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Abstract: Minced pork jowl meat, also called the sticking-piece, is commonly used to be adulterated
in minced pork, which influences the overall product quality and safety. In this study, hyperspectral
imaging (HSI) methodology was proposed to identify and visualize this kind of meat adulteration.
A total of 176 hyperspectral images were acquired from adulterated meat samples in the range of
0%–100% (w/w) at 10% increments using a visible and near-infrared (400–1000 nm) HSI system in
reflectance mode. Mean spectra were extracted from the regions of interests (ROIs) and represented
each sample accordingly. The performance comparison of established partial least square regression
(PLSR) models showed that spectra pretreated by standard normal variate (SNV) performed best with
Rp

2 = 0.9549 and residual predictive deviation (RPD) = 4.54. Furthermore, functional wavelengths
related to adulteration identification were individually selected using methods of principal component
(PC) loadings, two-dimensional correlation spectroscopy (2D-COS), and regression coefficients (RC).
After that, the multispectral RC-PLSR model exhibited the most satisfactory results in prediction set
that Rp

2 was 0.9063, RPD was 2.30, and the limit of detection (LOD) was 6.50%. Spatial distribution
was visualized based on the preferred model, and adulteration levels were clearly discernible. Lastly,
the visualization was further verified that prediction results well matched the known distribution
in samples. Overall, HSI was tested to be a promising methodology for detecting and visualizing
minced jowl meat in pork.
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1. Introduction

Meat always plays an important role in the constitution of human diets around the world. People
consume meat mainly due to its rich nutritional contents of essential amino acid and vitamins [1]. With
the continuous and rapid increase of meat consumption nowadays, meat quality and safety control has
become the major priority [2]. Meat is quite susceptible to suffering adulteration, such as the known
horsemeat scandal in 2013 that horsemeat was detected in beef. From the perspective of consumers,
they highly desire reliable and clear information about the meat or meat products they purchase [3].
Therefore, regardless of deliberate, accidental, or economically motivated meat adulteration, rapid
identification is always one of the main issues in further prevention.

Minced meat, also named ground meat, is one of the most popular meat types. It is versatile in that
it can be the major ingredient of a variety of meat products including sausages, patties, hamburgers,
and meatballs [4]. Especially in Chinese diet culture, traditional dumplings, steamed stuffed buns, or
wontons fillings are also mainly composed of this important ingredient. However, the morphological
structure of muscles is removed when meat is minced so that the occurrence of adulteration in minced
meat is hardly recognized by visual analysis. Pork jowl meat is a kind of lymphatic meat, which
contains thyroid, lipomas, and significant amounts of lymph nodes [5]. It is low-price, full of stench,
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and should be discarded after the animals are slaughtered [5]. In the present period, a relatively high
rate of fraudulent phenomena occur in China involving minced jowl meat being substituted for or
added into minced pork to be served as fillings in food. These incidents seriously pose health treats and
violate rights for consumers. Meat adulteration is not routinely detected, thus, it is highly desirable to
rapidly identify if the fillings are adulterated with jowl meat.

Several detection techniques including high-performance liquid chromatography [6], polymerase
chain reaction [7], mass spectrometry [8], differential scanning calorimetry [9], and enzyme-linked
immunosorbent assays [10] were demonstrated to be effective in detecting meat adulteration. However,
these techniques need complex sample preparation and destructive operation, which are high-cost,
time-consuming, and laborious. More recently, a considerable number of fast optical techniques
have shown potential in detecting meat adulteration. Among them, UV-visible [11], near-infrared
spectroscopy (NIRS) [12,13], mid-infrared spectroscopy [14], Raman spectroscopy [15], laser induced
breakdown spectroscopy [16], and computer vision [17] have been successfully developed to identify
various adulterants in meat. Typically, conventional NIRS could overcome the above-mentioned
drawbacks of traditional techniques for its sensitive, rapid, reagent-free, and nondestructive nature,
and it has great potential to adapt real-time monitoring application [18,19]. However, the main
limitation is that the spectral single-point detection in preselected areas cannot well represent the
whole heterogeneous meat sample. In this light, interest in hyperspectral imaging (HSI) is continuously
growing. HSI integrates conventional spectroscopy and imaging to acquire both spectral and spatial
information from an identical sample to provide the traceable chemical and physical qualities
simultaneously [20]. It has received a lot of attention and interest in inspecting both raw and processed
meat items [21,22].

