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Abstract: Routine, remote, and process analysis for foodstuffs is gaining attention and can provide
more confidence for the food supply chain. A new generation of rapid methods is emerging both
in the literature and in industry based on spectroscopy coupled with AI-driven modelling methods.
Current published studies using these advanced methods are plagued by weaknesses, including
sample size, abuse of advanced modelling techniques, and the process of validation for both the
acquisition method and modelling. This paper aims to give a comprehensive overview of the
analytical challenges faced in research and industrial settings where screening analysis is performed
while providing practical solutions in the form of guidelines for a range of scenarios. After extended
literature analysis, we conclude that there is no easy way to enhance the accuracy of the methods
by using state-of-the-art modelling methods and the key remains that capturing good quality raw
data from authentic samples in sufficient volume is very important along with robust validation. A
comprehensive methodology involving suitable analytical techniques and interpretive modelling
methods needs to be considered under a tailored experimental design whenever conducting rapid
food analysis.

Keywords: chemometrics; spectroscopy; challenges; research; validation; methodology; modelling;
guidelines

1. Introduction

Official methods adopted by regulatory authorities to protect a food product, de-
fine its authenticity, and tackle food adulteration are often chemical, ‘targeted’ methods
that are designed to identify and quantify specific known compounds or markers (i.e.,
targets) as major or minor ingredients within the food. One of the targeted methods is
chromatography, which produces specific signal peaks after sample extraction following
in-column separation. Similar output is produced using direct mass spectrometry analysis,
depending on the complexity of the sample and the analytical needs [1]. These peaks are
then translated to specific analytes and quantified. The concern with these methods is
that they are generally slow, non-environmentally friendly and require substantial initial
capital investment and experienced staff to perform them. A new generation of rapid
methods is emerging based on vibrational spectroscopy (mid-infrared, near-infrared, and
Raman spectroscopy) and other sensors such as nuclear magnetic resonance spectroscopy
and vision technology, fuelled by the rise in AI-based analytics. For instance, the cou-
pling of multispectral/hyperspectral imaging and e-nose can rapidly produce a highly
complex signal based on the properties and molecular structure of the foodstuffs that are
analysed [2]. In contrast with targeted methods, in “untargeted” analysis, the outcome of
the determination is not derived from the precise isolation and quantification of specific,
known markers but from the chemical or molecular fingerprint of analytes extracted by

Foods 2024, 13, 846. https://doi.org/10.3390/foods13060846 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13060846
https://doi.org/10.3390/foods13060846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-6800-6706
https://orcid.org/0000-0002-9199-8704
https://doi.org/10.3390/foods13060846
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13060846?type=check_update&version=1


Foods 2024, 13, 846 2 of 18

the raw total spectrum, which is theoretically the sum of the signal from the sample’s
constituents [3]. A common characteristic of all untargeted methods is that they provide a
large number of signal peaks (in this case, absorbance or reflectance) coded as chemical
information, presented in the form of numerous variables (wavelength or wavenumbers).
The chemical information in the spectral data is often included within a lot of instrumental
and environmental ‘noise’ [4]. The extraction and interpretation of this useful information
are usually difficult and laborious. To process these multivariate data, a combination
of mathematical and statistical techniques is used, commonly known as ‘chemometrics’.
Nowadays, chemometrics, also referred to as “machine learning”, methods are used for
developing prediction/decision models based on the knowledge acquired from calibration
data using the principles of pattern recognition theory [5,6]. Recently, machine learning
(ML) has been associated with the generic term ‘Artificial Intelligence’ (AI), although this
is inaccurate as AI is a much broader term [7]. Thanks to these methods, information
in multidimensional data can be automatically processed, elucidated, interpreted, and
discriminated, resulting in advanced models that can authenticate, detect adulteration,
and determine intrinsic quality parameters in foodstuffs [8]. Although not designed to
completely replace the official regulatory ‘targeted’ methods, untargeted methods still
have their place in the routine analysis and screening of foodstuffs. Especially after the
pandemic, routine, remote, and process analysis for foodstuffs has been gaining attention
and can provide more confidence for all stakeholders involved [9].

Currently, research on chemometrics and its application in the research field of food
authenticity is thriving. The growth in the number of papers in the area is 700% in less than
20 years (Figure 1).
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This figure depicts the rise in the number of research papers per year containing the
keywords “chemometrics” and a combination of “chemometrics” and “Food”. The data
show a significant increase over the years, illustrating the growing interest and research
activity in this field. As the term ‘chemometrics’ is now replaced by ‘ML’ or ‘AI’, the actual
studies related to the field of rapid analysis using the techniques described from 2022 and
onwards could be even higher than demonstrated here (Figure 1).

