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Abstract: The value of fruits is determined by the quantity and variety of biologically active
compounds they contain, and their benefits on human health. This work presents the first study of
the biochemical composition and antibacterial activity of the new Japanese quince (JQ) cultivars
‘Darius’, ‘Rondo’, and ‘Rasa’ fruits. The total phenolic content (TPC) was determined using the
Folin—Ciocalteu method and each compound was identified by HPLC High Performance Liquid
Chromatography. The antimicrobial activity against three Gram-positive and three Gram-negative
bacteria, and one yeast strain, was evaluated by the agar well diffusion method using three different
concentrations. The free radical scavenging activity was determined using DPPH (2,2-diphenyl-1-
picrylhydrazyl) and ABTS (2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) methods and
ranged from 99.1 to 115.9 umolre/100 g, and from 372 to 682 pmolre/100 g, respectively. TPC ranged
from 3906 to 4550 mgcae/100 g, and five compounds, isoquercitrin, rutin, (+)-catechin, (-)-
epicatechin, and chlorogenic acid were identified. All JQ extracts possessed antimicrobial activity
against Gram-positive and Gram-negative bacteria, and Enterococcus faecalis (ATCC 29212) was the
most sensitive strain. These results indicate that JQ fruits are a significant source of bio-compounds,
which can enrich the diet with strong antioxidants, and they are very promising as a substitute for
chemical preservatives in the food and cosmetic industry.
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1. Introduction

Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) is a dwarf shrub that originated
in East Asia and was used in Chinese medicine 3000 years ago [1]. Quince of the Chaenomeles genus
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is one of the oldest cultivated plants belonging to the Rosaceae family, a subgenus of Maloideae [1,2].
Studies of the biological activity of Japanese quince (JQ) fruits have revealed their great potential for
human health, including growth promotion of the beneficial intestinal bacteria Lacticaseibacillus casei
and Lactiplantibacillus plantarum, protective effect on the lipid membrane against free radicals, and
inhibition of cyclooxygenase involved in the inflammatory reactions [3]. Other researchers have
shown that extracts of JQ fruits are promising raw material for cancer treatment and prevention, due
to their phenols composition and cytotoxic activity [4-7].

JQ fruit extracts have strong biological activity due to their particular biochemical composition
and content of bio compounds. Due and co-authors established 24 phenolic compounds in five
Chaenomeles species, their quantity and distribution were different only for chlorogenic acid, catechin,
procyanidin B1, epicatechin, and procyanidin B2 [8]. Differences in the antioxidant activity of these
five species fruits were observed in the same study [8]. Another study identified eleven phenolic
compounds, which were dominated by (-)-epicatechin and procyanidin B2 [3]. Besides that, JQ fruits
and their juice have a high amount of ascorbic acid (the main biologically active form of vitamin C),
which acts as a biological antioxidant and can contribute to chronic disease prevention [1,9,10]. In
addition, a number of dietary fibers and pectin were reported [11,12], which are beneficial in
bodyweight control, and could prevent the progression of type 2 diabetes and heart diseases [13].

Phenolic compounds are a large and diverse group of molecules, in which the structural
characteristics determine their biological activity. The antioxidant activity of phenols depends on the
hydroxyl group number, and their configuration in B-ring [14,15]. Structural differences between
phenols cause distinct mechanisms of actions against microorganisms, and consequently, their
effectiveness [16].

Numerous studies have shown that the phenolic compounds are promising biologically active
compounds that may act as a new type of antimicrobial agent [17-19]. Kikowska and co-authors
demonstrated the antibacterial activity of JQ leaf and fruit extracts against four bacteria strains
Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC
27853), and one yeast strain Candida albicans (ATCC 10231) [20]. The antibacterial activity of other
species such as Chaenomeles speciosa essential oil against 10 microorganisms has been studied [21].
However, a limited number of studies have reported the antibacterial activity of Chaenomeles japonica
species fruits.

The extraction efficiency of phenols depends on many conditions, including the solvent system,
extraction time, temperature, ultrasound power, etc. [22-24]. Response surface methodology (RSM)
is a convenient tool to estimate several variables and their interaction influence on total phenolic
content (TPC), and optimize the extraction conditions [25,26].