With regard to the detection of meat adulteration using HSI, several examples have previously
been reported, for instance, pork or beef adulterated with chicken [17], chicken adulterated with
carrageenan [23], beef adulterated with pork [24,25], prawn adulterated with gelatin [26], lamb
adulterated with pork [27], beef adulterated with horsemeat [28,29], lamb adulterated with duck [30],
etc. All the above studies achieved good performance through a combination of HSI and chemometrics.
However, to date, few studies focused on the adulteration of minced pork with minced jowl meat.

Therefore, the main aim of this study is to investigate the feasibility of visible and near-infrared
(VNIR, 400–1000 nm) HSI for detecting minced jowl meat in pork. The specific objectives were (1) to
establish partial least square regression (PLSR) models based on spectra extracted from hyperspectral
images and (2) to identify effective wavelengths for developing multispectral models and visualizing
the adulteration.

2. Materials and Methods

2.1. Sample Preparation

Pure pork meat (from Longissimus dorsi muscle) and adulterant of jowl meat from the homologous
slaughtered porcine body were purchased from a local retail market in Nanjing, China and transported
to our laboratory within 30 min. On the day of purchase, pork meat was first cut into small pieces
and minced using a meat grinder (S2-A808, Joyoung Co. Ltd., Jinan, China) for 60 s. The grinder
was carefully washed using detergent and hot water, rinsed with distilled water, wiped with paper
towel, and totally dried before jowl meat mincing use. In the same way, jowl meat was subsequently
minced to be used as the adulterant. Minced pork samples were adulterated by mixing the minced
adulterant into pork in range of 10%–90% (w/w) at 10% increments. Additionally, pure pork (0%
adulteration level) and pure jowl meat (100% adulteration level) samples were also prepared. Sixteen
replicates were prepared for each adulteration level, and samples were individually weighted. They
were thoroughly mixed together to obtain a roughly homogenous paste with a final weight constant at
50 g. Then, all the prepared samples were put into round disposable Petri dishes (9 cm in diameter ×
1.4 cm deep) with flat surfaces for subsequent imaging procedure.
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In total, 176 samples including 16 samples at each adulteration level (11 levels) were prepared.
Among them, three quarters of the samples at each adulteration level (12 samples × 11 levels =

132 samples) were randomly selected to be assigned to calibration set, and the residual one quarter
(4 samples × 11 levels = 44 samples) were used for purpose of independent prediction. Furthermore,
in order to prove the creditability of visualization results, two more control samples with known
distributed patterns were also prepared. As for control sample one, four fan-shaped parts at different
individual adulteration levels of 100%, 80%, 40%, and 20% were included. With regard to control
sample two, two semicircular areas at individual 0% and 50% adulteration levels were covered. After
that, the hyperspectral images of all the prepared samples were subsequently captured.

