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Abstract: The chemical composition and nutritional content of garlic are greatly impacted by its
production location, leading to distinct flavor profiles and functional properties among garlic varieties
from diverse origins. Consequently, these variations determine the preference and acceptance
among diverse consumer groups. In this study, purple-skinned garlic samples were collected from
five regions in China: Yunnan, Shandong, Henan, Anhui, and Jiangsu Provinces. Mid-infrared
spectroscopy and ultraviolet spectroscopy were utilized to analyze the components of garlic cells.
Three preprocessing methods, including Multiple Scattering Correction (MSC), Savitzky–Golay
Smoothing (SG Smoothing), and Standard Normalized Variate (SNV), were applied to reduce the
background noise of spectroscopy data. Following variable feature extraction by Genetic Algorithm
(GA), a variety of machine learning algorithms, including XGboost, Support Vector Classification
(SVC), Random Forest (RF), and Artificial Neural Network (ANN), were used according to the fusion
of spectral data to obtain the best processing results. The results showed that the best-performing
model for ultraviolet spectroscopy data was SNV-GA-ANN, with an accuracy of 99.73%. The best-
performing model for mid-infrared spectroscopy data was SNV-GA-RF, with an accuracy of 97.34%.
After the fusion of ultraviolet and mid-infrared spectroscopy data, the SNV-GA-SVC, SNV-GA-RF,
SNV-GA-ANN, and SNV-GA-XGboost models achieved 100% accuracy in both training and test
sets. Although there were some differences in the accuracy of the four models under different
preprocessing methods, the fusion of ultraviolet and mid-infrared spectroscopy data yielded the
best outcomes, with an accuracy of 100%. Overall, the combination of ultraviolet and mid-infrared
spectroscopy data fusion and chemometrics established in this study provides a theoretical foundation
for identifying the origin of garlic, as well as that of other agricultural products.

Keywords: ultraviolet spectroscopy; mid-infrared spectrum; machine learning; origin traceability

1. Introduction

China is the world’s largest producer of garlic, responsible for over 60% of the global
planting area. This production is mainly concentrated in provinces such as Shandong,
Jiangsu, Anhui, Henan, and Yunnan. China’s garlic production contributes to over 70% of
the global total [1]. Garlic (Allium sativum) is a perennial herb of the Liliaceae family that
is commonly used as a food seasoning. It is renowned for its nutritional and medicinal
benefits, including antibacterial [2], anticancer [3], hypolipidemic [4], anti-inflammatory [5],
and antioxidant effects [6].

The chemical and nutrient compositions of garlic can be influenced by various ge-
ographical factors. Different varieties of garlic grown in distinct regions may exhibit
significant variations in flavor and other functional attributes, which can impact consumer
preferences and acceptance levels [7,8]. To promote brand recognition and foster the sustain-
able development of the garlic industry, it is important to establish geographic indicators
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for garlic agricultural products. Agricultural product traceability has gained attention
from researchers as a means to effectively differentiate products of diverse origins. For
instance, Biancolillo et al. [9] employed headspace solid-phase microextraction (HS-SPME)-
gas chromatography-mass spectrometry (GC-MS) to analyze 68 red garlic samples from
four regions in Italy, successfully distinguishing their origins. Similarly, Mi et al. [10] uti-
lized targeted multi-elemental analysis, non-targeted volatile analysis, and metabolomics
to establish chemical fingerprints of garlic from Langfang, Kaifeng, Jining, and Dali in
China, enabling garlic origin verification.