Currently, the cultivation of JQ is gaining popularity in northern European countries, especially
in the Baltic Sea area [27]. JQ is very diverse in plant and fruit characteristics, and its propagation by
the seeds can cause morphological and biochemical heterogeneity. Breeding new cultivars change
the genetic context and leads to morphological, physiological, and metabolic variations [28]. Within
the project “Japanese Quince—A new European fruit crop for the production of juice, flavor, and
fiber” from 1998-2001, the thornless cultivars named “‘Darius’, ‘Rondo’, and “Rasa’ were released. The
differences of the bio-compounds composition in leaves and seed oils of these cultivars were studied
[29-31]. Nevertheless, the biochemical composition and biological activity of their fruits have not yet
been investigated.

This study aimed to optimize the phenols extraction conditions, determine the biochemical
composition, antiradical ,and antibacterial activity of Japanese quince cultivars ‘Darius’, ‘Rondo’, and
‘Rasa’, cultivated in Lithuania.

2. Materials and Methods

2.1. Plant Material

Fresh Japanese quince fruits (cvs. Darius, Rondo, and Rasa) were obtained from the garden of
the Institute of Horticulture, Lithuanian Research Center for Agriculture and Forestry, Babtai (55°60’
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N, 23°48' E) Lithuania in 2018. The fruits were cut into slices, and lyophilized with a ZIRBUS
sublimator 3 x 4 x 5/20 (ZIRBUS technology, Bad Grund, Germany) at the pressure of 0.01 mbar
(condenser temperature, -85 °C). The slices were ground to powder by using a knife mill
GRINDOMIX GM 200 (Retsh, Haan, Germany).

2.2. Maceration Extraction Method

First, 0.5 g of the powdered sample with 10 mL solvent in different concentrations (ratio 1:20,
w/v) were mixed and left in the dark for 24 h at room temperature 22 °C. Then, the mixtures were
centrifuged and filtered through a Whatman filter paper. Three different solvents (ethanol, methanol,
and acetone) and three concentrations of each solvent (100%, 70%, and 50%) were used for the
maceration extraction.

2.3. Ultrasound Extraction Method and Experimental Design

First, 0.5 g of the powdered sample was mixed with 10 mL 50% ethanol. The ultrasound
extraction (UE) of phenolic compounds carried out using a Sonorex Digital 10 P ultrasonic bath
(Bandelin Electronic GmbH & Co. KG, Berlin, Germany). Response surface methodology (RSM) was
used to examine the influence of UE processing variables on phenols extraction. The impact of three
factors (ultrasound power, extraction time, and temperature) on the response (TPC) was modeled
according to a central composite design. Ultrasonic power ranged from 48 to 480 W and chosen
according to the limitations of the ultrasonic device. The selected extraction temperature did not
exceed 60 °C to avoid the degradation of compounds. The experimental design of the three-level-
three-factor was composed; consisting of twenty experimental runs including six replicates at the
center point. Design-Expert 7 (Stat-Ease Inc., Minneapolis, MN, USA) software was used for statistical
analysis of the obtained data. The experimental results fit a first-order polynomial model to obtain
the regression coefficients by Equation (1):

Y = Bo+ B1X1+ BoX2 — B3Xs, @)

where Y is the predicted response (TPC), Xi, X2, and Xs meet the variables namely ultrasonic power,
extraction time, and temperature, respectively. The (o, 1, 2, and (s values represent their
corresponding regression coefficients.

Design-Expert 7 software was used to draw up 3D response surface plots. To estimate the
statistical significance of the proposed model, Fisher’s test for analysis of variance (ANOVA) was
performed. Further optimized terms of the independent variables applied to approve the model and
to compare predicted results to the experimental data.

2.4. Determination of Total Phenolic Content

TPC assessed spectrophotometrically using Folin-Ciocalteu reagent [32]. The total phenol
content is determined by the equation (y = 10.56X + 0.0189, r2 = 0.997) of the calibration curve of gallic
acid and expressed in mg/100 g, the equivalent of gallic acid for the dry raw material. The absorbance
was measured using a Genesys-10 UV/Vis spectrophotometer (Thermo Spectronic, Rochester, NY,
USA), at 765 nm wavelength.

2.5. Determination of Total Proanthocyanidins Content

Spectrophotometric measurements were scored using a Genesys-10 UV/Vis spectrophotometer
(Thermo Spectronic, Rochester, NY, USA). Total proanthocyanidins were determined by applying
the technique described by [33]. Three mL DMCA solution (0.1% 4-dimethylamino cinnamaldehyde
in methanol—HCI 9:1 v/v) was mixed with 20 pL of the extract. A decrease in absorbance was
determined at a wavelength of 640 nm after 5 min. The concentration of condensed tannins in the
extract was calculated based on a calibration curve established with catechin as a standard
(calibration curve: catechin (mg/100 g) = (y — 0.0066)/3.1312), 12 = 0.995.
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2.6. Antiradical Activity