2.2. Hyperspectral Image Acquisition and Calibration

All the prepared samples were scanned using a laboratory-based push-broom hyperspectral
imaging system in reflectance mode. The system converted the visible and near-infrared (VNIR)
spectral range of 400–1000 nm (284 spectral bands) to capture the hyperspectral images at room
temperature (26 ± 1 ◦C). The system consisted of a computer (Lenovo Tianyi 510 Pro, Lenovo Group
Ltd., Beijing, China) installed with data acquisition software (Spectral Image software, Isuzu Optics
Corp., Taiwan, China), a spectrograph (ImSpectorV10E, Spectral Imaging Ltd., Oulu, Finland), a
12-bit charged couple device (CCD) camera (HScamera-VIS, Isuzu Optics Corp., Xinzhu, China)
with a C-mount lens, an illumination unit of two 150-W tungsten-halogen lamps, and a translation
stage (Specim Spectral Imaging Ltd., Oulu, Finland) powered by stepping motor (SC30021A, Zolix
Instrument Co, Beijing, China). The spectral solution of the system was 2.8 nm, and the size of incident
slit was 30 µm (width) × 14.2 mm (length).

After hyperspectral image acquisition, calibration was conducted using two reference images by
the equation as follows:

Rc =(Ro − D)/(W − D) × 100% (1)

where Rc represents calibrated relative reflectance hyperspectral image, Ro denotes acquired original
hyperspectral image, D expresses dark reference hyperspectral image with about 0% reflectance, and
W stands for white reference hyperspectral image with about 99.9% reflectance. This procedure was
directly carried out through the images calibration function within data acquisition software.

2.3. Region of Interests (ROI) Identification and Spectral Extraction

To isolate pure meat portion in the acquired images, representative regions of interests (ROIs) were
first taken based on the calibrated images. ROI was individually determined for each hyperspectral
image by applying a corresponding binary mask which was first established using band math procedure.
Initially, the low reflectance image at 450 nm was subtracted from the high reflectance image at 890 nm.
ROI was formed within the resulting image by thresholding at a constant value of 0.2. The ROIs were
completely isolated from backgrounds and edges of the Petri dishes. After that, the mask was built
and applied to corresponding hyperspectral images. Then, average spectra were extracted to represent
each corresponding sample. All the involved steps were conducted using functions of mask building
and ROI generation in ENVI 5.3 (Research Systems Inc., Solutions, Boulder, CO, USA).

2.4. Spectral Pretreatments

In order to compare and obtain robust and reliable performance, spectral data pretreatment is
necessary prior to the development of quantitative models. In this research, a series of pretreatments
including normalization, standard normal variate (SNV), multiplicative signal correction (MSC),
detrending (detrend), first-order derivative, and second-order derivative (1st and 2nd derivative) were
applied in addition to non-preprocessed spectra. Multiplicative interferences of scatter in the spectra
can be effectively removed using SNV approach. MSC is a method like SNV which is effectively
used in multiplicative variations elimination. Derivatives were usually used to remove baseline
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offsets and separate overlapping absorption bands. In this research, derivatives were calculated using
second-order polynomial with Savitzky–Golay smoothing by a moving window size of 15 points.
Detrending was implemented combined with SNV to suppress the baseline shifting and curvilinearity.
Normalization was utilized to present the spectral differences caused by slight optical path variations.
The pretreatment or the combinations were all implemented in the Unscrambler X 10.1 (Camo Software
Inc., Trondheim, Norway).

2.5. Modeling Method

PLSR is a reliable linear regression modeling method that has been widely employed in spectral
analysis for quantitatively predicting agro-products’ quality traits. This method is especially suitable
in performing the situation where there is a linear relationship between attributes of the targets and
variables. In this study, PLSR models were developed with the dataset in calibration set using a
leave-one-out cross-validation (LOOCV) method to prevent data over-fitting. PLSR first projects
the spectra onto a few orthogonal factors named latent variables (LVs) [31]. The optimal LVs were
determined where lowest root mean square error value of cross-validation was achieved. The PLSR
modeling procedure was carried out using the software MATLAB 2013b (MathWorks Inc., Natick, MA,
USA) with the PLS toolbox.

