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Abstract: Unlike solid food, texture descriptors in liquid food are scarce, and they are frequently
reduced to the term viscosity. However, in wines, apart from viscosity, terms, such as astringency,
body, unctuosity and density, help describe their texture, relating the complexity and balance among
their chemical components. Yet there is uncertainty about which wine components (and their
combinations) cause each texture sensation and if their instrumental assessment is possible. Therefore,
the aim of the present work was to study the effect of wine texture on its main components, when
interacting with saliva. This was completed by using instrumental measurements of density and
viscosity, and by using two types of panels (trained and expert). For that, six different model-wine
formulations were prepared by adding one or multiple wine components: ethanol, mannoproteins,
glycerol, and tannins to a de-alcoholised wine. All formulations were mixed with fresh human saliva
(1:1), and their density and rheological properties were measured. Although there were no statistical
differences, body perception was higher for samples with glycerol and/or mannoproteins, this was also
correlated with density instrumental measurements (R = 0.971, p = 0.029). The viscosity of samples
with tannins was the highest due to the formation of complexes between the model-wine and salivary
proteins. This also provided astringency, therefore correlating viscosity and astringency feelings
(R = 0.855, p = 0.030). No correlation was found between viscosity and body perception because of
the overlapping of the phenolic components. Overall, the present results reveal saliva as a key factor
when studying the wine texture through instrumental measurements (density and viscosity).

Keywords: wine texture; body; viscosity; density; trained and expert panel

1. Introduction

Food texture is a sensory property; it is defined as “the sensory and functional manifestation of the
structural, mechanical and surface properties of foods detected through the senses of vision, hearing,
touch and kinaesthetics” [1]. In liquid food, the perceived texture vocabulary is rather scarce, being
often reduced to the term viscosity [2]. In wines, the perceived texture is referred to as ‘mouthfeel’ [3]
and arises from the changes induced by the wine to the integrity of the salivary film that coats oral
mucosa. These changes are perceived by the free nerve endings (also called tactile sensors) located
in the connective tissue of filiform papillae in the mouth [4]. In wines, because of the complexity
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conferred by its components, describing the perception of texture often involves several terms, such as
astringency, body [5], unctuosity, density and viscosity [6].

Sensory and instrumental approaches could contribute knowledge about wine texture or mouthfeel.
From a sensory point of view, wine tasting has an enormous tradition being generally assessed by
‘wine experts’. Wine experts include oenologists and sommeliers, among others; and their expertise
allows them to award wine quality. These specialists often influence the average wine consumer as
the consumers follow the experts’ awarded medals or brands, quality lists and opinion articles [7].
However, from a scientific perspective, there is no control in expert panels performance as there is
uncertainty about what sensory attributes are being analysed and what their definitions are. In sensory
science, for the need to control the variables as much as possible, trained panels are normally used to
perform sensory descriptive analysis (QDA) [8]. QDA results are generally used to correlate sensory
and instrumental measurements. Yet, for wine, finding these correlations and relating instrumental or
sensory sensations to the presence or content of the principal chemical components remains a challenge.

