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Abstract: Food allergies to hazelnut represent an important health problem in 

industrialized countries because of their high prevalence and severity. Food allergenicity 

can be changed by several processing procedures since food proteins may undergo 

modifications which could alter immunoreactivity. High-hydrostatic pressure (HHP) is an 

emerging processing technology used to develop novel and high-quality foods. The effect 

of HHP on allergenicity is currently being investigated through changes in protein 

structure. Our aim is to evaluate the effect of HHP on the protein profile of hazelnut 

immunoreactive extracts by comparative proteomic analysis with ProteomeLab PF-2D 

liquid chromatography and mass spectrometry. This protein fractionation method resolves 

proteins by isoelectric point and hydrophobicity in the first and second dimension, 

respectively. Second dimension chromatogram analyses show that some protein peaks 
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present in unpressurized hazelnut must be unsolubilized and are not present in HHP-treated 

hazelnut extracts. Our results show that HHP treatment at low temperature induced marked 

changes on hazelnut water-soluble protein profile. 

Keywords: hazelnut; high hydrostatic pressure; immunoreactivity; ProteomeLab PF-2D 

 

1. Introduction 

High-hydrostatic pressure (HHP) is considered an emerging processing technology used to develop 

novel and high-quality foods. This novel-processing technique even renders harmless foods which 

would be of considerable benefit to consumers. HHP treatment of foods can be used to create new 

products (new texture or taste) or to obtain analogue products with minimal effect on flavor, color and 

nutritional value and without any thermal degradation. It is well established that higher pressure has a 

disruptive effect on the tertiary and quaternary structure of most globular proteins, with relatively little 

influence on the secondary structure. Therefore, higher hydrostatic pressure can unfold proteins. The 

typical pressure needed for the unfolding is around 500 MPa but it varies from protein to protein, in the 

range from 100 MPa to 1 GPa or reaching even higher pressures in special cases. The effect of HHP on 

immunoreactive proteins is being currently investigated through changes in protein structure [1].  

Such effects have been studied in: beef [2,3], apple [4,5], celery [4] and in nuts such as peanut [5]. 

However, there is scarce information on the effects of such food processing techniques on hazelnut 

(Corylus avellana L.) immunoreactive proteins. 

Food allergies to hazelnut represent an important health problem in industrialized countries because 

of their high prevalence and severity [6]. Several hazelnut allergens are well characterized being  

Cor a 1 (18 KDa, Bet v 1 family) the major one. Other allergenic proteins are Cor a 2 (profilin),  

Cor a 8 (lipid transfer protein, LPT), Cor a 9 (11S globulin), Cor a 11 (vicilin-like protein) and  

Cor a 12, Cor a 13 and Cor a 14 belonging to the 2S albumins [7].Understanding how food processing 

affects the allergenic proteins could be important to control food allergenicity risk. 

Bioinformatics tools for database searching enable the quick identification of sequences of interest. 

Tools for sequence comparison, motif searching or sequence profiling assist researchers to identify 

biologically relevant sequences similarities. The guidelines to assess potential allergenicity of proteins 

using bioinformatics in a step-by-step procedure are well established [8,9]. 

Plant comparative proteomics is becoming increasingly attractive as the rapidly expanding plant 

genomic and Expressed Sequence Tags (EST) databases provide new opportunities for protein 

identification. A partial automation of this procedure consisting of a robotic lift of protein spots 

embedded in the gel, followed by extraction, destaining and protein digestion, has been finalized  

with reasonable success to the further protein characterization and identification by mass spectrometry 

(MS) [10]. Proteome analyses have also been performed in a “gel free” condition by using protein 

fractionation procedures based entirely on liquid chromatography [11,12]. ProteomeLab PF-2D 

introduced a two dimensional liquid chromatography based on a high-performance chromatofocusing 

in the first dimension followed by high-resolution reversed-phase chromatography in the second 

dimension [13,14]. The ProteomeLab PF-2D has become available for sample fractionation and was 
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more resolutive at extreme pHs, both acid and basic. It offers automation of the fractionation processes 

and resolves proteins by isoelectric point and hydrophobicity in the first and second dimension, 

respectively [15]. 

In this study, we have undertaken a comparative proteomic analysis of the effect of HHP at low 

temperature on water-soluble protein profile of hazelnut immunoreactive extracts using a novel proteomic 

approach that combines ProteomeLab PF-2D liquid chromatography and mass spectrometry analysis. 

