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Abstract: Increasing interest in constituents and dietary supplements has created the need for more
efficient use of this information in nutrition-related fields. The present work aims to obtain optimal
models to predict the total antioxidant properties of food matrices, using available information
on the amount and class of flavonoids present in vegetables. A new dataset using databases that
collect the flavonoid content of selected foods has been created. Structural information was obtained
using a structural-topological approach called TOPological Sub-Structural Molecular (TOPSMODE).
Different artificial intelligence algorithms were applied, including Machine Learning (ML) methods.
The study allowed us to demonstrate the effectiveness of the models using structural-topological
characteristics of dietary flavonoids. The proposed models can be considered, without overfitting,
effective in predicting new values of Oxygen Radical Absorption capacity (ORAC), except in the
Multi-Layer Perceptron (MLP) algorithm. The best optimal model was obtained by the Random
Forest (RF) algorithm. The in silico methodology we developed allows us to confirm the effectiveness
of the obtained models, by introducing the new structural-topological attributes, as well as selecting
those that most influence the class variable.

Keywords: flavonoid; artificial intelligence; total antioxidant capacity

1. Introduction

The relationship between dietary intake of bioactive antioxidants and health needs new approaches
and studies for a better understanding. Research in this field is limited by the high number of bioactive
compounds, which also hinders the development of analytical techniques and the availability of
benchmarks [1]. Studying the currently growing and dispersed information on dietary phytochemicals
is a huge challenge [2].

Several food databases were prepared based on the emerging Food Composition Database
(FCDB) [3,4]. These databases focus on the composition of bioactive substances, including flavonoids
and other polyphenols.
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The flavonoid FCDB provides researchers with new values on the flavonoid content of many foods
in order to better determine the impact of flavonoid consumption against various chronic diseases [3,5].
Flavonoids, particularly flavan-3-ols, have been associated with a reduced risk of cardiovascular
disease by modulating different primary and secondary prevention mechanisms [6]. Flavonoids are
present in various sources in the plant kingdom and have a wide variety of biological properties.
They have already proven their health benefits [3,7]. One of the most important activities is their role
as antioxidants. As antioxidants, flavonoids are able to decrease oxidation of a substrate even in small
amounts when compared to the substrate itself [8].

Food composition data describe food content in terms of nutrients and energy as well
as non-nutrients such as phytochemicals, bioactive food components, anti-nutrients, or toxic
compounds [9–11]. Food composition data are the basis of most nutritional studies [9]. Food sources
are complex matrices in which antioxidant activity varies with the amount and type of bioactive
compounds. The number of polyphenols in certain foods changes with different factors. For example,
the phenolic composition of fruits varies widely among cultivars [12]. Therefore, the antioxidant
capacity of food is itself variable [13,14].

Several methods are available for determining the type and amount of antioxidants in the diet.
Prior studies (2015) described that, depending on the reactions involved, these assays can be classified
into two types: hydrogen atom transfer reaction (HAT) based assays and electron transfer (ET) based
assays. Among them, the oxygen radical absorption capacity (ORAC, classified as HAT) [1] has
emerged as a test of choice in measuring the peroxyl radical scavenging capacity in foods and other
matrices [15]. The correct use of the data obtained by this methodology through epidemiological clinical
trials has broadened the knowledge about the dietary intake of antioxidants and their relationship with
chronic diseases [16–23]. These epidemiological studies support the concept that food intake of ORAC
(Oxygen Radical Absorbance Capacity) compounds above 10,000 µmol TE (Trolox equivalents) is
related to a decreased risk or incidence of hypertension and cerebral infarction [1]. However, the data
available in the scientific literature on ORAC for food cannot yet cover a wide range of examples and
are limited to the associated eating habits in very specific regions.

The present study takes into consideration the need for a holistic and less reductive treatment in the
analysis of health benefits of bioactive compounds in the nutritional sciences [24]. Our goal is to consider
the analysis of the FCDB from a chemo-informatic perspective, which aims to generate useful models
that can predict the chemical and biological properties of compounds [25]. Essentially, this research is
based on the assumption that the countless data from the FCDB have enormous chemical information
due to the structural diversity of the compounds encoded therein. Several articles have explained that
antioxidant properties are also related to the chemical structure of polyphenols, and mainly attributed
to the high reactivity of hydroxyl substituents [26,27].