2.6. Wavelengths Selection Methods

Principal component analysis (PCA) is an unsupervised exploratory technique that has been
reported to be a powerful tool in dimensionality reduction and multivariate data visualization. The
variances of the whole dataset are first explained by PCA, and only a few new orthogonal latent
variables that maximize the data variance (called the principal components: PCs) are retained [32]. PCA
helps to look for relationships among the samples, and samples in the same class will gather together
in PC score plots. If a clear clustering of grouped samples is shown in the PC space by combining two
or more PCs, corresponding PC loadings are effective to determine informative wavelengths. Then,
pronounced peaks and valleys of the PC loadings are considered to contribute more to the spectral
variations of samples with different adulteration levels. The PCA procedure was conducted using the
MATLAB 2013b.

Two-dimensional correlation spectroscopy (2D-COS) is a commonly used analytical mathematical
formalism. Recently, 2D-COS analysis is highly concerned with identifying a set of spectroscopic
data including Raman, visible-infrared, and fluorescence under external perturbation [33]. In terms
of generalized 2D-COS, the perturbation can be pressure, concentration, temperature, etc. [34]. To
discuss the generated spectrum, synchronous spectrum is diagonal symmetry and there were several
autopeaks located at diagonal line. The synchronous spectrum could be used to characterize differences
of the spectral intensities at different wavelengths. If the spectral intensities changed sharply with
levels at a certain wavelength, there will be a strong autopeak. Thus, in our study, the autopeaks were
introduced and utilized as effective wavelengths for identifying the adulteration.

Regression coefficients (RC), which are always used in combination with PLSR modeling method,
are also an effective wavelength selection approach. In PLSR models, peaks and valleys at certain
wavelengths with dominated RC values indicate a high influence on the response (predicted results) [35].
These spectral variables would be more useful in PLSR modeling and should be chosen for further
PLSR models simplification. In our study, wavelengths with high absolute RC values (above the cutoff

threshold) from the optimal PLSR model were considered to contribute most in predicting adulteration
levels and they were finally adopted.
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2.7. Models Performance Assessment

In order to assess the performance of established models, the following criteria including coefficient
of determination in calibration set (Rc

2), cross-validation (Rcv
2), and prediction sets (Rp

2), as well
as root mean squared error in calibration (RMSEC), cross-validation (RMSECV), and prediction sets
(RMSEP) were determined, respectively. Furthermore, residual predictive deviation (RPD) was also
evaluated to assess the practical utility of prediction models. If the values of R2

≥ 0.70 and RPD ≥ 2.00,
models were considered to be effective in detecting meat quality and safety [36]. A satisfactory model
should perform with results of high values in Rc

2, Rcv
2, Rp

2, and RPD as well as low values in RMSEC,
RMSECV, and RMSEP.

2.8. Distribution Maps of the Adulterant

Recognizing adulterate distribution in minced pork is helpful to rapidly observe general
adulteration level or if the sample was adulterated. The generation of distribution map is a means of
visualization. It is a special advantage of HSI that conventional imaging or NIRS could not achieve.
The optimal simplified model can be applied back to predict values in each pixel in the multispectral
images at selected wavelengths. After that, the distribution map which pieced all predicted values
of pixels together is generated. Therefore, in this research, after the optimal simplified model was
confirmed, a colorful image with a linear color scale used for visualizing adulteration levels was
displayed. All these steps were performed using a homemade program developed in Matlab 2013b.

3. Results and Discussion

3.1. Spectral Profiles

The average reflectance spectra of all the adulterated samples (Figure 1a) and pure minced pork
and jowl meat extracted from the corresponding hyperspectral images (Figure 1b) are presented in
Figure 1. Different spectra showed similar patterns with certain differences in reflective intensity. As
shown, minced pork samples had slightly higher reflective intensity than minced jowl meat samples
in spectral region of 400–1000 nm. Although there were few overlaps between spectra of pork and
jowl meat, it was still possible to observe certain spectral differences, especially at prominent peaks or
valleys. The variations in spectral reflectance among pork and jowl meat were related to the differences
in chemical composition, and this implies the adulteration would induce significant alterations to the
pure pork samples in a way that can be detected using spectral information.