Conventional methods utilized for tracing the origin of garlic, including mass spec-
trometry, isotopic analysis, and nuclear magnetic resonance, face obstacles due to intricate
pre-treatment procedures and exorbitant operational expenses. This underscores the urgent
need for the advancement of swift, non-destructive, and uncomplicated identification
techniques. Spectroscopic technologies offer the advantages of simplicity, minimal or no
sample pretreatment, and low sample damage [11]. Infrared, ultraviolet, and other spec-
troscopic techniques are now widely employed for the origin and species identification
of agricultural products and traditional Chinese medicine. Pan et al. [12] collected the
near-infrared reflectance spectra of orange peel storage age and subjected these data to
Savitzky–Golay convolutional smoothing, first-order derivatives (SGFD), and SNV. Then,
three discriminant models were established based on the preprocessed data, namely, RF, K
Nearest Neighbor (KNN), and Linear Discriminant Analysis (LDA). The accuracy for origin
recognition was 96.99%. The identification accuracy for the storage age of Guangdong
orange peel was 100%, while for Sichuan orange peel, it was 97.15%. This highlights that
NIRS combined with machine learning enables rapid and simultaneous identification of the
origin and orange peel storage age in the field. Tong et al. [13] established a rapid identifi-
cation method for the origin of rice based on Fourier transform near-infrared spectroscopy
using a combination of Principal Component Analysis (PCA) and Deep Learning (DL)
techniques. The results showed that the total recognition accuracy for sample calibration
and testing using the PCA method reached 91.04% and 87.10%, respectively, while the DL
method achieved 100% accuracy in both cases.

In certain situations, test samples of different kinds may not have enough spectral
information to fully represent their chemical characteristics. This requires data fusion from
various sources, which integrates information from different sources to enhance the accu-
racy of decision models by reducing the risk of missing characteristic variables present in
single datasets. Data fusion is divided into three categories: Low-Level Data Fusion (LLDF),
Mid-Level Data Fusion (MLDF), and High-Level Data Fusion (HLDF) [14,15]. He et al. [16]
studied liquor spectral properties using ultraviolet spectroscopy, near-infrared spectroscopy,
and multidirectional fluorescence spectroscopy, achieving high accuracy in identifying dif-
ferent liquors compared to single-spectrum analysis. Luan et al. [17] conducted rice origin
identification using near-infrared, mid-infrared, and Raman spectra, showing improved
recognition accuracy with data fusion compared to single-spectrum models.

In today’s digital age, Traceability 4.0 has become a crucial concept in manufacturing
and managing supply chains [18]. It stresses the need for complete traceability of product
production and flow processes through the use of digital technologies and data-driven
approaches. Industry 4.0 technologies such as the Internet of Things (IoT), big data analytics,
blockchain, and artificial intelligence are extensively utilized to verify the origin of products
and resolve other traceability issues. For example, manufacturers can use IoT sensors and
blockchain technology to monitor the transportation and processing stages of raw materials
and products throughout the entire supply chain, ensuring the traceability of product
origins and guaranteeing their quality and safety. By integrating these digital technologies,
new possibilities for achieving product traceability emerge, promoting greater trust and
transparency among consumers.

This study aimed at developing a rapid, dependable, and straightforward method for
tracing the origin of garlic samples sourced from five distinct regions in China, namely
Shandong, Jiangsu, Anhui, Henan, and Yunnan Provinces. The garlic samples were ana-
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lyzed using ultraviolet and mid-infrared spectroscopy, and the collected spectral data were
preprocessed to eliminate any nonlinear perturbations and random noises. The raw data
were then subjected to feature extraction using GA, and the single spectral information was
evaluated using LLDF. The ultimate goal of this study was to provide a rapid identification
method for selecting raw materials for garlic export geographic indications.

2. Materials and Methods
2.1. Sample Material

This study collected a total of 225 samples of purple-skinned garlic from five different
regions in China. As shown in Figure 1. The regions included Lanling, Shandong Province
(LL, SD); Dali, Yunnan Province (DL, YN); Fuyang, Anhui Province (FY, AH); Qixian, Henan
Province (QX, HN); and Pizhou, Jiangsu Province (PZ, JS). The samples were numbered
1–45 for Lanling, Shandong; 46–91 for Dali, Yunnan; 92–139 for Fuyang, Anhui; 140–183 for
Qixian, Henan; and 184–225 for Pizhou, Jiangsu.
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Figure 1. Regional distribution of garlic samples.

2.2. Spectra Acquisition

A Fourier transform infrared spectrometer, Bruker VERTEX 70 from Germany, was
used to conduct the testing. The scanning range was set to 400~4000 cm−1, with 16 scans, a
resolution of 10 cm−1, a frequency of 2.2 Hz, and a DTGS detector. To prepare the garlic
sample, it was peeled, sliced, vacuum freeze-dried, pulverized, and filtered through a
100-mesh sieve. A suitable amount of potassium bromide powder was ground into powder
in an agate mortar, and then a small amount of powder was placed into a pellet press
and pressed with a pressure of 10 MPa to form approximately 2 mm thick transparent
sheets, followed by background scanning. To create the sample, approximately 1 mg of
garlic sample powder was mixed evenly with potassium bromide at a ratio of 1:100 (m:m),
pressed into pellets, and then scanned.