The wine components most cited for influencing wine texture sensations include ethanol [9],
phenolic compounds [10–12], glycerol [13,14] and polysaccharides [15,16]. The alcohol content in wines
is often between 11–14 mL/100 mL, although it can be as low as 7.5 mL/100 mL in some botrytised wines,
or 15 mL/100 mL and above in some red and dessert wines. In early research, there was a suggestion
that ethanol played an important role in wine body [17]. However, in later studies, it was discovered
that ethanol had little or no effect on body perception or viscous mouthfeel [18–21]. Among wine
polyols, the most significant is glycerol, with concentrations reaching 10 g/L in red wines and 7 g/L in
white wines. From a sensory point of view, attributes associated with glycerol are oiliness, persistence
and mellowness. Still, glycerol has no detectable effect in in-mouth viscosity below a concentration of
25 g/L [14]. The total phenolic content (among other composition factors) of wine depends on many
factors (e.g., grape variety, growing conditions, harvest time and/or the winemaking process) [22].
Total content can vary between 40–400 mg/L in white wines, 900–1400 mg/L in young red wines and
1600–2500 mg/L in aged red wines [23]. From a sensory perspective, controversy exists regarding the
size of polyphenols or phenols structure and the astringency intensity perception. Classically, it is
accepted that differences between phenolic compounds produce different saliva protein precipitation.
Polyphenols with an extended structure have a higher affinity to proline-rich proteins (PRPs) as the
number of interaction sites increases with polyphenols size, promoting protein precipitation [24]. But
previous work [10] showed that, independently of the chemical affinity and structures, when using
a trained panel, the same levels of astringency was perceived, among different aqueous-polyphenol
mixtures. The only difference found was that catechins were perceived as slightly bitter. Still, a later
study [25] showed that the average particle size of flavanols and saliva complexes (measured by light
scattering) increased with its concentration and was linked with an increment in astringency perception.

This controversy might be caused by various factors. One of them is the bitterness, felt alongside
astringency and associated with polyphenols. Therefore, the difference perceived in astringency might
be linked with taste perception and not with mouthfeel [26]. Another factor is the phenols lingering
presence in the mouth. A recent study [27] showed that the phenolic component stayed in the mouth
for more than 2 minutes. This can cause cross-mouth-contamination between samples compromising
the validity of the sensory results. Finally, in wine perception, there are other macromolecular
fractions, such as polysaccharides, that have been reported to influence the texture perception of wine.
These components derive from cell walls of yeast (mannoproteins from Saccharomyces cerevisiae) [28],
grapes cells (arabinogalactan-proteins) [29] and other sources (e.g., bacteria). A mixture of neutral
polysaccharides (mannoproteins and arabinogalactan-protein complexes) and acidic polysaccharide
(rhamnogalacturonan II) significantly increases the ‘fullness’ sensation, above that of the base wine
using QDA [30].

In summary, previous scientific works have studied the relationship of ‘body’ with ethanol glycerol
or polysaccharides. Still, there is no work that integrates these components in a model using human
physiological conditions, such as integrating saliva, that, until now, has only been studied in terms of
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astringency perception. The study of wine components joined with saliva can help wineries to find
instrumental measurements to adjust wine components for specific mouthfeel characteristics.

All things considered, the objective of the present study was twofold. First, to investigate
instrumentally, by measuring viscosity and density, the effect of principal wine components classically
related to wine mouthfeel perception (ethanol, mannoproteins, glycerol and tannins) in model
based-wines (de-alcoholised) mixed with saliva. Second, to investigate the correlations of these
instrumental results with human perception by using two types of panels (trained and expert). For
that, artificial model-wines with one or multiple ingredients were created. It was mixed with human
saliva at 37 ◦C, and the resulting mixture was measured for its instrumental properties (apparent
viscosity and density). Then, two panels performed sensory analysis, one trained in wine mouthfeel
attributes and one expert wine panel.

2. Material and Methods

2.1. Materials

2.1.1. Model-Wine Samples

A commercial white de-alcoholised wine (0.5 mL/100 mL alcohol content) was used as a base
wine in all formulations (Torres Natureo Muscat 2014, Miguel Torres S.A. Winery, Barcelona, Spain).
Preparation of model-wine samples (Table 1) were formulated with either the presence or absence of
ethanol (E) (ethanol absolute food grade, AppliChem, Panreac, Barcelona, Spain), yeast mannoproteins
(M) (Mannoplus, Agrovin, S.A. Ciudad Real, Spain), glycerol (G) (Mineral Waters, Purfleet, UK)
and tannins (T) (oak tannin, Agrovin, S.A., Ciudad Real, Spain). The concentration of the different
components was chosen based on their quantities in commercial red wines, except for ethanol, which
was chosen to comply with a minimum legal alcohol content of wine (8 mL/100 mL). In initial
experiments, a higher content of alcohol was chosen (14%), but as this was added pure, it resulted in
overpowering the senses.