In the VNIR region, several downwards peaks (absorbance bands) could be observed for pork
and jowl meat. The band centered at around 411 nm was associated with the Soret absorption band,
which was due to a respiratory pigment of haemoglobin [37]. The valleys of 543 nm and 570 nm can
be ascribed to the presentence of deoxymyoglobin and oxymyoglobin, respectively [38], which were
responsible for color traits of meat. The 975 nm and 759 nm were attributed to the second and third
overtone of O–H stretching mode of water, respectively [39,40]. As for a weak reflectance valley, the
independent absorbance band of 842 nm could correspond to the C-H stretching mode of aliphatic
compounds [41,42]. The comparison showed that the reflective differences at these bands indicated
that minced jowl meat samples had more contents of myoglobin, fat, and water than pure pork. Thus,
the identification of jowl meat adulteration in pork is preliminarily concluded to be feasible on the
basis of its spectral characteristics difference.
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Figure 1. Spectral characteristics of prepared samples in the visible and near-infrared region.
(a) Adulterated samples, (b) Mean raw spectra of pure pork and jowl meat.

3.2. PLSR Models

To determine and quantify the adulteration levels, PLSR models were developed based on raw or
pretreated (normalization, SNV, MSC, SNV + Detrend, 1st derivative and 2nd derivative) spectra. A
summary of the predictive results is listed in Table 1. As can be seen, spectral data with or without
various pretreatments all showed good capability in predicting the adulteration levels. The overall
R2 values were higher than 0.94, RMSE values were lower than 10.2%, and RPD values were higher
than 3.1. The small differences observed among RMSEC, RMSECV, and RMSEP values indicated
that models were robust and reliable. Overall, HSI coupled with PLSR modeling method provided
an innovative way to perform the instant and noncontact prediction for jowl meat adulterated in
pork. With regard to a comparison of different pretreatments, the best PLSR modeling results were
obtained based on SNV pretreated spectral data with performance of Rp

2 = 0.9549, RMSEP = 7.04%,
and RPD = 4.54. Thus, the pretreatment of SNV was adopted to preprocess spectra in subsequent
analysis of model simplification and visualization.



Foods 2020, 9, 154 7 of 16

Table 1. Performance of partial least square regression (PLSR) models for predicting minced jowl meat
adulterated in pork.

Pretreatments LVs
Calibration Cross-Validation Prediction

Rc
2 RMSEC Rcv

2 RMSECV Rp
2 RMSEP RPD

None 12 0.9866 3.64% 0.9779 4.71% 0.9458 7.50% 4.27
Normalization 14 0.9898 3.18% 0.9821 4.24% 0.9493 7.25% 4.41

SNV 12 0.9864 3.68% 0.9787 4.60% 0.9549 7.04% 4.54
MSC 13 0.9878 3.50% 0.9801 4.45% 0.9536 7.06% 4.53

SNV + Detrend 12 0.9870 3.59% 0.9797 4.51% 0.9512 7.47% 4.28
1st derivative 13 0.9886 3.36% 0.9815 4.30% 0.9528 7.19% 4.45
2nd derivative 14 0.9896 3.23% 0.9797 4.50% 0.9425 10.18% 3.14

Notes: PLSR: partial least squares regression; SNV: standard normal variate; MSC: multiplicative scatter correction;
LVs: latent variables; Rc

2: coefficient of determination in calibration set; Rcv
2: coefficient of determination in

cross-validation set; Rp
2: coefficient of determination in prediction set; RMSEC: root mean squared error for

calibration set; RMSECV: root mean squared error for cross-validation set; RMSEP: root mean squared error for
prediction set; RPD: residual predictive deviation.