A UV-Vis spectrophotometer (model UV-5500, manufactured by Shanghai Yuanxi
Instrument Co., Ltd., Shanghai, China) equipped with a GL-D2T-V01 UV-enhanced broad-
band deuterium-tungsten lamp and quartz cuvettes was employed for precise measure-
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ments. The cuvettes had an outer diameter of 12.4 × 12.4 × 45 mm, 10 mm light path, and
3.5 mL capacity. The spectrophotometer had a scanning wavelength range of 190~700 nm
and a spectral resolution of 1 nm. A total of 225 garlic specimens sourced from five distinct
origins were carefully peeled and crushed. Each sample was mixed with deionized water
at a material-to-liquid ratio of 1:4 (m:V, g/mL). The mixture was then subjected to centrifu-
gation at 10,000 r/min for 20 min. Finally, the supernatant was scanned for wavelengths
using water as a reference solution.

2.3. Spectral Pretreatment

The spectral data of all garlic samples were randomly divided into a training set
(70% of the data) and a test set (30% of the data). Prior to constructing the classification
model, three commonly used spectral preprocessing methods were applied to preprocess
the ultraviolet spectral data of garlic along with the mid-infrared spectral data. These
methods are MSC, SG, and SNV. High-dimensional data contain a significant amount
of redundant information that can obscure key relationships, leading to an increase in
computational workload and reducing the reliability and stability of decision-making [19].
Therefore, to ensure data validity, characteristic wavelengths were selected for ultraviolet
and mid-infrared spectroscopy using GA to find the optimal global solution.

2.4. Data Fusion

In this experiment, LLDF was employed to concatenate the mid-infrared and ultra-
violet spectral data end-to-end, forming a novel fused spectral dataset. The selection of
LLDF stems from its efficacy in effectively preserving original data information, ensuring
consistent data formatting, and offering nuanced information unattainable by other fusion
levels. This strategy enhances data accuracy and resolves issues of missing, erroneous, or
redundant data [20]. Hence, LLDF was chosen to process the spectral data.

2.5. Modeling of Origin Classification

Spectral data from garlic samples of different origins were analyzed using Python
3.9. The data were pre-processed, and four classification methods, namely XGBoost, SVC,
RF, and ANN, were applied to differentiate the spectral differences among the samples.
Chemometrics techniques and machine learning algorithms were used to extract the spec-
tral variances among the samples, which helped in identifying the origins of the garlic.

3. Results and Discussion
3.1. Spectral Analysis

Figure 2 shows the average ultraviolet spectral data and average mid-infrared spectral
data curves of garlic from five different origins. Despite the similar profiles exhibited
by the ultraviolet and mid-infrared spectral data curves of garlic samples from different
origins, variations in absorbance at different wavelengths indicate differences in chemical
component content among garlic from the five origins, which can be used to classify and
trace the origin of garlic. The appearance of absorption peaks indicates the presence of
specific chemical substances in the samples, with peak height representing the content of
certain chemical substances [21,22]. In the ultraviolet spectral data, slight differences in
absorbance of absorption peaks occur around 200–300 nm, particularly near 250 nm, which
can be attributed to the π-π* electron transitions of the C=S bonding in garlic’s organosulfur
compounds. This results in disparities in absorption peaks within the 200 nm to 300 nm
range [23]. On the other hand, slight variations in absorption peaks in the mid-infrared
spectra data from 1000–1500 cm−1 may stem from stretching vibrations of C-O bonds
associated with organic lipid molecules present in garlic [24,25]. Peaks near 2900 cm−1

usually correspond to symmetric and asymmetric stretching vibrations of C-H bonds,
reflecting the abundance of carbohydrates in garlic. The absorption peak near 3400 cm−1

typically corresponds to O-H bond stretching vibrations, potentially involving alcohols,
phenols, or water molecules [26].
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infrared spectral data.