Table 1. Model-wine samples made of the base wine (W), ethanol (E), mannoprotein (M), glycerol (G)
and tannins (T).

Sample Base Wine (mL) Ethanol (mL) Mannoproteins (g) Glycerol (g) Tannins (g)

W 100 - - - -
WE 92 8 - - -
WM 100 - 0.5 - -
WG 100 - - 1 -
WT 100 - - - 0.1

WEMGT 92 8 0.5 1 0.1

All ingredients used were food grade and dissolved/dispersed in the commercial de-alcoholised
wine base. Samples were prepared the day before analysis and sensory evaluation.

2.1.2. Saliva/Sample Mixtures

Fresh human saliva (10 mL) was provided by a healthy volunteer (23 years old). Immediately
after collection, the saliva was mixed with each model-wine formulation in a proportion 1:1 (v/v) only
for instrumental measurements.
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2.2. Methods

2.2.1. Physical Measurements in Saliva/Sample Mixtures

Density

A digital densitometer was used (Anton Paar density metre, Graz, Austria) at 37 ◦C, measuring
the density of the different wine formulations and their mixtures with human saliva (see Section 2.2).
Tests were performed in triplicate for each sample.

Flow Behaviour

Rheological tests were conducted on the mixtures of model-wine formulations, model-wine
formulations with human saliva and water with saliva. The shear rate (

.
γ) was measured in a rotational

Kinexus pro rheometer (Malvern Instruments Ltd., UK), equipped with a 40 mm cone (1◦) and a plate
geometry with a gap of 0.15 mm. Five hundred microlitres of each mixture were placed with a pipette
onto a pre-heated plate (37 ◦C). Control of the temperature, to ± 0.1 ◦C, was by a Peltier element in
the lower plate. A cover was used to maintain the temperature (37 ◦C) and to avoid evaporation of
the samples.

Flow curves were obtained at a shear rate (
.
γ) ranging from 0.1 to 100 s−1, selected based on

previous studies [31,32]. The resulting flow curves represent viscosity as a function of shear rate, and
obtained results were fitted to the Ostwald de Waele model (η = K

.
γ

n−1). K (Pa s) is the consistency
index, and n is the flow index. The least-square data fit was good (R2 > 0.900) in all cases. Comparisons
of samples were made using apparent viscosity values at a shear rate of 100 s−1. Each sample was
measured in triplicate.

2.2.2. Wine-Oral Texture Evaluation

Evaluation by Trained Panel

A panel of 8 assessors (5 women and 3 men, 20–34 years old) with one year of training in wine
mouthfeel characteristics took part in this study. In a previous trial, their sensory thresholds in viscosity,
astringency and alcoholic content in wine were tested [33].

In a preliminary session, the panellists were asked to generate the attributes perceived, relating to
the mouthfeel characteristics of the six samples (Table 2). If they found some specific taste or aroma
attribute key for wine discrimination, they were encouraged to record the feeling. Then, they agreed
on the attributes to be chosen and their definitions (Table 2).

Table 2. Sensory attributes selected by the trained panel and its consensus definitions.

Term Definition

Body Viscosity sensation when swishing
Astringency Dryness from the tongue tip to the throat

Alcoholic feeling Hot sensation typical in alcoholic beverages
Cereal taste Feeling of cereal taste
Bitter taste Bitter taste at the end of the tongue

In the first two sessions (around 30 minutes), the characteristics were elicited and discussed for
samples W and WEMGT, as they were the most opposed of the sample set. In the following sessions,
review for the commonality of all samples provided and attributes previously generated helped
compilation of a final list of attributes, as shown in Table 2. The creation of their own language was
under the supervision of the panel leader, who ensured that attributes were non-redundant towards
samples. The aim of these sessions was for all panellists to use the same concepts allowing them to
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communicate precisely with each other. Finally, along with tactile (mouthfeel) attributes, two taste
attributes were also included in the final attribute list (cereal taste and bitter taste).