Nevertheless, new chemometrics techniques are being developed, and existing tech-
niques that are sufficiently generic and based on a solid mathematical background are being
improved to make them applicable to a number of problems. In the literature, chemomet-
rics has been used as an essential tool for non-destructive tools to assess various scenarios
such as beer classification, rice discrimination, and sensory evaluation [10]. In addition, the
use of chemometrics has enabled the unified analysis of data derived from more than one
analytical technique in a new field of “data fusion” and, consequently, more information
about the analytes, although improved accuracy is not always guaranteed [11].

Current chemometric implementations in the literature are plagued by some common
problems. One of them is the number of unique samples that the research studies are based
on for developing or validating chemometric models, which evidently appears rather small.
This constrains the use of more advanced AI techniques such as deep neural networks
and transformers, which are state-of-the-art in machine learning but require hundreds
if not thousands of samples to be effectively trained [12]. Another issue is the variable
selection techniques that are based on visual inspection of the data and not algorithmic
or knowledge-driven methodologies. In limited capacity in some research publications,
advanced chemometrics methods are being applied in excess in an effort to add depth
to the existing results and discussion. However, there are cases where they arguably do
not add to the narrative; they end up vaguely supporting the original arguments made
by the rest of the techniques and usually do not serve the objective of the study in which
they appear.

Based on the above, this review paper aims to critically evaluate the methodology used
by the authors of chemometric-based studies, highlight the analytical methods and current
challenges, and identify some of the major reasons for inconsistencies in the practices used.
Finally, this review will also provide practical suggestions for academic and industrial
research to improve the technical approach taken in future scientific studies in order to
provide innovative solutions, tackle overrated activities, and ensure food authenticity.

2. Challenges and Sources of Error in Current Research Studies

The research challenges in food analysis with regard to instrumental analytical tech-
niques, experimental design, the application of ML/AI/chemometrics, and model valida-
tion, as well as analysts’ perspectives, are critically discussed below.

2.1. Analytical Methods

Among the various analytical techniques developed, molecular (including genomics
and proteomics) and chromatographic methodologies have been used mainly for food
authentication studies over the last few years [13]. As implied above, these targeted
methods, such as high-performance liquid chromatography (HPLC), offer accurate, precise,
and reliable results. However, despite their benefits, these methods are typically time-
consuming and destructive and require expensive equipment and highly skilled personnel,
which limits their application to the real-time screening of processes required by industry,
where timely decisions are an essential requirement [14]. This general trend toward the
use of molecular and chromatographic techniques poses fundamental questions regarding
their adoption in an industrial setting. Specifically, the heterogeneity and physical nature of
food samples usually require sample preparation, which is time-consuming, laborious, and
destructive for classical targeted analytical techniques [15]. Besides sample preparation,
the sample size used is small (<1 g) and therefore unlikely to be representative of the high-
throughput production in industry, adding another angle that is important: the frequency
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of sampling, which by design is low when using targeted analytical methods. Most notably,
these methods may allow other types of adulterants to remain undetected due to the
targeted analysis of specific compounds or analytes of interest [16].

On the contrary, spectroscopic techniques such as vibrational spectroscopy enable
rapid, easy, non-destructive, high-throughput, and relatively low-cost screening techniques
with minimal sample preparation, with them being capable of online food analysis [17].
Here, the spectral information extracted is related to the molecular structure and, specifi-
cally, the vibrational behaviour of molecular bonds within a sample after the interaction of
the sample with light [18]. Moreover, vibrational spectroscopy is characterised as a green
analytical tool since it is an environmentally friendly option, minimising sample pretreat-
ment with hazardous reagents and solvents [19]. Other techniques providing multivariate
data such as hyper- and multispectral imaging have been developed as well to ensure food
authenticity. As an advanced spectroscopy technique, hyperspectral imaging captures the
spectrum of every pixel from the foodstuffs of interest, with it being developed regarding
the authenticity of different types of foodstuffs, such as flour, meat, fruits, and oil.