3.2. Spectral Preprocessing

The mid-infrared and ultraviolet spectroscopy data of garlic exhibit significant band
overlap and broad peaks, accompanied by limited analytical information and excessive
background noise, posing challenges in constructing accurate classification models. Com-
bining spectral data preprocessing with machine learning techniques can enhance the
accuracy of classification models. Ding et al. [27] utilized near-infrared spectroscopy to
acquire spectral data of Huangshan Maofeng tea samples. They applied the SG algorithm
for data smoothing and PCA for dimensionality reduction of the smoothed spectral data.
Particle Swarm Algorithm (PSO) and Comprehensive Learning Particle Swarm Algorithm
(CLPSO) were employed to optimize the penalty factor c and kernel function parameter
g in the Support Vector Machines (SVM) model. The experimental results demonstrated
that the CLPSO-SVM method achieved the highest classification performance, with a classi-
fication accuracy of 99.17%. Based on these findings, this study initially employed three
preprocessing methods, including MSC, SG, and SNV, to extract the complete spectral
structure of the signals. Subsequently, the three preprocessed spectral datasets were used
as input variables to evaluate four classification models: XGBoost, SVC, RF, and ANN, for
predicting the origin of garlic.

The results are presented in Table 1. For the ultraviolet spectral dataset, the accuracy
of the SVC model in predicting the origin of garlic on the test set increased from 87.31% to
100%, 92.41%, and 100% after preprocessing with SG, MSC, and SNV, respectively. Similarly,
the RF model’s accuracy in predicting the origin of garlic improved from 89.44% to 92.46%,
94.44%, and 91.42% on the test set after preprocessing with SG, MSC, and SNV, respectively.
Although the mid-infrared spectral data model exhibited notable variations in performance
across different data preprocessing algorithms within its test set, the most striking result
was achieved after applying SNV preprocessing, which yielded an impressive accuracy of
94% for predicting the origin of garlic using the SVC model. By contrast, the accuracy rates
obtained after SG and MSC preprocessing were significantly lower, at 40.00% and 19.31%,
respectively. On the RF model, the accuracy for predicting the origin of garlic after SNV, SG,
and MSC processing increased from 94.67% to 96.00%, 95.44%, and 97.59%, respectively.

After data preprocessing, four models were tested for their training and test set
classification accuracy. The SNV method exhibited consistently stable performance. In the
ultraviolet spectral dataset, the four models achieved accuracies of over 91% for predicting
the origin of garlic following SNV data preprocessing. For the mid-infrared spectral dataset,
the test set accuracies of SVC, RF, ANN, and XGBoost models in predicting the origin
of garlic improved from 40%, 94.67%, 18.66%, and 90.67% to 94%, 96.00%, 84.00%, and
90.67%, respectively, after SNV data preprocessing. These findings indicate that SNV data
preprocessing consistently produces more reliable model accuracy when compared to other
preprocessing methods, making it the most suitable approach for further analysis.
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Table 1. Effect of preprocessing and algorithms on the classification accuracy of spectral data models.

Model Preprocessing
Ultraviolet Spectrum Mid-Infrared Spectrum

Train (%) Test (%) Train (%) Test (%)

SVC

None 100 87.31 100 40.00
SG 100 100 100 40.00

MSC 100 92.41 100 19.31
SNV 100 100 100 94

RF

None 100 89.44 100 94.67
SG 100 92.46 100 95.44

MSC 100 94.44 100 97.59
SNV 100 91.42 100 96.00

ANN

None 100 93.45 26.84 18.66
SG 100 100 26.84 18.66

MSC 100 97.32 26.84 18.66
SNV 100 97.65 92.44 84.00

XGboost

None 100 92.67 100 90.67
SG 96.32 93.29 100 85.33

MSC 100 95.34 100 91.43
SNV 100 93.52 100 90.67

3.3. Extraction of Characteristics

After preprocessing the ultraviolet and mid-infrared spectroscopy data, four classifi-
cation models were established for garlic origin prediction. However, their accuracy was
found to be suboptimal. To improve the accuracy, the GA for Feature Variable Selection
was employed to extract wavelength features associated with the original spectra from
both mid-infrared and ultraviolet spectral data. Table 2 shows that compared to the SVC
model constructed on the original data, the accuracy of SG-GA-SVC based on mid-infrared
spectral data decreased, while MSC-GA-SVC’s accuracy increased for garlic origin predic-
tion. The four models displayed varying changes in garlic origin prediction accuracy across
different preprocessing methods for ultraviolet spectroscopy. As shown in Table 2, the
SVC model accuracy slightly decreased after SG and SNV preprocessing, while it slightly
increased after MSC-GA preprocessing compared to MSC preprocessing.