For the formal assessment, three sessions on different days took place. Samples (20 mL) were
presented monadically in separate wine glasses, each labelled with 3-digit random codes. All tests
conducted were at wine serving temperature (14–17 ◦C). Panellists performed the test in a room isolated
from odours and noise. They were advised to wait at least one minute between samples, while water,
crackers and carrots were offered as palate cleansers; the six samples were tested in triplicate. The
panellists were then asked to score the attributes (Table 2) at two times, during the consumption and
after 10 seconds from swallowing the sample. They used a 10 cm unstructured scale (anchored from
weak to strong) to score the intensity of the attributes (body, astringency, alcoholic feeling, cereal taste
and bitter taste) of the samples.

Evaluation by Expert Panel

Nine wine experts were recruited to take part in a blind tasting of the wines. Experts included
oenology teachers, oenology students and other wine professionals (winery oenologists). The formal
evaluation was made in the same way as the trained panel, including the same number of sessions,
samples per session and sample order. No training sessions were performed with this panel.

2.3. Data Analysis

Analysis of variance (one-way ANOVA) was applied to study the differences between the wine
samples in the sensory analysis scores, density and rheology values. Tukey test was used for post hoc
mean comparisons at a 95% significance level (p < 0.05). Paired-samples T-tests were conducted to
compare the attribute scores of the two panels.

Pearson’s correlation between the instrumental analyses results and the mean intensity scores
from the sensory descriptive test by the trained panel were applied.

All the statistical tests were done using IBM SPSS Statistics for Windows, Version 24.0. (IBM Corp.,
Armonk, NY, USA).

3. Results

3.1. Instrumental Measurements

3.1.1. Density

Figure 1 shows the density measurements of model-wine mixed with saliva. There were no
statistical differences among samples of model-wine with saliva. However, it can be observed that the
two samples that contained ethanol, WE and WEMGT, had lower density values. This was expected
since the density of ethanol is lower than water (water σ at 20 ◦C = 1 g cm−3, ethanol σ at 20 ◦C =

0.791 g cm−3). Although not significant, the sample with glycerol (WG) had a higher density, followed
by the sample with mannoproteins (WM) and tannins (WT). These samples with higher density also
had less variability among measurements. Authors believed that the previous ingredients (glycerol,
mannoproteins and tannins) helped the saliva-wine bonding stabilisation. Previous work, with the aim
of understanding body perception, measured wine density [34]. It was found that density was related to
the alcohol content, and in full-bodied wines, with the alcohol content and dry extract. Besides alcohol
content, the perception of the body in wines has also been linked with mannoproteins [30] content
and glycerol [19]. Although in previous studies, no saliva was added to wine, the results obtained in
this work followed the same trend, in the way that in the presence of glycerol and mannoproteins,
density increased.
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Figure 1. Density measurements of model-wine formulations with saliva. Bars represent the standard
deviation. Model-wine letters indicate components: base wine (W), ethanol (E), mannoprotein (M),
glycerol (G) and tannins (T).

3.1.2. Flow Behaviour

Although there is no agreement for the shear rate with which wine undergoes inside the mouth, the
classical master curve by Shama and Sherman [31] showed that deformation of food in the mouth would
be at shear rates that oscillate between 10 and 1000 s−1. On the other hand, as food viscosity increases,
the tongue exerts higher forces; therefore, for liquids, shear rates will be lower (≈ 100 s−1) [32]. In the
present study, the flow curve obtained was between 0.1–100 s−1. A shear of 100 s−1 was considered
as the value for tongue against the palate in physiological conditions when drinking. The apparent
viscosity at this value was calculated to compare the different model-wine samples with saliva (Table 3).
The flow curves are presented in Figure 2.