Although existing spectroscopic techniques coupled with chemometrics are capable of
meeting food screening demands, a set of specific and challenging tasks should be overcome
for their inclusion in real-world industrial applications and official methods (Figure 2).
Therefore, research is needed to develop both reliable, state-of-the-art spectroscopic sensors
and robust ML/AI chemometric models, as discussed in Section 2.3.
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2.2. Experimental Design

The first consideration when designing a non-destructive spectroscopic analysis is the
sampling plan, which can include certified or authentic food samples. Nowadays, most
experimental studies that deal with food authentication are conducted to verify the labelling
information about a specific food property (e.g., a certain geographic origin, variety, or
composition) and to ensure its purity and quality. As a result, the absence of libraries
of authentic samples (unlike the pharma industry where agencies such as Pharmacopeia
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exist) leads the literature authors to purchase food samples from unreliable sources, such
as the retail market, for calibrating and validating their methods [20]. This compromises
the integrity of the results since the authenticity of retail samples is not confirmed [21].
Additionally, the experimental calibration data used in food studies mainly focus on a
specific source of variation for the development of classification models [22]. Furthermore,
only a few studies capture some of the variability in the original samples introduced by
different influential natural factors (e.g., climate, temperature, and geographical location)
and other factors such as processing and, in most cases, storage conditions. The building of
comprehensive databases of certified reference food materials for authenticity will allow
for accurate and reliable food studies, which constitutes not only an important first step
but also a considerable challenge [23].

To extend the use of non-destructive spectroscopic methods, the variability in classi-
fication models, from the acquisition of data to the prediction of the sample’s properties,
needs careful consideration of factoring in differences derived from instruments, sampling,
and analyst operations. The experimental design, from conception to data acquisition
and beyond, changes significantly depending on the setting, with the research/academic
environment having more control over the conditions (temperature, light, moisture, and
motion) compared to industry. Also, sample conditions can dynamically change with the
sample’s journey from industry to the laboratory, where most of the literature studies have
been conducted. Some studies obtained samples under certain processing steps, while
other studies scanned packaged samples [24], which will influence the model’s perfor-
mance on newly presented samples. Naturally, the question arises as to whether the lack
of integrating this variability into the experimental design can cause data (in)consistency
problems and therefore very low model applicability.

For this purpose, it is evident that the calibration data should encompass as many
sources of variation as possible for a well-designed study. Specifically, the incorporation of
not only natural (e.g., seasonal, cultivar, environmental, food varieties or types, etc.) and
processing (production parameters and storage) variability into a food sample but also
other secondary types of real-world experimental variation (instrumental, sampling, and
human factors) is necessary for the creation of universal and robust chemometric models
and their transition to industrial online applications [25].

2.3. AI/ML/Chemometrics Pipelines

Over the last decade, both established and newly developed chemometrics techniques
have been applied in food applications to tackle various emerging problems (Table 1).
Moreover, chemometric approaches have been used for multi-analytical methods that are
outside the field of non-destructive analysis, including untargeted HPLC [26], nuclear
magnetic resonance [27], elemental metabolomics [28], mass spectrometry [29], and stable
isotope analysis [30]. In this regard, there are specific chemometric techniques that have
found wide applicability compared to others in the literature. In particular, principal
component analysis (PCA), partial least-squares–discriminant analysis (PLS-DA), and
partial least-squares regression (PLS-R) are by far the most widely used techniques in
exploratory, classification, and regression analysis, respectively [31]. Nonetheless, these
techniques are not always effective for solving non-linear analytical problems due to their
assumption of linearity [32]. Additionally, the performance of the PLS-DA classifier is
worsened by the increase in the number of model classes. This hinders its application to
more complicated multi-class classification problems [33].

Table 1. Development of chemometrics in food applications using non-destructive spectroscopic tools.

Chemometrics Technique Applications Performance (as Reported) Refs

LDA NIR Alcohol degree of Chinese liquor R2 = 0.96 [34]

LDA Raman Adulterants (fructose corn syrup and maltose
syrup) in honey Accuracy = 91% [35]
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Table 1. Cont.

Chemometrics Technique Applications Performance (as Reported) Refs

QDA HSI Detection of anthracnose in mango fruits KAPPA = 90% [36]

KNN NIR Geographic origin discrimination of millet Discrimination rate = 0.99 [37]

KNN Raman Detection of adulteration of extra virgin olive oil Classification rate = 0.79 [38]

KNN MIR Monitoring of soluble pectin content in orange
juice Accuracy = 85% [39]

SIMCA NIR Identification of the types of fat added to feed Sensitivities = 100% [40]

SIMCA Raman Detection of milk powder adulteration Accuracy = 97% [41]

PCR Raman Honey adulteration Accuracy = 96.54% [42]

MLR NIR Soluble solids content of tea soft drinks R2 = 0.98 [43]

MLR MIR Mycotoxin deoxynivalenol (DON) in wheat R2 = 0.99 [44]

PLS NIR Aflatoxigenic fungal contamination in rice R2 = 0.67 [45]

PLS SERS Identification of food processing bacteria Accuracy = 99% [46]

PLS MIR Quality characteristics in pomegranate kernel oil R2 = 0.91 [47]