Although the study is focused on flavonoid content data, it is necessary to recognize the existence
of proanthocyanidin (PA) FCDB [7]. This database was created based on the growing number of
studies that reveal health benefits associated with ingestion of PA, per se or in conjunction with other
flavonoids [7,28–30]. As an example, procyanidin may be highlighted. Its oligomeric state has been
shown to contribute to the antioxidant activity of various matrices [31–33]. These complex structures
cannot be coded correctly by the chemoinformatic software used in this project. Therefore, we decided
to start the study with the monomeric flavonoids included in the USA National Nutrient Database
(USDA) and in a different FCDB.

This project was developed considering the possibility of generating predictive information
related to the data found in the FCDB. We were looking for a tool to predict the antioxidant capacity
of foods containing different compounds with flavonoid scaffolds (exogenous antioxidants in the
diet). As stated earlier, data on food composition are complex and extensive [34]. Therefore, it is
difficult to process all the information regarding the different essays presented in the bibliographic
sources. Information processing is still performed by classical statistical methodologies [35,36].
However, when the problem is complex and mediated by nonlinear behaviors, it can be studied from a



Foods 2019, 8, 573 3 of 17

multivariate perspective or using artificial intelligence (AI) techniques [37,38]. In the biomedical field,
several unidirectional supervised networks were used, especially based on the MultiLayer Perceptron
(MLP). In chemoinformatic studies, researchers used other methods of Machine Learning ML [39].
In the nutrition sciences, the need to use ML models for personalized nutrition has recently been
raised [40]. However, as far as we know, these techniques have never been used for the analysis and
study of the FCDB. Therefore, current work is focused on obtaining optimal models based on ML
methods that allow for predicting the total antioxidant capacity of foods, based on information from
the flavonoid composition database and structural topological descriptors of flavonoids.

2. Materials and Methods

2.1. Conformation of the Data Related to the Food Composition

Information from the dataset was obtained from different FCDB: (a) database for the flavonoid
content of selected foods, version 3.1 and (b) isoflavone database released by the USDA in 2008 [3,5].
Therefore, estimation techniques were used to calculate unavailable values and the decision-making
procedure described by Bhagwat et al. (2015) [35]. This information was used to prepare the dataset
related to the composition of flavonoids in different foods. The standard reference (SR) was used to
identify very unique food intake [7].

2.2. Prediction Using ML Algorithms

The prediction followed two phases, with different purposes: (i) selection of the attributes that
best relate to the class (set A1). Metaheuristic Particle Swarm Optimization + Rougt Set Theory
(PSO + RST) techniques were used [41,42], which included obtaining optimal prediction models
among the selected ML algorithms using the hierarchical attributes of set A2 and their validation.
To facilitate the experimentation of ML algorithms and the optimization capacity, the R language
was used. This language also allowed the creation of each of the models corresponding to the three
ML algorithms for predicting the antioxidant capacity. The interpolation package train function
(Classification and Regression training) was used to evaluate the ML algorithms using the same metric
and validation techniques.

Description of the Class Variable. The selected variable (attribute class) to predict was the ORAC
value (ORACexp) was expressed in µmol TE/100g. ORAC was selected because it is considered the
preferable methodology to evaluate antioxidant capacity. This is due to its correlation with antioxidant
efficacy in vivo [43]. This assay was used to measure the antioxidant activity of foods. The assay
measures the degree of inhibition of peroxyl radical induced oxidation by the compounds of interest in
a chemical medium. The analytical method developed by Prior et al. (2003) was used as a reference
method for selected sources [44].

Training Set and Test Set. As an internal validation methodology, the k-fold cross-validation
method of k = 10 iterations was used for all algorithms [3].

2.2.1. Selection of Attributes

Attributes Selection. For the attributes, different weights were assigned considering their influence
on the attribute class. The attributes (set A1) were:

1. Flavonoid value equivalent to the antioxidant capacity of Trolox (TEACexp),
2. Flavonoid class (Class_flav),
3. Flavonoids (id_flav),
4. Amount of flavonoids (mean_flav),
5. Total value of polyphenols (TPexp),
6. Structural-topological characteristics (spectral moments, µkw, where w is bonding weights)
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The experimental parameters were taken from the available scientific literature. TPexp (GAE
mg/100 g) was found for each substrate.