Table 3. Apparent viscosity (Pa s) of model-wines at a shear rate of 100 s−1.

Model-Wine Samples
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All samples, including a control sample (water plus saliva) for comparative purposes, showed
a shear thinning behaviour as apparent viscosity dropped when the shear rate increased. The
sample WT was significantly the most viscous, followed by the other tannin-containing sample
(WEMGT). This result agreed with a previous study [13] where instrumental viscosity increment
resulted from the formation of a saliva protein-polyphenol complex. This complex has a higher
hydrodynamic diameter, shown by using dynamic light scattering and negative-stain transmission
electron microscopy. Formation of these complexes is via hydrogen bonding between hydroxyl groups
of phenolic compounds and carbonyl/amide groups of proteins. Hydrophobic interactions between
the benzoic ring of phenolic compounds and the apolar side chains of amino acids, such as leucine,
lysine and proline, in salivary proteins [11,35] also contributed to this complex formation.
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Samples with mannoproteins (WM) showed lower viscosity values than samples with tannins
(WT). Mannoproteins are macromolecular fractions, present in wines generally used to stabilise wine
flavour, colour and foam (in sparkling wines) [36]. In this case, it is believed that the viscosity increase
is due to the size of the molecules in the wine mixture. When mannoproteins and tannins were
present in the same wine (WEMGT), the viscosity was slightly lower because of their influence on the
tannins size [37], as mannoproteins act by encapsulating polyphenols, thus interfering in the protein
binding [38].

The least viscous samples were WE and WG, with no significant differences among them. Previous
authors, using an increasing quantity of ethanol and glycerol, investigated their relationship with the
contribution of ‘body’ in wine [39]. Authors found that in ranges of ethanol content 0–15% (v/v) and
glycerol 0–20 g/L, the viscosity varied linearly; for every 1% increase in ethanol concentration, viscosity
increased by 0.047 × 10−3 mPa s; for every g/L increase in glycerol concentration, viscosity increased by
0.005 × 10−3 mPa s. However, authors only measured the wine samples without the addition of saliva,
and not considering its interaction. Further to this, in this present work, the ranges of ethanol and
glycerol added were smaller. Therefore, the addition of saliva and its diluting effect, plus the quantity
of glycerol and ethanol added, had led to non-significant changes to WE and WG samples.
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3.2. Descriptive Sensory Evaluation

3.2.1. Wine-Oral Sensations

Table 4 shows the mean scores of sensory attributes in the mouth (4a) and after swallowing (4b)
for both trained and expert panels. Descriptive sensory techniques can be used when searching for
sensory-instrumental relationships [8]; therefore, first, results from the trained panel have been analysed.
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Table 4. Mean of descriptive sensory scores in the mouth for trained panel and expert panel for
wine-in-mouth sensations when (a) consuming the samples and (b) 10 seconds after swallowing.