2. Experimental Section 

2.1. Samples and High Hydrostatic Pressure (HHP) Treatments  

The hazelnut (Corylus avellana L.) var Negreta used in this work was provided by the hazelnut 

collection of Institut de Recerca i Tecnología Agroalimentàries (IRTA-Mas de Bover, Tarragona, 

Spain) [16]. 

Hazelnuts were ground and defatted with n-hexane (34 mL/g of flour) for 4 h and air-dried after 

filtration of the n-hexane. High-pressure experiments conditions were carried out according to  

Omi et al. [17] and Kato et al. [18]. Hazelnut defatted flours were dissolved in distilled water (1:4 w/v) 

20 h before HHP treatment. The flours were subjected to HHP, using pressures of 300, 400, 500 and 

600 MPa for 15 min in a multivessel high-pressure equipment (HHP, ACB, France) at 20 °C (Figure 1). 

Figure 1. Scheme of high hydrostatic pressure (HHP) treatment of hazelnut samples. 
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2.2. Protein Electrophoresis and Immunoblotting 

1D SDS-PAGE was performed according to Laemmli [19]. Protein extracts of hazelnut 

unpressurized (control) and HHP-treated (300–600 MPa) of supernatant and flour were mixed with XT 

Sample Loading Buffer (Bio-Rad, Hercules, CA, USA) heated at 95 °C for 5 min, electrophoresed in 

12% Bis-Tris precast gel (Bio-Rad, Hercules, CA, USA). Proteins were visualized with Coomassie 

brilliant blue R250 staining. 



Foods 2014, 3 282 

 

 

Western blotting was performed by electrophoretic transfer to polyvinylidene difluoride (PVDF) 

membranes at 250 mA for 100 min, at room temperature, essentially according to the method of 

Towbin et al. [20]. After blocking with 5% bovine serum albumin (BSA) (w/v) in phosphate buffered 

saline (PBS), membranes were incubated overnight with the serum pool from fifteen patients 

sensitized to hazelnut (serum specific IgE > 0.35 kilounits/L quantified by the CAP-FEIA assay)  

(1:10 dilution), washed, and then treated with mouse anti-human IgE mAb HE-2 ascitic fluid  

(1:3000 dilution for 2 h) [21]. After washing, a rabbit anti-mouse IgG peroxidase-conjugated antibody 

(1:5000 dilution for 1 h; DAKO, Glostrup, Denmark) was added. Detection of IgE-binding 

components was achieved by means of enhanced chemiluminescence, according to the manufacturer’s 

instructions (Amersham Biosciences, Little Chalfont, UK). 

2.3. Protein Sample Preparations and 2D-Liquid Chromatography Analysis 

Total protein extracts of unpressurized and HHP-treated hazelnut previously tested for  

IgE-reactivity were used for comparative proteomic analysis with ProteomeLab PF-2D liquid 

chromatography (Beckman Coulter, Fullerton, CA, USA). 

Unpressurized and HHP-treated hazelnut proteins were extracted with 0.1 M borate saline buffer 

(BSB, 0.075 M NaCl, pH 8.5) plus 1% (w/v) PVP at a 1:10 w/v ratio for 1 h at 4 °C by stirring. The 

extract was clarified by centrifugation at 27,000× g for 30 min at 4 °C, and the supernatants were 

dialyzed against distilled H2O for 48 h at 4 °C using a dialysis membrane with a cut-off of 3.5 kDa and  

freeze-dried. The protein content of each sample was measured by the Bradford dye binding assay 

(Bio-Rad, Hercules, CA, USA)
 
using bovine serum albumin (Sigma, St. Louis, MO, USA) as a 

standard. The nitrogen contents of the samples were determined by LECO analysis according to 

standard procedures based on Dumas method [22].
 
The total protein content was calculated as  

N × 5.3 [22].
 
The analyses were carried out in duplicates. 

Protein extracts (2.5 mg of protein) from unpressurized and HHP-treated hazelnut were subjected to 

2-D LC analysis using a ProteomeLab PF-2D instrument (Beckman-Coulter, Fullerton, CA, USA) and 

the protocol recommended by the manufacturer (ProteoSep
®
, Chemistry Kit, Sigma, St. Louis, MO, 

USA). The first-dimension separation was carried out by chromatofocusing on a High Performance 

ChromatoFocusing (HPCF) 1-D column (250 mm × 2.1 mm internal diameter, 300 Å pore size). The 

column was equilibrated at pH 8.5 with CF Start Buffer for 250 min at 0.2 mL/min. The pH gradient 

began after 20 min of sample injection when the CF Eluent Buffer at pH 4.0 moved through the 

column, gradually decreasing the pH from 8.5 to 4.0. Proteins were eluted according to their isoelectric 

points (pI) and, in the final step, the most acidic ones were eluted with 1 mol NaCl, 0.2% n-octylglucoside. 