The structural-topological attributes used for the study were the molecular descriptors (µk) of
the Topological Sub-structural Molecular Design (TOPSMODE) approach [45]. The spectral moments
of each flavonoid were calculated from their Simplified Molecular Input Line Entry Specification
(SMILES) using MODESLAB software (version 1.0) and weighted for different binding properties.
These bonding weights used in the present work describe the n-octanol/water partition coefficient
(H), polar surface (PS), polarizability (Pol), Gasteiger-Marsilli charge (Ch), van der Waals atomic radii
(vdW), and molar refraction (RM). An extensive dataset was created with the structural-topological
information of flavonoids present in foods.

Attributes Hierarchy. The following relationships were analyzed: (i) the relationship between the
attributes of set A1 and the class variable was investigated, and (ii) the influence of new attributes
related to the structural-topological information of flavonoids in the class was evaluated. The working
hypothesis was based on the existence of a relationship between the chemical structure of each flavonoid
and the total antioxidant activity of the studied food matrices.

To select the attributes (A2), a ranking ranked according to their relationship with the class was
formed. Different weights were assigned to each attribute using the quality measure of a similarity
decision system. Weights were assigned manually and using PSO + RST, implemented in Java.

2.2.2. Obtaining and Validating the Optimal ML Models

To develop the training process, the caret package (classification and regression training) was used
through the RStudio version 0.99.441 tool. This allowed the R language to be used in all experiments.

For data preparation, the database contained in a .csv file was imported. The data was divided
into a training dataset with 75% of the inputs and the remainder with 25% using the createDataPartition
() function (createDataPartition (totalData $ total.orac, p = 0.75, list = FALSE)).

Attribute set A2 was selected for this study. The in silico influence of each attribute was considered
in the class variable, which results from phase 1. In this phase, four algorithms were implemented:

(a) nearest k-neighbor algorithm (KNN) (where the optimized parameter was the integer, such that k
€ [1,10].

(b) The Support Vector Machine (SVM) algorithm required the use of the kernlab package and the
radial base function of the kernel function, which allows the optimization of sigma parameters
according to C (evaluated in an incremental range from smallest to highest).

(c) The MLP algorithm was used optimizing the size parameter, which represents the network size
given by the number of internal layers it has. The values were assigned over a wide range
to evaluate the trend following the best predictions and, thus, select the appropriate number
for the parameter. The defined vector (c (1,4,3,5,7,9,10,11,12,15,20,25,50)) was performed using
TuneGrid function.

(d) In the Random Forest (RF) algorithm, mtry and ntree parameters were defined. The optimal value
in this case was 3. For a more comprehensive experiment, it was considered that the use of ntree
is generally treated with values of 500 or more, depending on the data and vectors seq (3,4,5,6)
and seq (500,600,700) for mtry and ntree, respectively.

The resulting optimal models were validated using test suites. The predict function was used.
It was found that the models chosen were not adjusted and the best performance model was established.
For this, graphical functions and calculation of the metrics present in the R language were used.

Experiment 1: Comparison of the outputs of the KNN, SVM, RF, and MLP algorithms generated
in training with those generated in predicting the test suite. The goal is to determine the excess of fit
in the models and which of the performances is the best. This was done through the plotObsVsPred
function belonging to the interpolation package. A graph with the content of the reticular diagrams of
each model was generated in the training and test sets. Model error metrics were calculated in the
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test phase using mmetrics from the rminer package. The parameters were two numerical vectors that
represent the original outputs of each instance and the predicted outputs.

Experiment 2: Comparison of predictions for new values of total antioxidant capacity in each
model. The objective is to determine the accuracy of the antioxidant capacity predictions corresponding
to the new compounds, by comparing them with the original ones, and by characterizing the best
predicted occurrences. A dataframe was used, containing the output values of each algorithm and those
of the original set, generated by the extractPrediction function of the interleaving package. The graphs
were generated with the prediction values and their originals by instances, which were represented in
a Cartesian coordinate system.

3. Results and Discussion

This project focused on the idea that dietary antioxidants are substances that significantly decrease
the adverse effects of reactive species, such as reactive oxygen and nitrogen species, among normal
physiological functions in humans [46,47]. Due to the complexity of food composition, it is not
completely known which diet constituents are responsible for health benefits, but antioxidants appear
to play an important role [48,49].