PLS THz Detection of moisture content for Ginkgo biloba
fruit R2 = 0.78 [48]

PLS HSI Identification of sun-dried and
sulphur-fumigated herbals Sensitivity = 96% [49]

SVM NIR Adulteration of food products (extra-virgin-olive
oil, honey, milk, and yogurt) Accuracy = 0.90–1.00 [50]

SVM Raman Adulteration of extra virgin olive oil R2 = 0.99 [51]

SVM MIR Discrimination of wild Paris Polyphylla Smith
var. yunnanensis Accuracy = 87% [52]

SVM THz Use in dried tangerine peels Accuracy = 94% [53]

SVM HSI Authentication of Theobroma cacao bean hybrids Prediction error = 3.8–23.1% [54]

DT NIR Poultry quality classification Precision = 0.74 [55]

DT Raman Identification of foodborne pathogenic bacteria Correct recognition ratio = 0.98 [56]

DT MIR Rapid screening of aflatoxin-contaminated
peanut oil Sensitivity = 100% [57]

DT THz Moisture content in fruits and vegetables Accuracy > 94% [58]

DT HSI Evaluation of subjective tea quality R2 = 93% [59]

RF NIR Determination of the food dye indigotine in
cream R2 = 0.94; RPD = 4.09 [60]

RF Raman Classification of milk products from cows,
buffalos, and goats Accuracy > 94% [61]

RF MIR Identification of the geographical origin of black
tea Accuracy = 100% [62]

RF THz Identification of rice powder mixtures Accuracy = 98% [63]

RF HSI Quantification of Clostridium sporogenes spores in
food products Accuracy = 80% [64]

FNN THz Prediction of gelatin of various animal origins Accuracy = 100% [65]

FNN HSI Measurement of firmness and soluble solids
content for apples R2 = 0.76, 0.79 [66]
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Table 1. Cont.

Chemometrics Technique Applications Performance (as Reported) Refs

ANN NIR Measurement of carbohydrates and moisture in
rice R2 = 0.98, 0.97 [67]

ANN Raman Rapid analysis of sugars in honey R2 > 0.96 [68]

ANN THz Prediction of the freshness of pork RMSEP = 9.9% [69]

ANN HSI Prediction of moisture content in Lonicerae
Japonicae Flos RPD = 4.42 [70]

CNN NIR Determination of the soluble solid content of
crown pear R2 = 0.96 [71]

CNN SERS Quantification of thiram and pymetrozine in tea R2 = 0.99, 0.98 [72]

CNN MIR Identification of sugar adulteration in honey Accuracy = 100% [73]

CNN THz Classification of wheat grain varieties Accuracy = 98% [74]

CNN HSI Quantitative adulteration in Atlantic salmon R2 = 0.99 [75]

ELM NIR Detection of fennel origin Accuracy = 100% [76]

ELM Raman Identification of infant rice cereal Accuracy = 99% [77]

ELM THz Identification of adulterated rice seeds Accuracy = 100% [78]

ELM HSI Prediction of the cadmium content in rape leaf R2 = 0.98 [79]

Note: LDA: linear discriminant analysis; QDA: quadratic discriminant analysis; KNN: K-nearest neighbour;
SIMCA: soft independent modelling of class analogy; PCR; principal component regression; MLR: multiple linear
regression; PLS: partial least squares; SVM: support vector machine; DT: decision Tree; RF: random forest; ELM:
extreme learning machine; FNN: feedforward neural network; ANN: artificial neural networks; CNN: convolu-
tional neural network; NIR: near-infrared; MIR: mid-infrared; SERS: surface-enhanced Raman spectroscopy; THz:
terahertz; HSI: hyperspectral imaging; R2: coefficient of determination; RPD: ratio of performance to deviation;
RMSEP: root mean square error of prediction.