Trained Panel Expert Panel

Body Astringency Alcohol Cereal Bitter Body Astringency Alcohol Cereal Bitter

(a)
W 2.71 b* 1.40 b 2.84 bc 0.52 a 0.56 b 3.62 b 2.04 b 1.07 2.46 c 1.71 c

WE 3.53 ab 2.61 ab 4.99 a 0.96 a 4.07 a 4.96 a 3.73 ab 4.56 2.59 c 4.30 a

WM 4.09 a 2.92 ab 2.36 c 1.25 a 1.42 b 4.18 ab 2.73 ab 1.46 3.06 bc 1.91 c

WG 4.57 a 3.50 ab 2.08 c 0.81 a 1.18 b 4.33 ab 2.88 ab 2.31 2.298 c 1.69 c

WT 3.60 ab 5.28 a 2.37 c 1.65 a 2.15 ab 3.92 ab 4.28 a 2.56 4.21 ab 2.84 b

WEMGT 4.02 a 4.369 ab 3.54 b 1.71 a 3.89 a 4.77 a 3.88 ab 4.03 4.52 a 3.43 b

(b)
W 1.34 a 1.33 a 0.34 a 0.67 a 0.68 a 3.50 a 3.00 a 1.67 a 2.00 a 1.12 a

WE 2.01 a 3.00 a 3.43 a 1.00 a 2.33 a 4.00 a 3.70 a 4.00 a 2.33 a 3.33 a

WM 2.00 a 3.08 a 0.66 a 1.57 a 1.00 a 3.60 a 2.67 a 2.00 a 2.67 a 1.67 a

WG 2.05 a 1.98 a 1.00 a 1.65 a 1.15 a 3.23 a 2.33 a 1.70 a 1.80 a 1.67 a

WT 2.37 a 4.02 a 0.69 a 1.00 a 2.00 a 3.31 a 4.00 a 2.20 a 3.50 a 1.95 a

WEMGT 2.67 a 3.68 a 2.43 a 2.00 a 3.00 a 3.98 a 3.68 a 3.00 a 4.00 a 2.67 a

Model-wine letters indicate components: base wine (W), ethanol (E), mannoprotein (M), glycerol (G) and tannins (T).
* Tukey test among wine-model formulations, same letter in the same column, does not differ significantly, p < 0.05.

Significant differences among the model-wines were found between their body and intensity
perception (p < 0.05). Average body perception ranged from 2.71 (W: control) to 4.57 (WG: wine
with glycerol), as shown in Table 4. Model-wine containing mannoproteins (WM) and model-wine
containing mannoproteins and glycerol (WEMGT) were also scored with high intensity, with no
significant difference from WG.

Both components (mannoproteins and glycerol) have been previously reported as influencers in
wine mouthfeel [18,19]. Mannoproteins are composed of polypeptides and linked to highly branched
mannose side chain by glycosidic bonds. This big molecule (800,000 Daltons) has been previously
linked with a ‘fullness’ sensation when using a trained panel [30]. Present authors believe that because
of the size of this molecule, the wine acquires a structure that is perceived as bulkier mouth feeling.
Therefore, the trained panel considered this wine sample as with more body.

In the case of glycerol, the previous bibliography has not linked it specifically to ‘body’. It has
been linked with other various attributes, such as oiliness, persistence and mellowness [14]. In a
tribological study, it was found to decrease the friction coefficient [13]. However, the definition of the
body itself is still a pending subject. In fact, there is no consensus in the reference material to be used
and can include dairy products, such as whipping cream [40], gels [19] or xanthan gum [41].

Astringency perceived was higher for samples with added oak tannin (T). The added tannins
formed complexes with the salivary protein; these complex formations have been previously described
by two different bond types: hydrogen bonding (between hydroxyl groups of phenolic compounds
and carbonyl/amide group of protein) and by hydrophobic bonding (between the benzoic ring of
phenolic compounds and the apolar side chains of the salivary protein’s amino acids) [35]. This leads
to the formation of a complex caused by proteins in saliva precipitating. Therefore, the salivary film
that covers the oral mucosa loses its structure and separates from the oral mucosa causing the mouth
to become dry [24]. When mannoproteins and ethanol are present, a saliva-polyphenol complex
formation explains their interference and a decrease in the perception of astringency [35,36]. Other
samples with the same quantity of tannins showed less astringency. In a previous study, authors
found that hydrodynamic diameter of saliva with tannins increased (by a factor of almost 2.5–3); but in
the presence of ethanol or glycerol, it decreased [13]. This might be due to the ability of ethanol to
interfere with wine polyphenol-PRPs interactions [42]. Further, mannoproteins interferes in the tannin
aggregation [37] by three mechanisms: i) encapsulating polyphenols and interfering with their ability
to bind proteins [38], ii) enhancing polyphenols solubility in an aqueous medium through the form of
protein-polyphenol aggregates [38], and iii) by binding salivary proteins, avoiding the polyphenols
attachment [26].
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In addition, as it can be seen in Table 4, for the trained panel, other samples not containing tannins
also contributed to the astringency feeling. This is because, in wine, astringency is also produced by
the low pH of the samples [43–45] due to salivary protein precipitation.