3.1. Database Description

The database used to create the templates consisted of 991 entries, six different types of attributes,
and the class. Therefore, the resulting matrix has a high dimensionality. The studied feeding matrices
were divided into 11 groups according to NDB (Nutrient Database) Alimentary Group Number [3].
Vegetables, spices, and herbal herbs are the two groups with the most flavonoid-containing foods,
accounting for 39% and 37%, respectively (Figure 1). In this dataset, high variability in flavonoid
content predominated. This has been similar for all dietary polyphenols [50]. Several factors that affect
the content of polyphenols in foods have been described [51,52].
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The monomeric food flavonoids present in the data studied (id_flav attribute) belong to the
chemical subclasses: flavonols, flavones, flavanones, and flavan-3-ols (Table 1). Quantifying them
as aglycones facilitated the analysis but reduced the variety of compounds that could be analyzed.
Flavonoids of the anthocyanin subclass can be found in many foods. Total anthocyanidin content
in plant sources and extracts was correlated with the ORAC values. Anthocyanins constitute one
of the most studied subclasses in the field [53]. Food intake of anthocyanins is high compared to
other flavonoids due to their wide distribution in plant materials [54]. However, they were not
included in this study because of their structure, which invalidates the application of the TOPSMODE
approach [45].

Table 1. Examples of the conformation of the dataset and the respective attributes.

(NDB No)-
ALIMENTARY

GROUP a

FOOD a/NDB
No.

ATTRIBUTES
CLASS
(ORAC

EXP) MeanFlavonoid a Class of
Flavonoid a

Amount
of

Flavonoid
(Mean) a

TEACexp
b

TPexp
Mean

(11)—Vegetables
and Vegetable

Products

Broccoli, raw
(Brassica

oleracea var.
italica)/11090

(+)-Catechin Flavan-3-ols 0 2.4

316 c 1510 [13,
14,55,56]

(-)-Epigallocatechin
3-gallate Flavan-3-ols 0 4.93

Hesperetin Flavanones 0 1.37

Naringenin Flavanones 0 1.53

Apigenin Flavones 0 1.45

Luteolin Flavones 0.8 2.09

Kaempferol Flavonols 7.84 1.34

Myricetin Flavonols 0.06 3.1

Quercetin Flavonols 3.26 4.7

(02)—Spices and
Herbs

Guava,
red-fleshed/99428

Apigenin Flavones 0 1.45

247 d 1990 [57]

Luteolin Flavones 0.8 2.09

Kaempferol Flavonols 0 1.34

Myricetin Flavonols 0 3.1

Quercetin Flavonols 1 4.7
a Extracted from FCDB [3,5]. b Extracted from [58]. c Extracted from [14]. d Extracted from [57]. Trolox equivalent
antioxidant capacity flavonoid value (TEACexp). Total polyphenol value (TPexp). Nutrient Database Number
(NDB No).

Chemical structures, SMILE codes, and some examples of sources of the studied flavonoids are
shown in Table 2.

3.2. Hierarchy Analysis of Attributes

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order is
associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the
most important factor in predicting the total antioxidant capacity of foods. Although no history of this
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for
more limited datasets. For example, positive correlations between ORAC and total phenolic content
have also been previously reported [59].

In addition, the introduction of structural-topological information as new metadata helped to
verify the hypothesis that the chemical structure of the food flavonoids is correlated with the total
antioxidant capacity. The influence of these topological weights or structural attributes is limited to
this database. However, the high dimensionality of the matrix and the fact that the food is compiled
in the FCDB led to the suggestion that the scope of these results is correlated with the knowledge
currently available in this field.
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Table 2. Examples of the chemical information of flavonoids, and their presence in food, contained in the studied database.

FLAVONOIDS STRUCTURE SMILE NAME FOOD NDB No. a

(-)-Epicatechin 3-gallate

Foods 2019, 8, x FOR PEER REVIEW 5 of 17 

 

this study because of their structure, which invalidates the application of the TOPSMODE approach 
[45]. 

Table 1. Examples of the conformation of the dataset and the respective attributes. 

(NDB No)-
ALIMENTAR

Y GROUP a 

FOOD 
a/NDB No. 