All fractions were collected in 96 well plates using an automated collector. 

All the different pH fractions collected from the first dimension were resolved on a reverse phase 

C18 column (HPRP column: 4.66 mm × 3.3 mm, 1.5 μm particle size,). Of each fraction, 200 μL was 

run through the column in solvent A (0.1% v/v TFA in water), and the proteins were then eluted with a 

linear gradient (0%–100%) of solvent B (0.08% v/v trifluoroacetic acid in acetonitrile) for 35 min. 

Separation was performed at 0.75 mL/min, and the temperature column was maintained at 50 °C. 

Eluted proteins were monitored by ultraviolet light at 214 nm of absorbance. The different fractions of 

the first dimension were collected in 12 plates (each 96 well) using an automated collector. All CF 
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profiles were elaborated and compared using 32 Karat V1.01 software (Beckman-Coulter, Fullerton, 

CA, USA). Quantitative analysis of unpressurized and HHP-treated hazelnut protein peak areas and 

heights were performed using the Mapping tools software V1.0 (Beckman-Coulter, Fullerton, CA, USA). 

Fractions from the second dimension were analyzed by 1D SDS-PAGE as above described and 

selected bands were manually excised for protein identification by mass spectrometry and database search. 

2.4. Protein Identification by MS and Data Base Search 

Immunoreactive hazelnut proteins modified by high hydrostatic pressure were analyzed by MS and 

data base search in order to determine their identification. Proteins were in-gel digested with trypsin 

(Sequencing Grade Modified, Promega, Madrid, Spain) in the automatic Investigator ProGest robot of 

Genomic Solutions. Briefly, excised gel bands were washed sequentially with 50 mM ammonium 

bicarbonate (NH4HCO3) buffer and acetonitrile. Eluted fractions were evaporated to a final volume of 

10 μL. Protein digestions were carried out by incubating the samples in 50 mmol/L NH4HCO3 and  

10 mmol/L dithiothreitol at 60 °C for 1 h. The alkylation of the reduced sulfhydryl groups was 

performed by adding 55 mmol/L iodoacetamide at 25 °C for 30 min in the dark. Proteins were digested 

by adding 1.5 μL of trypsin (125 μg/mL) and incubating at 37 °C overnight. The reaction was stopped 

with 1% of formic acid. Tryptic peptides were desalted and concentrated with ZipTipC18 columns 

according to the manufacturer’s recommendation. Peptides were eluted in 0.1% trifluoroacetic acid , 

50% acetonitrile for matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-MS 

analysis, and with 1% formic acid, 50% methanol for electrospray MS analysis. To increase salt 

removal, samples were washed with 3–5 cycles of 0.1% triflouroacetic acid as wash solution. The 

solution was spotted directly onto a MALDI target and analyzed by MALDI-TOF/TOF off-line 

coupled LC/MALDI-MS/MS. MS analyses were performed automatically with a 4700 Analyzer 

MALDI-TOF/TOF instrument (Applied Biosystems, Carlsbad, CA, USA). First, MS spectra of all 

spotted fractions were acquired in the positive reflector mode for peak selection (S/N > 20, excluded 

precursor with 200 resolution), and further MS/MS spectra acquisition was done using the Collision 

Induced Dissociation of selected peaks. The search of filtered peptides was performed in batch mode 

using GPS Explorer V 3.5.0 software with a licensed version of MASCOT, in the Swiss-Prot Database. 

The MASCOT search parameters were: (1) species, Coryllus avellana; (2) allowed number of missed 

cleavages (only for trypsin digestion), 1; (3) considered modifications, cysteine as carboamidomethyl 

derivate and methionine as oxidized methionine; (4) peptide tolerance, ±50 ppm; (5) MS/MS tolerance, 

±0.3 Da; and (6) peptide charge, +1 [23]. 