Ethanol perception was inevitably higher for the sample containing ethanol (WE). Ethanol is an
effective sensory stimulant, activating brain gustatory circuits, as well as trigeminal pathways, sensitive
to an irritant stimulus [46], providing sensations of hotness and bitterness that linger in mouth [47,48].
Besides alcoholic feeling, ethanol presence also produced a significant bitterness perception. In a
more complex wine-model matrix, the alcohol feeling was shown to be decreased (WEMGT), and
this was caused by its interaction with tannins [49]. Another reason could be the sensory perception
displacement effect when presenting a different stimulus at the same time.

Besides its initial sensory profile with the trained panel, the attribute means were analysed for
significant differences (p < 0.05) between panels (paired comparison) for each sample, and between
samples within each panel (Tukey’s test). There were significant differences (p < 0.05) in the perception
of ‘body’ between panels for the samples containing ethanol. The expert panel found ethanol to be the
most influential component in body perception (WE = 4.96 ± 1.63, WEMGT = 4.77 ± 1.36) whilst the
trained panel perceived ‘body’ significantly higher for samples containing glycerol, mannoproteins or
both (WG = 4.56 ± 1.5, WM = 4.09 ± 1.5, WEMGT = 4.01 ± 2.1). Previous work [28] agrees with the
results of both panels, as all of three components, glycerol, mannoproteins and ethanol, are influencers
on the wine body [28].

For ‘astringency’, there were significant differences (p < 0.05) between panels, as the trained panel
scored the astringency significantly higher (Table 4a). Both panels found the sample WT significantly
more astringent, followed by WEMGT. Therefore, here, tannins led to astringency perception, but in the
presence of other components (ethanol, mannoproteins and glycerol), the intensity of the astringency
was significantly lower.

Both trained and expert panels associated ethanol with the perception of ‘alcohol feeling’, with
no significant difference between their scores. As expected, the sample with higher ‘alcohol feeling’
was WE, containing only the wine and ethanol; followed with a lower score, the sample that contains
ethanol plus other ingredients (WEMGT).

The attribute ‘cereal taste’ scored significantly different between panels for all samples (Table 4a).
The trained panel could not differentiate the perception of the ‘cereal taste’ compared to the other
attributes. Whilst the expert panel discriminated the sample according to this attribute, scoring it
higher in those samples containing tannins. This finding that oak tannin leads to ‘cereal taste’ has
never been reported. The present authors hypothesised that the ‘bitterness’ provided by oak tannins
could lead panellists to associate it to the ‘cereals taste’.

For ‘bitterness’, both panels agreed that samples containing ethanol and/or tannins are significantly
more bitter than the rest (Table 4a), which is in relation to the ‘cereal taste’ reported previously.

3.2.2. After-Swallowing Sensations

Table 4b shows the after-swallowing sensation scores when consuming the samples. The intensity
of all attributes decreased, especially those regarding flavour (‘cereal’) and taste (‘bitterness’), whilst
‘body’ and ‘astringency’ values remained similar. There were no significant differences between
samples within panels.

It is noteworthy that the attribute ‘body’ was detectable after swallowing the wine, showing
that it is a sensation related, among others, to lingering feelings in-mouth. According to a previous
study using tribological techniques [13], samples with glycerol showed higher lubrication. This
would indicate that ‘body’ relates to ‘unctuosity’. ‘Astringency’ is a sensation that also lingers in the
mouth, this was not unexpected for the depletion of the mouth’s mucous layer caused by polyphenols
components [50] and the consequent ‘dry’ feeling.