ATTRIBUTES 

CLASS 
(ORAC EXP) 

Mean Flavonoid a 
Class of 

Flavonoid 
a 

Amount 
of 

Flavonoi
d (mean) 

a 

TEACex
p b 

TPex
p 

Mean 

(11) – 
Vegetables 

and Vegetable 
Products 

Broccoli, 
raw 

(Brassica 
oleracea var. 

italica)/ 
11090 

(+)-Catechin 
Flavan-3-

ols 
0 2.4 

316 c 
1510 

[13,14,55,56
] 

(-)-
Epigallocatechi

n 3-gallate 

Flavan-3-
ols 

0 4.93 

Hesperetin 
Flavanone

s 
0 1.37 

Naringenin 
Flavanone

s 
0 1.53 

Apigenin Flavones 0 1.45 
Luteolin Flavones 0.8 2.09 

Kaempferol Flavonols 7.84 1.34 
Myricetin Flavonols 0.06 3.1 
Quercetin Flavonols 3.26 4.7 

(02) – Spices 
and Herbs 

Guava, red-
fleshed/9942

8 

Apigenin Flavones 0 1.45 

247 d 1990 [57] 
Luteolin Flavones 0.8 2.09 

Kaempferol Flavonols 0 1.34 
Myricetin Flavonols 0 3.1 
Quercetin Flavonols 1 4.7 

a Extracted from FCDB [3,5]. b Extracted from [58]. c Extracted from [14]. d Extracted from [57]. Trolox 
equivalent antioxidant capacity flavonoid value (TEACexp). Total polyphenol value (TPexp). Nutrient 
Database Number (NDB No). 

Chemical structures, SMILE codes, and some examples of sources of the studied flavonoids are 
shown in Table 2. 

Table 2. Examples of the chemical information of flavonoids, and their presence in food, contained in 
the studied database. 

FLAVONOIDS STRUCTURE SMILE NAME FOOD NDB 
No.a 

(-)-Epicatechin 3-
gallate  

 

C1C(C(OC2=CC(=CC(=C21)O)O)C
3=CC(=C(C=C3)O)O)OC(=O)C4=C

C(=C(C(=C4)O)O)O 

Apples, Fuji, raw, 
with skin 

09504 

(+)-Catechin 

 

OC1CC2=C(O)C=C(O)C=C2OC1C
3=CC=C(O)C(=C3)O 

Bananas, raw (Musa 
acuminata Colla) 

09040 

C1C(C(OC2=CC(=CC(=C21)O)O)
3=CC(=C(C=C3)O)O)OC(=O)C4=C

C(=C(C(=C4)O)O)O
Apples, Fuji, raw, with skin 09504

(+)-Catechin

Foods 2019, 8, x FOR PEER REVIEW 5 of 17 

 

this study because of their structure, which invalidates the application of the TOPSMODE approach 
[45]. 

Table 1. Examples of the conformation of the dataset and the respective attributes. 

(NDB No)-
ALIMENTAR

Y GROUP a 

FOOD 
a/NDB No. 

ATTRIBUTES 

CLASS 
(ORAC EXP) 

Mean Flavonoid a 
Class of 

Flavonoid 
a 

Amount 
of 

Flavonoi
d (mean) 

a 

TEACex
p b 

TPex
p 

Mean 

(11) – 
Vegetables 

and Vegetable 
Products 

Broccoli, 
raw 

(Brassica 
oleracea var. 

italica)/ 
11090 

(+)-Catechin 
Flavan-3-

ols 
0 2.4 

316 c 
1510 

[13,14,55,56
] 

(-)-
Epigallocatechi

n 3-gallate 

Flavan-3-
ols 

0 4.93 

Hesperetin 
Flavanone

s 
0 1.37 

Naringenin 
Flavanone

s 
0 1.53 

Apigenin Flavones 0 1.45 
Luteolin Flavones 0.8 2.09 

Kaempferol Flavonols 7.84 1.34 
Myricetin Flavonols 0.06 3.1 
Quercetin Flavonols 3.26 4.7 

(02) – Spices 
and Herbs 

Guava, red-
fleshed/9942

8 

Apigenin Flavones 0 1.45 

247 d 1990 [57] 
Luteolin Flavones 0.8 2.09 

Kaempferol Flavonols 0 1.34 
Myricetin Flavonols 0 3.1 
Quercetin Flavonols 1 4.7 

a Extracted from FCDB [3,5]. b Extracted from [58]. c Extracted from [14]. d Extracted from [57]. Trolox 
equivalent antioxidant capacity flavonoid value (TEACexp). Total polyphenol value (TPexp). Nutrient 
Database Number (NDB No). 

Chemical structures, SMILE codes, and some examples of sources of the studied flavonoids are 
shown in Table 2. 

Table 2. Examples of the chemical information of flavonoids, and their presence in food, contained in 
the studied database. 