3.3. Wavelengths Selection

3.3.1. PCA Explanatory Analysis

Principal component analysis (PCA) is an efficient chemometric method, which provides the
interpretation of variances among different data points in spectral analysis. In order to compare
and highlight the spectral similarities and differences, PCA was first applied to the whole dataset of
176 spectra. The first three PCs which individually accounted for 80.37%, 9.50%, and 6.26% of the total
variance were retained. The reason was that above 95% of the variation could be explained by the first
three PCs. Moreover, through trial and error with different PC combinations, PC1 and PC3 were found
to be useful in grouping samples into different adulteration levels. Then, the calculated PC scores
of data points for different adulteration levels were utilized to create a 2D score plot (Figure 2). In
general, data points in the same adulteration level tended to gather together and will be separated from
others. The score plot of the combination of PC1 vs. PC3 is shown in Figure 2a. As the adulteration
level continued to rise, corresponding samples tended to move along the positive directions of PC1

axis and PC3 axis. However, in low-level adulteration (less than 30%), data clusters were observed to
be quite close and overlapped in a certain level. Tracing the root of the above observation, the main
chemical composition of homologous pork and jowl meat was too similar so that no distinct separation
was displayed if adulteration level was low. In addition, PC2 seemed to mainly express the mutual
information of samples with different adulteration levels, which was eliminated in the discrimination.

The PC loading lines of the two effective PCs were analyzed in detail and plotted in Figure 2b.
Wavelengths at pronounced peaks and valleys were considered to carry important information in
identifying the adulteration and should be selected. As a result, a total of nine wavelengths (440 nm,
491 nm, 545 nm, 560 nm, 570 nm, 632 nm, 686 nm, 752 nm, and 871 nm) were chosen. The valley at
440 nm could be attributed to deoxymyoglobin, the peak at 491 nm is associated with metmyoglobin,
and 632 nm could be assigned to sulfmyoglobin [38]. The 676 nm is related to the presentation of
redness, and the 871 nm band is relevant with the C-H vibration of hydrocarbons. The wavelengths
selected by spectral PCA further confirmed the above results in spectral characteristics that pork and
jowl meat were different in color presentation as well as water and hydrocarbon contents.
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3.3.2. Two-Dimensional Correction Spectroscopy

The 2D-COS analysis of the obtained 11 average spectra with adulteration levels from 0% to 100%
is shown in Figure 3. There were two dominant autopeaks of 491 nm and 632 nm observed at the
diagonal line in synchronous spectrum (Figure 3a). Another weak autopeak of 871 nm also occurred
which could be clearly seen in the corresponding 3D stereo plot in Figure 3b. The presence of these
suggested that intensity at these bands varied seriously with the adulteration levels. Therefore, these
three wavelengths were effective in identifying the adulteration levels. It is worth mentioning that these
three selected wavelengths were also included in the wavelengths selected by PC loadings. In terms of
spectral variables, these three wavelengths are the most important in identifying the adulteration.

Foods 2020, 9, 154 9 of 15 

 

Therefore, these three wavelengths were effective in identifying the adulteration levels. It is worth 
mentioning that these three selected wavelengths were also included in the wavelengths selected by 
PC loadings. In terms of spectral variables, these three wavelengths are the most important in 
identifying the adulteration. 

 
Figure 3. The 2D-COS spectrum of samples with various adulteration levels. (a) Synchronous contour 
map plot, (b) Corresponding synchronous 3D stereo plot. 

3.3.3. Regression Coefficients 

The regression coefficients (RC) curve from the preferred PLSR model based on SNV pretreated 
spectra is shown in Figure 4. The cut-off threshold was set to be 5, and only wavelengths at peaks 
and valleys with higher absolute coefficients than 5 were retained. Finally, a total of 10 (433 nm, 450 
nm, 481 nm, 558 nm, 578 nm, 594 nm, 634 nm, 661 nm, 889 nm, and 948 nm) discontinuous 
wavelengths were deemed as the most effective wavelengths in PLSR models’ development for 
quantitatively predicting jowl meat adulteration in minced pork. These wavelengths were different 
from the above ones but also reasonable due to the consideration of targeted prediction values. 