Foods 2019, 8, 190 10 of 14

3.3. Relationships between Instrumental Measurements and Sensory Analysis

To investigate the relationship between instrumental and sensory measurements, trained panel
scores and instrumental correlation analyses were performed (see Table 5). The scores of the trained
panel were selected because they discriminated more between samples compared to those of the expert
panel. In the same way, as the analysis was used for in-mouth scores, they showed higher values for
all attributes’ intensity.

Table 5. Pearson’s Correlation Coefficient between viscosity at different shear rates and sensory
attributes (body perception and astringency).

Shear rate (1 s−1)
(Instrumentally Measured)

Body (p-Value) Astringency (p-Value)

100 0.485 (0.329) 0.855 (0.030)
10 0.083 (0.876) 0.582 (0.226)
1 0.032 (0.953) 0.553 (0.255)

0.1 0.118 (0.823) 0.616 (0.192)
K 0.077 (0.884) 0.603 (0.205)
n 0.128 (0.809) 0.692 (0.127)

Values in bold are different from 0 with a significance level alpha = 0.05. Model-wine letters indicate components:
base wine (W), ethanol (E), mannoprotein (M), glycerol (G) and tannins (T).

Figure 3 shows the relationship between density and ‘body’ perception for model-wine samples,
with and without saliva. In the absence of saliva (Figure 3a), there was no linear relationship between
instrumental and sensory ‘body’ assessment. For measurements made on samples with added saliva
(Figure 3b), which mimic a real consumption scenario, a trend between density and ‘body’ appeared.
Considering only the samples not containing ethanol, there was a positive and significant correlation
between instrumental density and ‘body’ perception (R = 0.971, p = 0.029).

A past study demonstrated that for Newtonian fluids, the sensory attribute ‘thick’ had a high
correlation with instrumental viscosity [51]. However, there are no references for non-Newtonian
fluids. So, for wine-model samples with saliva, there was a small, non-significant relationship between
‘body’ and instrumental apparent viscosity in samples with added saliva, at a shear rate of 100 s−1.

Apparent viscosity values were correlated to ‘astringency’ values (R = 0.855, p = 0.030) (Figure 3c),
confirming that the formation of the protein-polyphenol complex influenced the instrumental viscosity.

Previous work had stated that wine body classification (full bodied, medium bodied and light
bodied) was empirical [18–21]. But in this present paper, authors present that the sensory wine attribute
‘body’ relates to the instrumental density, although not with viscosity.
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Figure 3. Relationship between instrumental measurement of the model-wine formulations and trained
panel scores for: (a1) density of samples without saliva, and ‘body’ scores; (a2) density of samples
without added ethanol plus saliva, and ‘body’ scores; (b1) instrumental density of samples plus saliva,
and ‘body’ score; (b2) instrumental density of samples without ethanol plus saliva, and ‘body’ score;
(c) instrumental viscosity of samples plus saliva and ‘astringency score’. Model-wine letters indicate
components: base wine (W), ethanol (E), mannoprotein (M), glycerol (G) and tannins (T).

4. Conclusions

The present study shows that glycerol and/or mannoproteins contributed to the ‘body’ feeling,
that was correlated with the instrumental measurement of the density of model-wine samples mixed
with saliva. As reported previously, tannins were the leading cause for the ‘astringency’ feeling and an
increase in instrumental viscosity due to the formation of salivary protein-polyphenols complexes. In
parallel, this study shows that there is a gap between the abilities of the expert and trained panels for
describing wine texture sensations. This makes it even more difficult to understand the expectations
and preferences of real consumers regarding wine attributes, such as ‘body’, which is normally
considered the driver for wine quality perception and liking.

Future studies will include real wine samples and saliva for multiple participants. There is a need
for further research on how consumers understand the term ‘wine body’ in commercial samples. Also,
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determining what are the characteristics of the wine consumers associate with the term ‘body’ will be
beneficial. In addition, knowing how the composition of different wines affects the values of physical
properties, such as density or viscosity, will be of immense value.
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