FLAVONOIDS STRUCTURE SMILE NAME FOOD NDB 
No.a 

(-)-Epicatechin 3-
gallate  

 

C1C(C(OC2=CC(=CC(=C21)O)O)C
3=CC(=C(C=C3)O)O)OC(=O)C4=C

C(=C(C(=C4)O)O)O 

Apples, Fuji, raw, 
with skin 

09504 

(+)-Catechin 

 

OC1CC2=C(O)C=C(O)C=C2OC1C
3=CC=C(O)C(=C3)O 

Bananas, raw (Musa 
acuminata Colla) 

09040 
OC1CC2=C(O)

C=C(O)C=C2OC1C3=C
C=C(O)C(=C3)O

Bananas, raw (Musa acuminata
Colla) 09040

Hesperetin

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O Juice, orange, raw 09206

Naringenin

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

OC1=CC=C(C=C1)C2CC(=O)
C3=C(O2)C=C(O)C=C3O

Melons, honeydew, raw
(Cucumis melo) 09184

Apigenin

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

O=C(C=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O

Pineapple, raw, all varieties
(Ananas comosus) 09266

Luteolin

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O

Pomegranates, raw (Punica
granatum) 09286

Kaempferol

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O

Broccoli, cooked, boiled,
drained, without salt 11091

Quercetin

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

O=C(C(O)=C(C3=CC(O)=C
(O)C=C3)O2)

C1=C2C=C(O)C=C1O

Mushrooms, white, raw
(Agaricus bisporus) 11260

Myricetin

Foods 2019, 8, x FOR PEER REVIEW 6 of 17 

 

Hesperetin 

O

OH

O

OHO

OH

 

O=C(CC(C3=CC(O)=C(OC)C=C3)
O2)C1=C2C=C(O)C=C1O 

Juice, orange, raw 09206 

Naringenin 

OH

O

OHO

OH

 

OC1=CC=C(C=C1)C2CC(=O)C3=C
(O2)C=C(O)C=C3O 

Melons, honeydew, 
raw (Cucumis melo) 

09184 

Apigenin 

O

OH

OHO

OH

 

O=C(C=C(C3=CC=C(O)C=C3)O2)
C1=C2C=C(O)C=C1O 

Pineapple, raw, all 
varieties (Ananas 

comosus) 
09266 

Luteolin 

O

OH

OH

OHO

OH

 

O=C(C=C(C3=CC(O)=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Pomegranates, raw 
(Punica granatum) 

09286 

Kaempferol 

O

OH

OH

OHO

OH

 

O=C(C(O)=C(C3=CC=C(O)C=C3)
O2)C1=C2C=C(O)C=C1O 

Broccoli, cooked, 
boiled, drained, 

without salt 
11091 

Quercetin 

O

OH

OH

OH

OHO

OH

O=C(C(O)=C(C3=CC(O)=C(O)C=C
3)O2)C1=C2C=C(O)C=C1O 

Mushrooms, white, 
raw (Agaricus 

bisporus) 
11260 

Myricetin 

 

O=C(C(O)=C(C3=CC(O)=C(O)C(O
)=C3)O2)C1=C2C=C(O)C=C1O 

Potatoes, red, flesh 
and skin, raw 

(Solanum tuberosum) 
11355 

a Nutrient Database Number (NDB No) [3]. 

3.2. Hierarchy Analysis of Attributes 

Table 3 shows the order of influence of the attributes on the predictor variable (class). This order 
is associated with a higher "weight" in qualifying for this data matrix (dataset). Total polyphenols is the 
most important factor in predicting the total antioxidant capacity of foods. Although no history of this 
correlation is reported by AI algorithms, there are reports in which linear correlation was observed for 
more limited datasets. For example, positive correlations between ORAC and total phenolic content 
have also been previously reported [59]. 

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class. 

Order Attributes Correlation Value f Set of Attributes for the Model 
1 TPexp a 0.1551576 A2 
2 µ8 H 0.1483031 A2 
3 µ12 H 0.1349679 A2 
4 µ11 H 0.1213032 A2 
5 µ10 H 0.1206462 A2 
6 µ13 H 0.1096691 A2 
7 id_flav b 0.1018874 (-) 
8 mean_flav c 0.0341301 (-) 

O=C(C(O)=C(C3=CC(O)=C
(O)C(O)=C3)

O2)C1=C2C=C(O)C=C1O

Potatoes, red, flesh and skin,
raw (Solanum tuberosum) 11355

a Nutrient Database Number (NDB No) [3].