Figure 3. The 2D-COS spectrum of samples with various adulteration levels. (a) Synchronous contour
map plot, (b) Corresponding synchronous 3D stereo plot.

3.3.3. Regression Coefficients

The regression coefficients (RC) curve from the preferred PLSR model based on SNV pretreated
spectra is shown in Figure 4. The cut-off threshold was set to be 5, and only wavelengths at peaks and
valleys with higher absolute coefficients than 5 were retained. Finally, a total of 10 (433 nm, 450 nm,
481 nm, 558 nm, 578 nm, 594 nm, 634 nm, 661 nm, 889 nm, and 948 nm) discontinuous wavelengths
were deemed as the most effective wavelengths in PLSR models’ development for quantitatively
predicting jowl meat adulteration in minced pork. These wavelengths were different from the above
ones but also reasonable due to the consideration of targeted prediction values.

Based on the above three wavelengths selection methods, the number of variables reduced
significantly by at least 96.5% to at most 98.9%. The retained wavelengths could be utilized in
developing a robust model and further a low-cost multispectral imaging system. Therefore, all the
three groups of effective wavelengths could be the basis for comparison in developing the simplified
PLSR models.
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3.4. Multispectral Models Development

In order to further eliminate the useless wavelengths and optimize the processing time in
computing, simplified PLSR models based on selected wavelengths were established. Wavelengths
selected by 2D-COS, PC loadings, and RC methods were individually set as inputs of the simplified
PLSR models, and the overall results are displayed in Table 2. As can be seen, the results obtained
using selected wavelengths slightly decreased compared with the full spectra. This phenomenon
indicated that selected wavelengths were effective and the eliminated variables also contained little
information in determining the adulteration. Compared with 2D-COS-PLSR and PC loadings-PLSR
models, RC-PLSR model achieved the best performance with Rp

2 of 0.9063, RMSEP of 13.93%, and RPD
of 2.30. It indicated that the 10 wavelengths selected by RC method were the most critical in identifying
jowl meat adulteration in pork. On the contrary, the three wavelengths selected by 2D-COS performed
not that well mainly because that they were not informative enough. As an extension, the additional
six more wavelengths selected using PC loadings significantly improved the prediction accuracy by
showing the Rp

2 of 0.7475, RMSEP of 17.31%, and RPD of 1.85. What is more, 2D-COS and PC loadings
selected wavelengths using X-variables (spectra) only, while RC was based on PLSR model which
decomposed both X-and Y-variables (adulteration levels) in the LVs calculation. RC built the optimal
relationship between spectral data and adulteration levels compared with 2D-COS and PC loadings.
Therefore, the multispectral RC-PLSR model was finally chosen for further visualization steps.
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Table 2. Performance of simplified PLSR models based on wavelengths selected by three methods.

Method Number LVs
Calibration Cross-Validation Prediction

Rc
2 RMSEC Rcv

2 RMSECV Rp
2 RMSEP RPD

2D-COS 3 3 0.2283 27.78% 0.1920 28.45% 0.2720 27.45% 1.17
PC loadings 9 6 0.8981 10.09% 0.8344 10.80% 0.7475 17.31% 1.85

RC 10 9 0.9610 6.24% 0.9520 6.93% 0.9063 13.93% 2.30

Notes: PLSR: partial least squares regression; 2D-COS: two-dimensional correction spectroscopy; PC: principal
component; RC: regression coefficients; LVs: latent variables; Rc

2: coefficient of determination in calibration set;
Rcv

2: coefficient of determination in cross-validation set; Rp
2: coefficient of determination in prediction set; RMSEC:

root mean squared error for calibration set; RMSECV: root mean squared error for cross-validation set; RMSEP: root
mean squared error for prediction set; RPD: residual predictive deviation.