The DPPH * free radical scavenging activity was determined using the slightly modified
spectrophotometric method described by [34]. Two mL DPPH (2,2-diphenyl-1-picrylhydrazyl)
solution in 99.0% v/v ethanol was mixed with 20 uL of the extract. A decrease in absorbance was
determined at a wavelength of 515 nm after storing the samples in the dark for 30 min at a ambient
temperature. An ABTS + radical cation decolorization assay was applied according to the
methodology described by [35]. Then, 2 mL of ABTS (2,2’-azino-bis (3-ethylbenzthiazoline-6-
sulphonic acid)) solution (absorbance 0.800 + 0.02) was mixed with 20 pL of the extract. A decrease
in absorbance was measured at a wavelength of 734 nm after storing the samples in the dark for 30
min. Results were expressed in pmol of Trolox equivalents in 100 g of dry extract and were calculated
based on a calibration curve established using Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-
2carboxylic acid).

2.7. Determination of Ascorbic Acid (Vitamin C) Content

Ascorbic acid (vitamin C) was measured by AOAC’s (Association of Official Analytical
Chemists) official titrimetric method (AOAC, 1990) [36].

2.8. Determination of Total Fibre Content

The total fiber content was determined using the enzymatic-gravimetric method, according to
AOAC 985.29, 1997 [37].

2.9. High Performance Liquid Chromatography (HPLC) Method for the Determination of Phenolic
Compounds

A Waters €2695 chromatograph equipped with a Waters 2998 photodiode array detector
(Waters, USA) was used for the HPLC analysis according to the methodology described by [38].
Chromatographic separations were carried out by using an YMC-Pack ODS-A (5 um, C18, 250 x 4.6
mm i.d.) column equipped with a YMC-Triart (5 pm, C18, 10 x 3.0 mm i.d.) pre-column (YMC Europe
GmbH, Dinslaken, Germany). The column operated at a constant temperature of 25°C. The injection
volume was 10 pL. The flow rate 1 mL/min, and gradient elution was used. The mobile phase
consisted of solvent A-2% (v/v) acetic acid in water and solvent B-acetonitrile 100% (v/v). The
following conditions of elution were applied: 0-30 min, 3-15% B; 3045 min, 15-25% B; 45-50 min,
25-50% B; and 50-55 min, 50-95% B. The identification of the chromatographic peaks was achieved
by the retention times and spectral characteristics (A =200-400 nm) of the eluting peaks with those of
the reference compounds.

2.10. Preparation of Extracts for Antibacterial Testing

Twenty grams of freeze-dried quince fruit powder was mixed with 200 mL of 50% ethanol and
extracted at the optimized condition. The extracts were filtered and dried in a rotary vacuum
evaporator Biichi R-250, (Biichi Laboratortechnic, Flawil, Switzerland) to remove ethanol and later in
a freeze-dryer ILShin FD 85125 (Ilshin Lab., Nam-myun, Yangju-si Gyeonggi-do, Korea) to remove
the water. Dry extracts were kept in a freezer in hermetically sealed containers until used. Dry
extracts were re-dissolved in 80% methanol to produce 0.5%, 1%, and 5% solutions, which were tested
against microorganisms. The bacteria used in this study were stored at Micro-Bank (Pro-Lab
Diagnostic, England) at —72 + 3 °C before the start of the experiments. The bacteria were revitalized
in the brain heart infusion broth (BHI, Oxoid, England) for 24 h, at the optimum temperature (30 + 1
°Cor 37 +1 °C). B. subtilis ATCC 6633 were grown on TSA (Liofilchem, Italy) agar slants for 24 h, at
30 °C. Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 25923), Escherichia coli (25922
ATCC), Pseudomonas aeruginosa (27853 ATCC), Salmonella enterica serovar Typhimurium (ATCC 14028)
were grown on TSA agar slants for 24 h at 37 °C. C. albicans were grown on Sabouraud dextrose
Liofilchem, (LD 610103) agar slants for 24-48 h at 25 °C.
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2.11. Antimicrobial Activity Assay