Table 2. Accuracy of model for classification of garlic origin after GA extracted features from UV and
mid-infrared spectra.

Model Preprocessing
Ultraviolet Spectrum Mid-Infrared Spectrum

Train (%) Test (%) Train (%) Test (%)

SVC

None 100 87.31 100 40.00
SG-GA 100 96.05 100 26.66

MSC-GA 100 96.68 100 28.45
SNV-GA 100 98.54 100 97.33

RF

None 100 89.44 100 94.67
SG-GA 100 98.56 100 97.34

MSC-GA 100 93.47 100 94.67
SNV-GA 100 99.16 100 97.34

ANN

None 100 93.45 26.84 18.66
SG-GA 100 96.54 26.74 18.43

MSC-GA 97.62 95.65 26.74 18.66
SNV-GA 100 99.73 87.28 80.00

XGBoost

None 100 92.67 100 90.67
SG-GA 100 97.92 100 90.56

MSC-GA 100 96.38 100 85.34
SNV-GA 100 97.41 100 89.33
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Based on the findings presented in Table 2, it can be observed that the accuracy of
both RF and SVC models improved in mid-infrared spectral data after SNV-GA prepro-
cessing. However, the accuracy of ANN and XGBoost models decreased by 4% and 1.34%
respectively. In the case of ultraviolet spectroscopy data, apart from the SVC model, which
demonstrated a decrease in accuracy following GA-based feature extraction, the other three
models showed improvements compared to their previous states.

In summary, the results suggest that the SNV-GA method effectively processed spec-
tral data and produced consistent machine learning model performance. The observed
consistency was presumably attributed to GA’s capability to effectively select and retain
valuable features from preceding generations, thereby facilitating the search for an optimal
solution to a given problem. Through multiple iterations, a collection of candidate sets
were formed, ultimately leading to the discovery of the global optimal solution within this
collection [28].

Spectral data features can be extracted more efficiently while retaining the original
spectral features. The feature variables extracted by GA were combined with four classifi-
cation models to assess their classification performance. Zheng et al. [29] proposed a BP
neural network based on GA optimization for coal mine dust wettability identification.
They compared it with a particle swarm optimization (PSO) extreme learning machine
(ELM) algorithm. Results showed that the GA-BP model achieved the highest accuracy
of 96.6% in discriminating coal mine dust wettability, followed by PSO-ELM, ELM, and
BP models. Ge et al. [30] collected 114 samples of Taiping Monkey Kui green tea from
four production areas, establishing SNV-ELM and SNV-GA-ELM models based on the
combination of near-infrared spectroscopy and chemometrics to accurately identify green
teas from specific geographic origins. The ELM model combined with SNV preprocessing
achieved an accuracy of 93.07%, while the ELM model after SNV preprocessing combined
with GA feature variables achieved an accuracy of 95.35% for the test set. The results
demonstrated an increase in accuracy after the extraction of feature variables using GA.

3.4. Spectral Data Fusion

A fusion model that combines ultraviolet and mid-infrared spectral data was devel-
oped to improve the accuracy and stability of garlic origin prediction, aiming to obtain
more comprehensive information about garlic samples. The SNV-GA method was identi-
fied as the optimal preprocessing technique to ensure stability in garlic origin prediction
models. To develop the fusion of ultraviolet and mid-infrared spectral data, the SNV-GA
approach was used for preprocessing and modeling. As demonstrated in Table 3, the fused
spectral data achieved remarkable results in garlic origin prediction, boasting a perfect
100% accuracy across all four algorithmic models, including SVC, RF, ANN, and XGBoost.
This suggests that the fused spectral model’s accuracy surpasses individual ultraviolet or
mid-infrared spectral models after combining ultraviolet and mid-infrared spectral data.

