a dependable data carrier, even in the presence of potential errors or
distortions.

In conclusion, QR codes have emerged not only as effective and versatile tools for
intelligent biosensors, but also as significant contributors to consumer empowerment. Their
capability to digitize and seamlessly integrate information empowers consumers by pro-
viding instant access to comprehensive product details and facilitating informed decision
making. Furthermore, the potential for customization and interactivity enhances consumer
experience, allowing active engagement with brands and the acquisition of additional
resources tailored to individual preferences and needs. Ongoing research continues to
explore the transformative potential of QR codes to revolutionize the field of biosensors.
This exploration creates a path toward smarter, more accurate, and user-centric diagnostic
solutions that empower consumers to manage their health and well-being. This paves the
way for the food industry to thrive in the era of Food Safety 4.0.

3.5. Smart Packaging with Intelligent Biosensors

Smart packaging involves the integration of advanced technologies into packaging
materials to enhance the product quality, safety, and functionality. With the integration
of intelligent biosensors with advanced capabilities, smart packaging systems can revolu-
tionize the monitoring, management, and overall experience of products across the supply
chain. This transformation represents an effective approach to survey the condition of
packaged foods by mitigating food waste and the incidence of foodborne illnesses.

The sensitivity, stability, and efficiency of sensors in smart biosensing packaging
heavily rely on the design of the underlying materials [73]. For instance, the synthesis of
metal-organic frameworks on the packaging material itself can be employed to manufacture
nano-composite film, enhancing the structural performance of polymers while simultane-
ously acting as analyte receptors or signal transducers [74]. Song et al. [75] fabricated a
Fe(II)-based metal-organic framework as a precursor for the detection of oxytetracycline
(OTC) using iron oxide and mesoporous carbon materials. This material exhibited high
selectivity, applicability, repeatability, stability, and regenerability, which demonstrated the
ability to detect OTC in milk at concentrations as low as 0.027 pg/mL.
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Figure 5. Schematic of a smartphone−based biosensor. (A) Schematic diagram of a smartphone-based
portable biosensor for the quantitative detection of OTA in wine and instant coffee samples. The
rightmost curves in the figure represent the calibration curves obtained in wine and instant coffee
matrices (analysed in triplicate for each standard solution), with the black dots for white wine and the
red dots for instant coffee ), adapted with permission from [59], copyright 2023, Elsevier.(B) Schematic
diagram of the proposed smart biosensor: (a) Schematic drawing of the device. (b) Device connected
to the One Plus 6 smartphone. (c) Unfolded paper-based biosensor and 3D printed holder. (d) The
two parts compose the 3D printed holder; each part contains a 5 mm hole to enable the addition
of luminol solution and acquisition of the chemiluminescence signal with the smartphone. (e) 3D
printed holder (top and bottom view) housing the paper-based biosensor. (f) Detail of the assembled
holder showing the N52 grade neodymium magnets designed to keep the paper biosensor folded,
adapted with permission from [64], copyright 2023, Elsevier.
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Polymeric substrates, including biodegradable polymers, such as cellulose, starch,
and chitosan, along with conventional plastics, such as polystyrene and polyethylene, play
a pivotal role as fundamental materials in smart food packaging, primarily because of
their cost-effectiveness and tunability [76]. Prasad et al. [77] designed a packaging tray
and a reagent-infused membrane to create a laboratory environment for packaging that
can be universally paired with various pathogen sensors. This system allowed for the
detection of target pathogens at 103 CFU/g in packaged whole chicken samples (Figure 7A).
Barandun et al. [78] incorporated a “zero-cost” printed electrical gas sensor within food
packaging, which allows for the authentic detection of food freshness (Figure 7B). These
sensors utilize the natural moisture-absorbing characteristics of cellulose in paper and
measure the impedance to monitor the presence of water-soluble gases near the paper, such
as NH3, which is a characteristic gas indicating food decay.
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Figure 7. Schematic of smart packaging with intelligent biosensors (A) Schematic illustration of the
Lab-in-a-Package platform: (a) Complete Lab-in-a-Package in situ detection platform with inclined
packaging tray, reagent-saturated membrane, and sensor incorporation shown for ready-to-eat
chicken products. Imaging procedure involving fluorescence scanning is also shown. (b) Inclined
food packaging trays with angles ranging from 45◦ to 90◦ to optimize test sample localization.
(c) Depiction of membrane saturation with reagent components, diffusion of buffer components and
target analyte to sensor surface, and fouling prevention. (d) Fluorescent nucleic acid probe sensor
development with corresponding material surface and biochemical modifications, adapted with
permission from [77], copyright 2023, Advanced Materials. (B) Schematic diagram of an electrical gas
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sensor for detecting food freshness: (a) Fabrication of paper-based electrical gas sensors (PEGS).
Carbon electrodes are printed on Whatman Chromatography 1 cellulose paper with a ballpoint pen
and cutter plotter, allowing rapid prototyping in the desired geometry. Once printed, the sensors
are cut and placed inside a card-edge connector for characterization. (b) Top view of a single PEGS
consisting of two electrodes with three fingers and a spacing of 1 mm between each finger. (c) Cross-
sectional view of a PEGS across three fingers (red dashed line in panel (b)). Carbon ink (black)
partially penetrates paper (white), adapted with permission from [78], copyright 2019, American
Chemical Society.