Regarding non-linear modelling methods, some studies have used SVM as a classifier,
which aids in coping with multi-factorial problems using a mathematical concept called
the kernel trick. However, this approach needs careful design consideration with the right
number of support vectors and adequate hyperparameters. Also, SVMs are normally
single outputs (meaning that they provide binary outputs for classification). Practically,
the detailed setup of SVM algorithms is not mentioned very often in the published stud-
ies in which several commercial software packages were used directly for data analysis.
Besides SVM, ANNs have found rapid development and wide applicability in various
fields of science as a non-linear modelling method, thanks to their high predictability
and practicability [80]. The ANN is an advanced calibration method, applicable in both
classification and regression problems [81]. However, the ANN requirement for a large
number of samples to achieve the appropriate modelling of the non-linear data and to
reduce the risk of overfitting must be considered by anyone who uses this method, and this
could, in theory, limit its application [82]. Another concern is the inherent complexity and
lack of “explainability” (i.e., interpretation) of the ANN models, even if there are enough
samples supplied to the algorithm. Addressing or mitigating these issues, certain types of
ANNs, including FNNs, CNNs, and recurrent neural networks, when co-developed with
computer and food scientists, have the potential to address complex food authentication
analytical problems. On the other hand, the inevitable requirement of samples to cover
the comprehensive variability will lead to the creation of huge databases with expensive
proprietary software and hardware. Database management implies several challenges such
as complexity, privacy, and storage problems [83]. This provides an additional challenge
since important issues concerning computation time and complexity, exceeding memory
demands, and low classification performance can be faced due to the increasing number
of calibration samples [84]. Inherent to this issue, the use of batch learning methods re-
quiring full recalibration after the addition of each new sample is inappropriate for the
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building of these universal chemometric models. Hence, there is a growing demand for
accurate open-source chemometric tools to allow for the evolution or incremental learning
of existing models and, at the same time, minimise computational and spatial costs [85]. In
parallel, privacy and ethical concerns related to data sharing and user rights may hinder
the development of large-scale general models when different proprietary databases are
distributed across different institutions, private organisations, or countries. In this regard,
the rise in federated learning (a decentralised ML approach to model building) as a novel
privacy-preserving paradigm brings new opportunities to the sector [86].

To address the increasing complexity of real-world food applications, the building
of more robust multi-class chemometric models is necessary [87]. For this purpose, the
development of new chemometric methods that will enable the flexible modelling and
representation of these multi-class datasets and their synergy with other pattern recognition
techniques are two crucial requirements going forward with this challenge. Besides this,
these methods should be highly sensitive to the detection of adulterants/contaminants
at very low percentages and the simultaneous determination of multiple components in
complex mixtures. Both are considered difficult real-world analytical problems.

2.4. Model Validation

Model validation is an important step in the construction of a chemometric model
for assessing the accuracy, reliability, robustness, and predictive power of a model for
unknown samples, optimising the model parameters, and preventing model overfitting
or underfitting [88]. The phenomenon of overfitting is observed when a model has been
trained with limited data and is dependent on these data and, therefore, has lost its
generalisation ability [89]. Moreover, in underfitting, a model that has been created with
too few components/variables or original examples (samples, in this case) cannot cover the
variability in real-world data [90]. In addition, it is crucial to ensure that the same samples
are not used to build the model and to evaluate the predictive power of the model [14]. Due
to the importance of the validation step, two cross-validation schemes (“Leave-One-Out”
(LOO) and k-fold cross-validation) are mainly used in the relevant literature [91,92]. LOO
cross-validation produces overestimated results and potentially conceals overfitting when
small validation datasets are used, resulting in classifying unrepresentative samples as
part of the cross-validation set [93]. In addition, most published studies follow a single-
laboratory validation strategy instead of an inter-laboratory validation method where the
same experimental trial is performed and assessed in different laboratories to assess the
transferability of the chemometric models.

Therefore, obtaining significant results requires not only meaningful analysis but also
appropriate validation strategies, which are crucial in providing proof that the developed
method has realistic and unbiased responses for future unknown samples [94]. Apart
from cross-validation and external validation using independent testing samples/data, the
application of inter-laboratory validation studies to the developed chemometric models
to evaluate their prediction ability in other laboratories is essential. However, this is
limited in food science studies due to the necessity of an adequate number of training
samples incorporating the variability of multiple laboratories in different instrumental
conditions [95]. This also has the potential to increase cross-lab collaboration, exploit
federated chemometric models, and make data and model sharing a common practice, a
practice that is currently lacking in the field [86].

2.5. Analyst Perspective

The human influence in decision-making is substantial. In theory, non-destructive
rapid food analysis provides an unbiased, automatic, and ‘impersonalised’ result, removing
the human element due to the high complexity of the data structure and the “black box”
nature of the modelling methods. There are examples in industry where such offline
instruments (FOSS Milkoscan) are in place. In these cases, the human is the user of
the method.
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On the contrary, in small-scale studies published in the literature, the analyst is a
person with sufficient knowledge of data analysis and who is more involved in the process
as both the user and the developer. Results from modelling could be reasonably adjusted
or overfitted, and these adjustments may not always be in favour of the generality of
the model. In some cases, one can argue that the same dataset can produce either mixed
or controversial results depending on the analyst in charge [96]. Therefore, upholding
integrity when dealing with spectral data is vital, especially in high-risk applications.
Model validation is a critical strategy to mitigate the risk of producing overrated prediction
performance. Debates may also arise concerning the size and proprietary nature of the
experimental dataset. Therefore, open-source data and modelling methods can implicitly
provide another form of validation, as human interference cannot dominate the distortion
of the results.