Foods 2019, 8, 573 8 of 17

Table 3. Hierarchy of attributes of the set A1 regarding their influence in the class.

Order Attributes Correlation Value f Set of Attributes for the
Model

1 TPexp a 0.1551576 A2
2 µ8 H 0.1483031 A2
3 µ12 H 0.1349679 A2
4 µ11 H 0.1213032 A2
5 µ10 H 0.1206462 A2
6 µ13 H 0.1096691 A2
7 id_flav b 0.1018874 (-)
8 mean_flav c 0.0341301 (-)
9 TEACexp d 0.0108586 (-)
10 Class_flav e 0.0094634 (-)

a TPexp (Total polyphenol value). b id_flav (Flavonoids). c mean_flav (Amount of flavonoid (mean). d TEACexp
(Trolox equivalent antioxidant capacity flavonoid value). e Class_flav (Class of flavonoid). f Value of correlation
with the class. (-) not selected for the model. H bonding weight n-octanol/water partition coefficient.

The molecular descriptors that most influence the class are presented in Table 3. All molecular
descriptors (Table 3) are referred to as the n-octanol/water partition coefficient. For this reason, in the
data series analyzed, this link property is the one with the most influence. The hydrophobicity of
flavonoid diphenylpyran scaffolding may also influence antioxidant capacity [60]. The improved
ORAC test provided a direct measure of hydrophilic and lipophilic antioxidant breaking ability in the
presence of peroxyl radicals [61,62].

The amount of each flavonoid in the food matrix exert less influence (0.0341), as well as the
antioxidant activity of the flavonoid compounds, especially TEACexp (0.0109). This may be related
to the fact that antioxidant levels in foods do not necessarily reflect their total antioxidant capacity,
which also depend on the synergistic and redox interactions between different molecules present in
foods, which are not included in the dataset studied [48].

3.3. Models Obtainment and Validation

3.3.1. Training Model

For the KNN algorithm and an optimal value for the k = 1 training model, the metrics produce the
best results (small RMSE, Root Mean Squared Error) (Table 4). These results are superior to the models
obtained in previous studies (RMSE = 5,475,398) [63]. This may be due to the features offered in the R
language, which beneficially contribute to the model validation process and parameter optimization,
as well as avoid excessive adjustments. It was also important to include structural-topological
information as a highly influential attribute in the variable class.

Table 4. Statistics corresponding to the training set score for the optimal models of each of the
ML algorithms.

Algorithm RMSE Rsquared

KNN 1851.174 0.905
RF 1271.060 0.957

MLP 6582.955 0.284
SVM 1790.536 0.901

ML: Machine Learning; RMSE, Root Mean Squared Error; KNN: nearest k-neighbor algorithm; RF: Random Forest;
MLP: Multi-Layer Perceptron; SVM: Support Vector Machine.

For experimentation with RF, parameters such as mtry and ntree were defined. The optimal value
(for regression problems) is known to be given by the third part of the number of descriptors for mtry
(in this case, it would be 3). For the ntree, it is common to be treated with values of 500 or more,
depending on the date. The vectors seq (3,4,5,6) and seq (500,600,700) were defined for mtry and ntree,
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respectively, in order to make the experimentation a little more comprehensive. The optimal model
was obtained with the values of mtry = 6 and ntree = 500.

The MLP neural network was used for model adjustment. In this case, the size parameter has been
optimized, which represents the network size provided by the number of inner layers. The values were
assigned over a wide range to evaluate the trend by following the best predictions and, thus, selecting
the appropriate number for the parameter. Therefore, the vector c (1,4,3,5,7,9,10,11,12,15,20,25,50) is
defined through tuneGrid. From the resulting models, the best predictor was obtained by applying the
size parameter with the value 4, even though its performance was lower than in other experiments.

Regarding the analysis performed with the SVM algorithm, the results of the vector were obtained
for the values of sigma c (0.03,0.30,3.30,36,3,399,30) and distribution C (1,10,16,32,64,128,256,512.1024).
The statistics for the Radial Basis Function core function experiment were: Sigma (σ) (399.3),
C (10), RMSE (1853.446), Rsquared (0.879), RMSE SD (1370.442), and Rsquared SD (0.166). Subsequent
analysis of the intervals around the σ and C values led to the definition of a new lower limit for the
vector calculation. The optimal value was found for SVM (Table 4). This value was obtained for the
new vector of σ and was c (1,11,121,1331). In this case, the optimal model was reached with σ = 121
and C = 10.

