Supplementary materials

Could Defatted Mealworm (*Tenebrio molitor*) and Mealworm Oil Be Used as Food Ingredients?

Yang-Ju Son 1,2, Soo Young Choi 3, In-Kyeong Hwang 2, Chu Won Nho 1 and Soo Hee Kim 4,*

- ¹ Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
- ² Department of Food and Nutrition and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
- ³ Sempio, Seoul 04557, Korea
- ⁴ Department of Culinary Arts, Kyungmin University, Uijeongbu, Gyeonggi-do 11618, Korea

Fig. S1. Pictures of mealworm oil extracted with n-hexane

Fig. S2. Pictures and color values of whole- or defatted-mealworm powders and mealworm protein isolate (MPI)

WF-M, whole-fat mealworm powder; DF-M, defatted WF-M with solvent (n-hexane); MPI, mealworm protein isolate

L, lightness; a, redness; b, yellowness

Instrument parameter	Condition			
Model	Ultimate 3000			
Model	(Thermo Scientific Dionex, Waltham, MA, USA)			
	1. UV detector: 338 nm			
Detector	2. FL detector			
Detector	Excitation: 340 nm, Emission: 450 nm (OPA)			
	Excitation: 266 nm, Emission: 305 nm (FMOC)			
	VDSpher 100 C 18-E			
Column	(4.6×150 mm, 5 μm)			
	(VDS optilab, Berlin, Germany)			
	A: 20 mM sodium phosphate monobasic (pH 7.8)			
Mobile phase	B: water/acetonitrile/methanol (10:45:45, v/v)			
	Time (min)	%B		
	0	0		
	24.0	57		
Gradient condition	24.5	100		
	26.0	100		
	26.5	0		
	30.0	0		
Flow rate	1.5 mL/min			
Injection volume	0.5 µL			

Table S1. HPLC operating conditions for the determination of amino acid content

Temperature

Column: 40°C

Sample: 20°C

Instrument parameter	Condition	
Model	Breeze 2 HPLC system	
Detector	(Waters, Milford, MA, USA)	
Detector	KI detector	
	Waters Ultrahydrogel linear	
	Waters Ultrahydrogel 500	
Column	Waters Ultrahydrogel 250	
	Waters Ultrahydrogel 120	
	(Waters, USA)	
Mobile phase	0.02 N NaNO3	
Flow rate	0.8 mL/min	
Temperature	Column: 30°C	
	Sample: 20°C	

Table S2. Operating conditions for GPC analysis

Fig. S3. GPC calibration plot

Instrument parameter	Condition		
Model	Agilent 6890		
	(Agilent Technologies, SantaClara, CA, USA)		
Detector	260 flame ionization detector		
	DB-23 capillary column		
Column	(30 m×0.25 mm×0.25 μm)		
	(J&W Scientific, Folsom, CA, USA)		
Carrier gas	Helium gas		
Flow rate	1.3 mL/min		
Injection volume	1 µL		
Injection mode	Split mode		
	(Split ratio 50:1)		

Table S3. GC analysis conditions for examining fatty acids composition

Instrument parameter	Condition	
Model	Ultimate 3000	
	(Thermo dionex, USA)	
Detector	UV detector (295 nm)	
	C18 Inno Column	
Column	(4.6×250 mm, 5 μm)	
	(Innopia, Seongnam, Korea)	
Mobile phase	100% MeOH	
Gradient condition	isocratic flow	
Flow rate	1.0 mL/min	
Injection volume	10 μL	
Temperature	Column: 20°C	
	Sample: 20°C	

Table S4. HPLC operating conditions for the determination of tocopherol content

Instrument	Parameter	Condition	
	Model	ISQ LT	
		(ThermoScientific, USA)	
	Detector	260 flame ionization detector (FID) & MS	
	Caluma	VF-5MS (30 m×0.25 mm×0.25 μm)	
	Column	(Agilent, USA)	
		120°C for 5 min	
	Oven condition	15°C/min to 320°C	
GC		320°C for 15 min	
	Carrier gas	Helium gas	
	Flow rate	1.5 mL/min	
	Injection volume 1 µL		
	Injector temperature	200°C	
	Injection mode	Splitless mode	
	Mass range	35-550 Da	
	Transfer line	250°C	
	temperature	200 C	
MS	Ion source temperature	250°C	
		Quadrupole Single MS-PMT	
	Analyzer	(Photomultiplier detector)	
	Aquisition mode	MS scan and SIM	
	Ion source	Electron Ionization (EI)	

Table S5. Operating conditions of GC-MS for the determination of squalene and sterols

					(unit: %)
	Moisture	Crude protein	Crude lipid	Ash	Carbohydrate
Blanched	61.5±0.5 ^{a2)}	20.5±1.3 ^c	13.5±0.8 ^b	1.2±0.0°	3.4±0.2°
$WF-M^{1)}$	0.5±0.1°	52.2±0.6 ^b	32.3±1.0ª	3.6±0.0 ^b	11.5±0.4 ^b
DF-M	4.0±0.9 ^b	70.8±5.8ª	2.0±0.2°	5.1±0.1ª	18.2±3.8ª

Table S6. Proximate compositions of mealworm powders

Data are expressed as mean±SD

¹⁾WF-M: Blanched and hot-air dried whole-fat mealworm, DF-M: Defatted WF-M with solvent (n-hexane)

²)Different superscripts within columns (a-c) represent statistically significantly differences at p<0.05 by Duncan's multiple range test

Fig. S4. Protein solubility of mealworm powder

DF-M, Defatted mealworm powder; MPI, Mealworm protein isolate