3. How to Address the Challenges
3.1. Sensor/Hardware Development

Despite the achievements in analytical instrumentation over the last few years, the de-
velopment of new types of cost-effective instrumental techniques combining spectroscopic
techniques and other instrumental analytical techniques is a challenging task due to tech-
nological limitations (in optics, detector technology, etc.) [97]. In addition, the complexity
of the data acquired increases exponentially [98]. The development of new non-destructive
sampling procedures that will enable the frequent collection of representative and adequate
samples, independently of their physical nature (solid, liquid, or gas), for highly accurate
and reliable posterior analysis also presents a great challenge [99].

There is penetration of rapid, easy-to-use spectroscopy-based instruments in industry
based on existing benchtop or portable sensor designs. The feed industry has already
replaced chemical analysis for basic feed composition with near-infrared spectroscopy and
chemometrics, and several analytical targets (total protein, fats, carbohydrates, etc.) have
been tested [100]. Moreover, rapid methods developed using vibrational spectroscopy and
chemometrics are already used in quality control/quality assurance (QC/QA) in the dairy
industry, such as the Milkoscan® and FoodScan® from FOSS Instruments (Hilleroed, DK).
Benchtop devices, such as the DA 7250 NIR analyser from PerkinElmer (Waltham, MA,
USA), the TANGO FT-NIR from Bruker (Ettlingen, Germany), and handheld devices, e.g.,
MicroNIR OnSite-W from VIAVI Solutions (Milpitas, CA, USA), are designed specifically
for analysis in the food and agriculture industries. To support these instruments and
the analyses conducted, either the instrumental manufacturer or a third party provides
calibration models. Besides this, third parties, such as AuNIR Ltd. (Towcester, UK) and
Sagitto Ltd. (Cambridge, New Zealand), specialise in chemometric models that support
the agri-food industry by developing, maintaining, and updating calibration models that
extend the functionality of existing spectral instruments to provide more precise analysis.

3.2. Dedicated Chemometrics Approaches for Further Analysis

As discussed, the current limitations of chemometrics methods are that present algo-
rithms lack the capability to integrate varied datasets, which limits their effectiveness. A
potential interim solution is the construction of an ensemble of models each trained on
different datasets. This ensemble, functioning related to a decision support system, could
collect insights from multiple models to deliver a comprehensive analysis.

Moreover, each spectroscopic instrument provides individual information for different
food analyses, making assessing food products challenging, of which multi-sensor systems
hold considerable promise [101]. For instance, NIR alone cannot holistically decipher the
structural information of food products. Therefore, combining NIR with other techniques,
such as MIR or SERS, can lead to an encompassing evaluation of food by integrating multi-
ple information sources. Data fusion from complementary sensors has been employed for
authentication and quality assessment, significantly boosting the performance of individual
instruments [102,103]. Regarding HSI data, modelling and wavelength selection methods
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for spectral data are not entirely effective at solving the issue of 3D data. The spatial
information of HSI also needs analysis, leading to the application of data fusion techniques
to maximise the use of HSI data [103]. Data fusion achieves convincing results by separately
evaluating the spectral and spatial information from HSI data. Kucha et al. [104] applied
three data fusion methods to predict the intramuscular Fat content in pork samples, and
data fusion resulted in a higher capacity for predicting this parameter.

Recent advances in neural network models have also marked a significant shift in
interpreting complex chemical characteristics [105]. These models, particularly optimised
for real-world applications in food analysis, reveal the potential field of artificial general
intelligence (AGI) in food products. Despite their resource-intensive nature, these models
promise a systematic approach to data analysis, pending the availability of sufficient com-
puting power and annotated data to support their real-world application. Additionally, the
suggestion to apply fuzzy-related and Bayesian-based models could potentially mitigate
the opacity of NN and SVM, providing an interpretable analysis. A fuzzy system is a
method for modelling and processing imprecise and vague information, which is charac-
terised by membership functions that assign degrees of belonging to each variable [106].
Moreover, explainable and trustworthy AI are two recent and emerging topics that aim
to address these challenges with the development of new algorithms. These proposed
approaches would respond to several key issues and facilitate incremental and federated
learning—concepts not exclusively pertinent to the food sector but universally recognised
as challenges in diverse fields.