The emergence of novel materials has facilitated advanced functionalities, including
analyte reception, signal transduction, and creation of laboratory-like conditions within
packaging. Ongoing progress in materials science, sensor technology, and data analytics
holds promise for further increasing the capability and efficiency of smart packaging.
The integration of comprehensive solutions that incorporate artificial intelligence and
machine learning algorithms may unlock opportunities for predictive analysis, preventive
maintenance, and adaptive packaging designs.

4. Conclusions and Future Prospects

As the food industry enters the era of “Food Safety 4.0”, the integration of intelligent
biosensors has emerged as a game-changing solution to food safety challenges. These
advanced sensors offer advantages that promise to revolutionize food safety practices and
enhance consumer protection.

Intelligent biosensors play a crucial role in early pathogen detection, and are often
applied to monitor the freshness of foods such as meat, shrimp, and fruits, ensuring that
foodborne illnesses caused by contamination or spoilage can be identified before they
reach the consumer, preventing potential hazards from reaching the consumer. The trace-
ability and transparency provided by intelligent biosensors combined with IoT enables
the monitoring and tracking of every type of food product. For example, for cold chain
food imported from overseas or food that needs to be exported or transferred through the
information tracing mechanism, the responsible parties in each link of food production and
distribution can be clarified to effectively prevent various food safety risks, and the integra-
tion of intelligent biosensors with data analytics and artificial intelligence allows for the
prediction and real-time monitoring of the levels of harmful substances generated during
animal breeding and product processing, enabling stakeholders to adopt the integration of
intelligent biosensors with data analytics and artificial intelligence to predict and monitor
the levels of hazardous substances generated during animal breeding, product processing,
and other processes, enabling stakeholders to adopt proactive food safety management
strategies, take preventive measures, and optimize food safety practices. Two essential
factors contribute to the optimal realization of the benefits associated with intelligent
biosensors: first, the need to persuade stakeholders about the advantages of adopting
these biosensors and overcoming any resistance to change, and second, fostering collabora-
tion among stakeholders, securing regulatory support, providing adequate training, and
adopting a comprehensive implementation approach.

As the field of intelligent biosensors continues to develop, their landscape of intelli-
gent biosensors is evolving with the integration of new materials, forms, and technologies
using more portable, advanced, and efficient solutions for food safety. Wearable biosensors
facilitate the convenient, personalized, and continuous monitoring of individual health
parameters, food allergens, and contaminant exposure. Nanotechnology-based biosen-
sors, offering possibilities for ultrasensitive pathogen detection and real-time surveillance,
emerge as crucial tools for identifying low-level contaminants or pathogens in complex
matrices. Quantum-based biosensors, including quantum dots and quantum resonance
sensors, are promising for achieving analyte detection with heightened sensitivity and
precision. Intelligent biosensors are expected to exhibit enhanced multiplexing capabil-
ities, enabling simultaneous detection of multiple analytes. Furthermore, the trajectory
of intelligent biosensor evolution is poised towards the creation of biodegradable and
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environmentally friendly variants, addressing concerns related to e-waste and aligning
with the escalating emphasis on eco-friendly technologies. In addition to food safety, smart
biosensors are applicable to environmental sensing, contributing to the monitoring of water
quality, air quality, and soil conditions. Collectively, these diverse applications contribute
to a more comprehensive understanding of potential risks to food safety.

The convergence of biosensors with innovative technologies, such as artificial intel-
ligence and IoT, has broadened their societal impact, contributing to economic growth,
serving the population, and generating societal benefits. This intersection introduces social
challenges, including ethical dilemmas and privacy breaches. Increasing reliance on these
technologies tends to foster dependence, eliciting anxiety and panic when issues arise
and potentially diminishing people’s subjectivity in navigating an objective world. The in-
evitable challenge of large-scale data privacy breaches arises with smart technology, which
enables extensive data collection and creates opportunities for malicious intent. Moreover,
if smart biosensors cause irreversible harm to society, then the ethical dimension of respon-
sibility warrants further consideration. Current research on, and development of intelligent
biosensors requires a meticulous examination of potential ethical concerns, emphasizing a
development paradigm rooted in meeting human needs without compromising ecological
sustainability, the moral and ethical fabric of society, or the practical interests of the public.

Intelligent biosensors constitute a potent instrument for realizing the objectives of Food
Safety 4.0. The food industry can establish a secure, transparent, and robust food supply
chain by incorporating cutting-edge sensors into a holistic food safety framework. With
ongoing technological advancements and strategic implementations, intelligent biosensors
have been poised to shape the trajectory of future food safety management, rendering
them more intelligent, proactive, and adept at safeguarding public health and bolstering
consumer confidence.
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