In a previous study, Mariana K. et al. [31] used a combination of Fourier transform
near-infrared and mid-infrared spectra to conduct LLDF. They developed a partial least
squares-discriminant analysis (PLS-DA) model based on individual spectra and the LLDF
spectroscopy. Their results showed that the discriminant model achieved higher accuracy
in predicting test samples when compared to the individual models, with an accuracy of
94% or higher. Similarly, Jiang et al. [32] studied the use of near-infrared spectroscopy
and hyperspectral imaging (HSI) data to detect adulteration in Ganoderma lucidum spore
powder (GLSP). They found that near-infrared spectroscopy performed better than the
HSI technique in identifying adulteration and predicting adulteration levels in GLSP when
considering only a single spectral technique. Nevertheless, the introduction of a data
fusion strategy rendered the MLDF approach highly effective in identifying adulteration,
as evidenced by its impeccable performance with 100% accuracy, precision, recall, and F1
score at the random frog (RF) level.
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3.5. Model Evaluation Metrics

True positive (TP), true negative (TN), false positive (FP), and false negative (FN)
classifications are pivotal for method or model evaluation. TP denotes correctly identified
positive instances, TN signifies accurately identified negative instances, FP indicates er-
roneously labeled negative instances as positive, and FN represents mistakenly classified
positive instances as negative.

The classification metrics of TP, TN, FP, and FN are essential components in assessing
the performance of methods or models. These metrics are directly related to the confu-
sion matrix, a visual representation of the performance of a classification model. In the
confusion matrix, TP, TN, FP, and FN are represented in different quadrants, providing a
clear overview of the model’s ability to correctly classify instances. Let us delve deeper
into the significance of these metrics and their interpretation within the context of the
confusion matrix.

3.6. Confusion Matrix

The confusion matrix serves as an indispensable tool for assessing the classification
accuracy of a given classifier. It effectively illustrates the correspondence between the actual
characteristics of sample data and the classification prediction outcomes in a matrix format,
providing a comprehensive view of the classifier’s performance. The rows of the matrix
represent the predicted categories, while the columns represent the true categories. The cells
on the diagonal indicate correctly categorized observations. The confusion matrix provides
a clear overview of the number of correct and incorrect predictions made by the model. In
Figure 3’s confusion matrix, it is clear that the number of Yunnan samples predicted among
the actual Yunnan samples is 17. Moreover, it is noteworthy that there are no predicted
samples available for the regions of Anhui, Henan, Shandong, and Jiangsu. This indicates
a 100% accuracy in predicting purple-skinned garlic of Yunnan origin. Similarly, the
prediction accuracy for the remaining four origins is also 100%, with no prediction errors
found in the confusion matrix. After SNV-GA preprocessing, the four models achieved
100% accuracy on the test set, resulting in identical confusion matrices. Furthermore, after
spectral data fusion, the four models achieved 100% accuracy on the test set for purple
garlic from all five origins, indicating a significant improvement in model accuracy. This
suggests that fused data can further enhance the accuracy of the models.
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Table 3. Spectral data fusion modeling applied to the classification prediction of garlic from differ-
ent origins.

Model Preprocessing
Fusion Spectrum

Train (%) Test (%)

SVC SNV-GA 100 100
RF SNV-GA 100 100

ANN SNV-GA 100 100
XGBoost SNV-GA 100 100

4. Conclusions

In this study, a dependable technique was effectively developed for the swift deter-
mination of garlic origin by amalgamating UV and mid-infrared spectra, as well as their
fusion with low-level data. It was shown that the accuracy of the fusion spectra on the
test sets of XGBoost, SVC, RF, and ANN models was 100%, whereas single spectra models
exhibited a lower accuracy. Therefore, fusion spectra demonstrate more consistent accuracy
than single spectral models. This study provides an effective technological approach for the
identification of the origin of agricultural products and holds the potential for widespread
application. In the future, the potential of this method can be further explored for use in
other agricultural products, and it can be integrated with innovative technological tools
like blockchain and IoT to develop a more extensive origin traceability system. The newly
established system in this study can comprehensively ensure product quality and safety,
thereby fostering greater trust among consumers.
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