A critical observation in this paper is the necessity to design the chemometric pipeline
prior to delving into modelling methods. Current studies often disproportionately em-
phasise sophisticated classification or regression techniques such as optimised decision
tree models, neglecting the importance of a systematic chemometric process with simpler
approaches. This process should span from preprocessing to the application of modelling
methods. Regarding preprocessing, the integration of additional tools and methods is rec-
ommended. While PCA is a standard approach, it is not without its limitations. Moreover,
reimagining the outputs of instruments like FTIR as time-series datasets opens possibili-
ties for the application of decomposition techniques (without the Fourier transformation
algorithm). These strategies might hold the key to refining the approach, underscoring
the potential that lies in reevaluating and enhancing preprocessing stages before exploring
new modelling schemes. To describe future rapid spectroscopic analysis, one could cite a
message from the NIR 2023 conference: “There will be no causal interpretation without
prediction validation and no prediction without attempted causal interpretation”.

The concept of multi-class and multi-task problems, involving more than two classes
or objectives, further highlights the potential of using multiple models in parallel. By
combining the outcomes of these models, an ensemble approach can be realised. This
methodology aligns with the foundational principles of ensemble methods, underscor-
ing their relevance and applicability in addressing complex challenges in chemometric
analysis [107]. The multidisciplinary approach, encompassing algorithm development,
preprocessing enhancement, and ensemble methods, presents a comprehensive strategy for
advancing chemometric methodologies in the food industry and beyond [107].

3.3. Artificial Intelligence-Driven Methodology for Rapid Food Analysis

Several review papers have highlighted the importance of the sub-field of AI for
rapid food analysis, including machine learning and deep learning, and focused on the
implementation of ML/AI in a practical way [108]. The application of data-driven models,
particularly different types of neural network models, in food manufacturing underscores
a growing reliance on ML/AI to elucidate complex input–output relationships [109]. This
data-centric approach could be beneficial for characterising systems where mechanistic
knowledge is limited, thereby enhancing the predictive accuracy of quality and safety pa-
rameters for food products. However, the methodology of applying AI in future analytical
studies lacks overviewing. On a theoretical level, the role of AI extends beyond modelling
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and simulation, offering benefits in the predictive maintenance of key factory equipment,
the design of novel, cost-effective spectroscopy instruments, factory operational efficiency,
and risk management [12]. Future studies under discussion should highlight the critical
success factors for AI adoption in the food supply chain, including technology readiness,
security, privacy, customer satisfaction, regulatory compliance, and the importance of
information sharing among partners [110].

To meet real-world demand, various AI-driven approaches facilitate a collaborative
environment where food scientists and computational experts can jointly tackle manu-
facturing challenges, directing the way for sophisticated multi-scale models that surpass
traditional methods. This proactive stance is further exemplified in the development of lead-
ing indicators for food safety, where AI algorithms analyse behavioural data to anticipate
potential safety issues, thus shifting the focus from reactive to preventive measures [111].

3.4. Model Validation

In the realm of chemometrics, the importance of robust data validation methods like
k-fold cross-validation cannot be overstated. However, the effectiveness of these methods
hinges on the availability of sufficient and high-quality data, as well as its ground truthing
to facilitate training and evaluation of the chemometric models. A key aspect of ensuring
data quality involves the detection and removal of outliers. Additionally, the creation
of “synthetic” datasets has emerged as a viable solution to enhance the performance of
classifiers, especially when dealing with limited or skewed data [112]. Besides removing
observed outliers, data augmentation is a disruptive method used to enhance model ro-
bustness for developing and validating rapid food analysis methods, involving artificially
enlarging the training dataset by creating modified versions of the existing datasets [113].
Data augmentation fundamentally enhances model validation: a more diversified dataset
is used for training; the occurrence of overfitting is minimised; the training process be-
comes more efficient by gathering more information at each epoch. As a result, there is
the enhancement of the model’s generalisability with exposure to increasing numbers of
datasets [114]. In particular, data augmentation is carried out by integrating noise, such as
Gaussian noise, or in combination with ensemble methods [112]. Additionally, there are
more innovative techniques employing deep learning for data augmentation, including
generative adversarial networks (GANs) and semi-supervised generative adversarial net-
works to create new data points [114]. In practice, data augmentation presents itself as an
attractive low-cost strategy for robust temperature compensation in NIR calibration and
prediction, challenging traditional methods that integrate non-relevant spectral variations
by measuring samples under different conditions [115]. Two types of approaches have
been proposed: augmenting the calibration matrix with simulated noise and a correction
method to eliminate non-relevant variations from new spectra. Continuous development
of data augmentation is a related framework for chemometric analysis to enhance the
classification results; synthetic spectroscopic data from vegetable oil samples were used
to assist the model’s prediction performance without the need for extensive ‘real’ sample
datasets [112]. This study highlighted its potential in addressing challenges related to
sample variability and instrument differences in spectroscopic analysis. Regarding the
deep learning approach, a GAN was used for predicting the oil content of a single maize
kernel by generating artificial spectra after many iterations, resulting in very promising
results [116].