3.3.2. External Validation

Validation of optimal models was performed using the test sets. For this, the prediction function
was used as a parameter. Error metrics for the results of each model (Table 5) allowed us to indicate
the RF algorithm as the best performance in this validation phase, determined by RMSE and R2 errors.

Table 5. Statistics corresponding to the test set score for the optimal models of each of the ML algorithms.

Algorithm RMSE Rsquared

KNN 1956.810 0.880
SVM 1622.627 0.917
RF 1557.108 0.925

MLP 6429.185 0.007

The performance of the RMSE metrics for each of the algorithms in the parameter optimization
process is shown. For the KNN algorithm (Figure 2a), as the parameter k increases number of neighbors
(#Neighbors), the greater the error becomes. The results for SVM are shown in Figure 2b, where each row
represents a value σ, distributed according to Cost (C) across the X axis. In this case, σ = 121 for C = 10,
the optimal parameters are shown. Figure 2c corresponds to the RF algorithm. Each line represents the
number of trees generated by the algorithm in each case (ntree). Points are models with the corresponding
mtry value. The error tends to decrease as you approach a higher level for MLP. Error behavior is observed
by varying the size parameter, which tends to increase abruptly from size = 15.
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3.3.3. Effectiveness Performance Comparison

Experiment 1. Model prediction results for metrics in the training and testing phases are shown in
Tables 4 and 5. In all cases, the superiority of the model corresponds to RF, which is followed by SVM
and KNN. In the case of the MLP neural network, a very poor performance at both times was recorded.
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Predictions have adequate accuracy and low over-fit rate, except for the MLP model (Figure 3).
A comparison between the training moment and the test moment in each model shows similarity in
the distribution of the output values around the reference line.
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Experiment 2. The models corresponding to the SVM, KNN, and RF algorithms show an accurate
prediction of new instances. The lines representing the vectors of the original and predicted values
have a similar path except for the MLP model (Figure 4).
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The optimal models obtained demonstrate the good effectiveness that can be achieved using
AI algorithms. Only a small set of foods belonging to a specific food group or type was studied.
An important and innovative feature of the present study is the size of the matrix, which represents
the very large data set and describes various food groups. Prediction of the antioxidant capacity
of foods by the ORAC method has not been documented, which makes it difficult to compare
different methodologies. In the field of food, the use of data mining techniques is, therefore,
untapped. However, there are recent studies that use traditional regression methods to predict a
specific antioxidant property [64–69].

The complex role of diet in chronic diseases is difficult to understand, since a typical diet
provides large amounts and different types of bioactive components. These bioactive molecules can
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modify a multitude of processes related to these diseases. Due to the complexity of this relationship,
a comprehensive understanding of the role of these bioactive components is required in order to assess
the role of food in modulating human health and disease. Food composition data alone does not
provide this knowledge. However, processing your data and information obtained may be useful for
further studies and to complement in vivo and ex vivo studies. Based on the current study, the total
antioxidant capacity of foods can be predicted whenever their TPexp and the structural-topological
information of the flavonoids they contain are known. The obtained models were automated in
a software (PCAT, version 1.0), whose functionalities allow the validation of each model with a new
data set and, therefore, new predictions.

4. Conclusions

The in silico methodology developed allows us to confirm the effectiveness of the models obtained
through the introduction of the new structural-topological attributes, as well as the selection of those
that most influence the class variable, determined by the calculation of the PSO + RST algorithm. The RF
algorithm shows the best quality parameters, both in the training and validation phases, which are
the most successful. It is worth mentioning the use of R as the language and work environment,
which allows the optimization of the algorithms’ parameters that led to the results. These predictions
are limited to the FCDB and its metadata. There are new possibilities for learning ML models from
new datasets, which is facilitated by their implementation in an automated predictive system in
the development phase. The practical utility of the research is directed toward the generation of
predictive theoretical knowledge, which is useful in the development of regional or local FCDB,
dietary interventions, new nutritional studies, etc. It is an important antecedent in the “omics”
disciplines applied to food and nutrition sciences, which lead to the analysis of a complex data system
to obtain information using bioinformatic tools.
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