The determination of the limit of detection (LOD) is an important step which investigated if the
lowest adulteration concentration can be detected with the HSI methodology. The LOD was commonly
calculated to evaluate the sensitivity of detection methods by the following equation [43].

LOD = 2δb/S (2)

where δb indicates the standard deviation (SD) of the background response and S denotes the sensitivity
by the ratio of the predicted adulteration levels to the reference values (namely the slope of the
calibration line).

The performance of the preferred multispectral RC-PLSR model with error bar is illustrated in
Figure 5. The results of this optimal model were visualized, and it could be seen that all the adulterated
samples could be detected (predicted values were above 0%) whether in the calibration or prediction
set. The LOD in independent prediction set calculated by the above Equation (2) was found to be
6.50%. However, the aim of meat adulteration is generally to make profit so that adulteration is always
performed to be more than 10% [44]. Thus, the LOD in this research proved that it was competent in
detecting jowl meat adulteration in pork by the HSI system.
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3.5. Visualization of the Adulteration Levels

As known, each sample was represented by the average spectra extracted from corresponding ROI,
and the targeted adulteration level was only indicated by one value. However, there was abundant
spatially distributed information in hyperspectral images. In this research, the adulteration level at
each pixel in one hyperspectral image was predicted so that distribution was visualized for a quick
view. The optimal RC-PLSR model was first applied to the multispectral images recombined at selected
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wavelengths. The false color images (left column) and corresponding predicted distribution maps
(right column) of the samples with different adulteration levels in prediction set are shown in Figure 6.
The false color image in Figure 6a was composited by setting the images at 700.9 nm, 545.4 nm, and
436.4 nm as R (red), G (green), and B (blue) channels using ENVI software. They were quite close to
the true color image at the primary RGB colors’ wavelengths (700 nm, 546.1 nm and 435.8 nm). As can
be seen, actual adulteration level is difficult to be recognized by naked eyes in Figure 6a. Distribution
maps expressed how the adulteration varied from sample to sample and even from pixel to pixel
within one sample and were generated to be shown in Figure 6b. The linear color bar located in the
right side from black to red indicated different adulteration levels from 0% to 100% accordingly. There
was a clear tendency of color gradient with the increasing adulteration level so that adulteration was
easily distinguishable in distribution maps.
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In further steps, the reliability of visualization was verified through generating distribution maps
for the two control samples. Two false color images were in the up row and corresponding distribution
maps were displayed in the down row in Figure 7. For control sample one, the results of the distribution
map showed that four fan-shaped areas were in different colors. The upper left area was mainly in red,
and the lower left showed red and yellow. The upper right exhibited a wide range of colors while the
lower right presented general blue. With regard to control sample two, the distribution map gave a
display of half black and half yellow. All the prediction maps were generally consistent with the actual
situation. The effectiveness of the established RC-PLSR model and visualization procedure was thus
proved again.
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4. Conclusions

This study was motivated by the requirement for rapidly and nondestructively identifying one
common adulterant of minced jowl meat in minced pork. Our attempts explored the application of
HSI combined with chemometrics and wavelength selection algorithm to quantify and visualize the
adulteration. In particular, simplified RC-PLSR model developed by 10 key wavelengths gave the
best performance; LOD achieved 6.50%. The visualization of adulteration levels was successfully
performed based on RC-PLSR model. Predicted colorful distribution maps were generated to make it
convenient in observation. To test the validity of visualization, two known distributed samples were
predicted and expected corresponding maps were displayed. The overall results suggested that HSI
had the potential to identify minced jowl meat adulteration in pork without any prior physical or
chemical analysis information. This technique could provide more detailed visualization information
than conventional imaging and NIRS in identifying adulteration levels. However, more studies related
to a large number of samples and different breeds in sampling should be conducted. In addition,
further work will focus on identifying a variety of commonly used adulterates in pork based on a few
wavelengths to achieve the goal for portable application.
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