3. Results and Discussion 

3.1. 1D Analysis and Immunoblottting 

The protein migration patterns of hazelnut before (control) and after high-pressure treatments are 

shown by SDS-PAGE (Figure 2a). Samples were also analyzed for differences in IgE binding by 

immunoblot using pool sera from 15 patients sensitized to hazelnut (Figure 2b). Defatted flours that 

were directly solubilized in sample buffer were used for the immunoassays carried out in this study. 
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The results showed that electrophoretic migration patterns of high-pressure treated flour hazelnut 

proteins were similar to the control hazelnut. 

Figure 2. (a) SDS-PAGE patterns of supernatant and flour protein extract from control and 

processed hazelnuts samples and (b) IgE immunoblot analysis of control and processed 

hazelnut samples with a serum pool from subjects with specific IgE to hazelnut (31.3 kU/L). 
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However, the band intensity of supernatants was diminishing according the pressure increase from 

300 to 600 MPa (Figure 2a). The possibility that HHP resulted in variable aggregation depending on 

the applied pressure could explain these findings. This is in agreement with Somkuti and Smeller [1]. 

The IgE-immunoblot patterns are similar in control and pressure hazelnuts treated samples from 

300 to 600 MPa, showing multiple immunoreactive proteins (Figure 2b). In these samples, most 

immunoreactive proteins fall in the central and lower area of the gel covering 15–60 kDa. The IgE 

immunoblotting showed that IgE of pool sera from sensitized to hazelnut recognized bands in all the 

samples at 50 kDa, 40 kDa, 20 kDa and 9 kDa which might correlate with Cor a 11, Cor a 9, Cor a 1 

and Cor a 8 allergens [7]. 

3.2. Hazelnut Proteins Analyzed by Liquid Chromatography 

In the ProteomeLab PF-2D system, 2.5 mg of untreated (control) and HHP (600 MPa)-treated 

hazelnut protein extracts were injected into the HPCF column and were recovered as follow: 40.0% in 

the 8.0–4.0 pH gradient, 28.6% before the initiation of the pH gradient, and the remaining 31.4% 

eluted as different peaks when the column was finally washed with high salinity buffer (Figure 3a). 

The fractions showing higher differences between untreated and HHP treated hazelnut were collected. 

We collected seven fractions in the control sample and 10 fractions in de HHP-treated hazelnut sample 

with high salinity buffer and they were subjected to a second dimension using the high performance 

reverse-phase chromatography column (Figure 3b). 



Foods 2014, 3 285 

 

 

Figure 3. Chromatographic analysis of hazelnut proteins using ProteomeLab PF-2D:  

(a) Chromatofocusing of total proteins separated by pH gradient 8.0–4.0. Fraction number 

29 of control and 34 of HHP hazelnut were fractionated in the second dimension. (b) High 

performance reverse phase chromatography, fractions are separated by hydrophobicity. 

Proteins contained in peaks marked P1, P2 and P3 were separated by SDS-PAGE for 

subsequent MS analyses to determine their identity. 
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The protein profiles obtained showed important differences between the two samples (control and 

HHP 600 samples) with much lesser and smaller peaks in HHP 600 hazelnut. The fractions collected 

after the second dimension were concentrated in three ones, namely P1 (from 23 to 26), P2 (from 27 to 29) 

and P3 (from 34 to 35) in control as well as HHP treated hazelnut. 

3.3. Proteins Identified in Raw and HHP Hazelnuts Samples 

P1, P2 and P3 fractions from raw hazelnuts (control) and HHP600 hazelnut samples were further 

analyzed by 1D SDS-PAGE (Figure 4a,b). Control and HHP 600 hazelnut had a distinct protein band 
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pattern, in band number as well as band intensity, in agreement with the differences showed in the 

second dimension absorbance profile between both hazelnut samples (Figure 3b). 

Figure 4. SDS-PAGE of the different fractions collected and concentrated (P1, P2 and P3) 

from the second dimension chromatography column (HPRP) of control hazelnut (a) and 

HHP 600 MPa hazelnut (b). Proteins were visualized by Coomassie Blue. The rectangles 

indicate the protein bands that were identified by MS analysis. 
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Finally, nine of these polypeptide bands of control hazelnut and two bands in HHP 600 hazelnut 

were manually excised for MALDI-TOF-TOF and LC-ESI-MS/MS identification. Table 1 summarizes 

the polypeptide identification data of raw hazelnut sample. The major bands were tryptic digested in 

order to carry out the analysis by MALDI-TOF/MS. A peptide mass fingerprint search allowed us to 

identify the bands 1, 2, 3, 4, 6 and 8 of raw hazelnut as a 11S globulin-like of C. avellana (59 kDa) 

(Table 1). The bands 5, 7 and 9 of raw hazelnut were identified as a 7S vicilin-like of C. avellana (48 kDa). 