Overall, the integration of such methodologies into a standardised workflow is crucial
for maintaining data integrity in chemometric analysis. This standardisation arguably
minimises manual interference and prevents the generation of overly optimistic results
stemming from unfit analytical strategies. From the perspective of utilising spectroscopy
instruments in the industrial production line, the addition of historical data to the regular
validation process could provide a forecast on operations and the decision-making process
in a timely manner. The integration of blockchain technology for data sharing in validating
data analysis steps represents innovative approaches to ensuring data transparency and
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reliability [9]. Moreover, the establishment of open repositories for spectroscopic data can
democratise access to valuable datasets, further boosting research outputs.

4. Conclusions

Nowadays, there is an increasing need for rapid, easy, non-destructive, and low-cost
analytical solutions with minimal sample preparation and accurate results in the food field
to control the quality and safety of raw materials and intermediate and final products
and identify any issues such as food adulteration (Figure 3). Vibrational spectroscopic
methods are untargeted analytical techniques capable of meeting these demands, at the cost
of producing complex multidimensional data, containing plenty of useful information for
analysis but whose interpretation is commonly a difficult, laborious, and time-consuming
task. Chemometrics offers a wide spectrum of data analysis methods that can enable the
deep and extensive analysis of the acquired spectra, as well as its automation, by allowing
their elucidation, analysis, and further modelling thanks to its interdisciplinary nature.
However, there are some practical issues related to the use of vibrational spectroscopy
associated with chemometrics that limit its online industrial applications. Generally, chemo-
metric methods demand a spectral library of high quality and representative spectra to
build accurate, sensitive, robust, generalised chemometric models. Concerning sample rep-
resentativity, vibrational spectroscopy requires sample homogeneity over the sampling area
to produce a representative spectrum of an examined sample. This fact limits its application
to heterogeneous and complex food samples where better sampling techniques are needed.
Moreover, conducting the analysis in a laboratory is different than in a real-world industrial
environment. A laboratory has well-controlled conditions for sample handling, preparation,
and subsequent analysis, with little variation affecting data acquisition, whereas the same
analysis in the field will create more noise, i.e., more variation that the models have not
been exposed to during development [117]. This means that spectroscopic acquisition
can be affected due to variations in experimental or sample conditions. For this reason, it
would be preferable if the developed model incorporates all the possible sources of sample
variation, such as natural and experimental variation. Nonetheless, the inclusion of all
relevant sources of sample variation seems impractical due to limited resources since it
requires time-consuming and costly processes as well as exceeding computer processing
and memory demands or fulfilling the required privacy and legal constraints. Moreover,
apart from the practical limitations, the complexity of the developed chemometric model
may be increased rapidly, and low classification performance may be faced due to the
increasing number of training samples and model classes.

Except for the issues related to the production of realistic solutions for food analysis,
current classification and regression techniques meet challenges when they are used for the
detection of adulterants at low concentration levels and the characterisation of complex
food blends, where many compounds must be identified and quantified [118]. This can
be explained by the difficulty associated with these analytical problems due to the subtle
spectral differences between authentic and adulterated mixtures, as well as the overlapping
peaks of compounds in mixtures. Thus, even though chemometrics offers automatic results,
current methods are limited for low-level adulterations and multi-component analysis
and current models are not general enough and often overfitted when and if extended to
real-world applications.

On the other hand, there is no significant “year-over-year” or even “decade-over-
decade” scientific progress in the efficiency of these algorithmic methods to tackle even
more complex food analysis problems. If one considers the example of the speech recog-
nition and natural language processing research area, the rise in powerful novel ML
algorithms such as deep learning systems and follow-up concepts such as reinforcement
learning, federated learning, trustworthy AI, etc., have “transformed the scene” leading
to digital assistants on our phones (Siri and Google Assistant), AI dominance in the game
Go (DeepMind) [119], and, of course, the recent introduction of large language models
trained on generative pre-trained transformers (OpenAI and ChatGPT). It remains to be
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seen, however, as to how these hyper-advanced methods will be translated to the field of
chemometric-based rapid food analysis. At the top, there is a limited amount of research,
produced in academic studies, that finds its way into industry and the official methods of
regulatory bodies, which highlights a gap in technology transfer as well as the applicability
of the results.
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