The identification carried out in HHP600 treated sample (Table 2) showed only one band (4′) 

corresponding to the 11S globulin-like and another one (7′) identified as the 7S vicilin-like. According 

to the hazelnut allergen description [7], the bands identified as 11S globulin-like could correspond to 

the putative Cor a 9 allergen (59 kDa) which is composed of a 36 kDa acid subunit and a 20 kDa basic 

subunit. The 7S vicilin-like bands could correlate with the Cor a 11 allergen (48 kDa).  

Proteome analysis is a tool that can be used both to visualize and compare complex mixtures of 

proteins and to gain a large amount of information about the individual proteins involved in specific 

biological responses. In this work, proteomic analysis by bidimensional chromatography (PF-2D) 

shows that the high hydrostatic pressure (HHP) induces significant changes in the proteome of 

hazelnut extracts in agreement with results on differential solubility after HHP process reported by 

other authors in several foods [1,4,18,24]. Our results show that the protein solubility became different 

among the fractions from 300 to 600 MPa. The identification by MALDI-TOF/MS of the proteins 

affected by high pressure indicated that among the proteins which are insolubilized by high pressure, 

there are some legumins and vicilins that could correspond to the allergen Cor 9 (11S) and Cor 11 (7S) 

according to data base search.  
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Table 1. Proteins separated by ProteomeLab PF-2D from raw hazelnuts and identified by 

MALDI-TOF/MS. 

Band No. No. access Protein identification Mascot score * Mass (Da) Matched peptides 

1 gi|18479082 
11S globulin-like protein 

(C. avellana) 
73 59,605 12 

2 gi|18479082 
11S globulin-like protein 

(C. avellana) 
161 59,605 19 

3 gi|18479082 
11S globulin-like protein 

(C. avellana) 
136 59,605 6 

4 gi|18479082 
11S globulin-like protein 

(C. avellana) 
187 59,605 20 

5 gi|19338630 
48-kDa glycoprotein 

precursor (C. avellana) 
199 51,110 21 

6 gi|18479082 
11S globulin-like protein 

(C. avellana) 
218 59,605 13 

7 gi|19338630 
48-kDa glycoprotein 

precursor (C. avellana) 
256 51,110 24 

8 gi|18479082 
11S globulin-like protein 

(C. avellana) 
65 59,605 11 

9 gi|19338630 
48-kDa glycoprotein 

precursor (C. avellana) 
199 51,110 21 

* Protein scores greater than 42 are significant (p < 0.05). Protein score is −10 × Log (P), where P is the 

probability that the observed match is a random event. 

Table 2. Proteins separated by ProteomeLab PF-2D from hazelnuts HHP 600 MPa and 

identified by MALDI-TOF/MS. 

* Protein scores greater than 42 are significant (p < 0.05). Protein score is −10 × Log (P), where P is the 

probability that the observed match is a random event. 

4. Conclusions 

The proteomic approach described here allows a deeper and more detailed study of the 

modifications induced by high pressure. The HHP treatment employed in this study is not effective to 

alter the immunoreactivity to hazelnut proteins but the protein solubility became different after HHP 

processing. Although at present there is not an accepted method to reduce the allergenicity of foods, a 

combination of treatments including high hydrostatic pressure with others, such as protease digestion, 

could be a successful strategy towards hypoallergenization. To reach this, we have to collect more 

information about the pressure behavior of these proteins at various environmental conditions and in 

presence of food additives. There is a definite need for further studies at basic scientific level, which 

could report the effect of pressure on the 3D structure of the allergenic proteins. The complexity of 

Band No. No. access Protein identification Mascot score * Mass (Da) Matched peptides 

4′ gi|18479082 
11S globulin-like protein 

(C. avellana) 
205 59,605 10 

7′ gi|19338630 
48-kDa glycoprotein 

precursor (C. avellana) 
194 51,110 21 



Foods 2014, 3 288 

 

 

food processing demonstrates the importance of understanding its impact at the molecular level if risk 

assessors are to move towards knowledge-based ways of managing allergen risks. 
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