The antimicrobial properties were evaluated by the agar well diffusion method according to the
method described by [39]. The bacteria were grown in peptone-soy bouillon (LAB 04, LAB M) for 24
h at 37 °C. After cultivation, culture cells were mixed using a mini shaker MS 1 (Wilmington, NC,
USA.) and the cell suspensions were adjusted according to McFarland nr 0.5 standard [40]. The cell
suspensions of C. albicans were adjusted according to McFarland nr 1.0 standard. Then, 1 mL of the
suspension of bacteria cells was introduced into 100 mL dissolved plate count agar Liofilchem (LD
610040), medium cooled to 47 °C. Then, 10 mL of the suspension was added into a 90-mm diameter
Petri plate, the final concentration of cells in 1 mL was 1.5 x 10¢. Eight mm diameter wells in agar
were filled with 50 pL of extracts. The plates were incubated overnight at 37 °C. B. subtilis 30 °C, C.
albicans 25 °C, in Sabouraud dextrose agar, Liofilchem, (LD 610103). Then, the inhibition zones were
measured with calipers to an accuracy of 0.5 mm. As a control in the blank sample, aqueous methanol
(80%) was used.

2.12. The Statistical Methods

All the experiments repeated three times and the results were expressed as means + SD. Data were
submitted to the analysis of variance (ANOVA). Tukey’s HSD (honest significant difference test) was
used to evaluate the significant differences (p < 0.05) between means (multiple comparison test). The
statistical analysis was performed using Statistica 10 software (StatSoft, Inc., Tulsa, OK, USA).

3. Results and Discussion

3.1. Selection of Extraction Parameters

Maceration extraction (ME) with pure acetone provided the lowest content of phenolic
compounds (Table 1). The acetone has the lowest dielectric constant from the tested organic solvents,
which proves that the lower the relative static permittivity, the extraction efficiency of TPC is weaker
[22,23]. The extraction of TPC efficiency significantly improved, when the water concentration in
acetone and ethanol increased. It has been reported in previous studies, that dual solvent systems are
more efficient for TPC extraction [22,23]. In contrast, the higher water concentration with methanol
had a negative impact on extraction, and the highest TPC obtained with pure methanol.

Table 1. The total phenolic compounds in Japanese quince fruit, mg/100 gDW.

Solvents Concentration [%]

100 70 50
Ethanol  4409+25c¢ 5104+32> 5256+19a
Methanol 5195+34a 4984 +22b 4796 +27 ¢
Acetone 3228 +61b 5426+83a 5274+52a

The different letters in the same line indicate statistically significant differences between the samples.

Solvent

There was no significant difference between the highest TPC values, which was obtained with
acetone 70% and ethanol 50%, so for all further extractions, the latter was chosen. The central
composite design prepared using response surface methodology (RSM) to optimize the extraction
condition of TPC (Table 2). Different combinations of parameters had a significant effect on TPC in
JQ fruit extracts, ranging from 4522.6 to 6784.9 mg/100 gDW (Table 2).
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Table 2. Experimental design of three-level, three-variable central composite design for ultrasound

extraction phenols from quince fruit extracts.

Test Xi, Ultrasonic Power Xz, Extraction Time X3, Temperature Total Phenols mg/100
Set (W) (min) (°C) g
1 240 (0) 40 (0) 45 (0) 5365.5
2 240 (0) 40 (0) 45 (0) 5219.2
3 480 (+1) 20 (-1) 60 (+1) 4522.6
4 240 (0) 40 (0) 60 (+1) 5047.3
5 48 (-1) 60 (+1) 60 (+1) 4851.1
6 240 (0) 20 (-1) 45 (0) 5579.9
7 48 (-1) 40 (0) 45 (0) 5830.9
8 48 (-1) 20 (-1) 60 (+1) 47295
9 240 (0) 40 (0) 45 (0) 5417.3
10 240 (0) 40 (0) 45 (0) 5866.3
11 240 (0) 40 (0) 45 (0) 5840.6
12 240 (0) 60 (+1) 45 (0) 5095.9
13 48 (-1) 60 (+1) 30 (-1) 6061.7
14 240 (0) 40 (0) 30 (-1) 6236.9
15 240 (0) 40 (0) 45 (0) 5007.3
16 480 (+1) 60 (+1) 60 (+1) 4785.2
17 480 (+1) 20 (-1) 30 (-1) 6435.2
18 48 (-1) 20 (-1) 30 (-1) 5515.3
19 480 (+1) 60 (+1) 30 (-1) 6016.7
20 480 (+1) 40 (0) 45 (0) 6784.9

The suitability and significance of design was evaluated using the analysis of the variance
(ANOVA), shown in (Table 3). A linear relationship was considered in our analysis, with the selected
model (p-value = 0.0022). The results of the analysis also showed that only temperature (Xs) had a
significant effect on phenols extraction (p-value = 0.0003).

Table 3. Analysis of variance (ANOVA for response surface linear model) showing the effect of the

three independent variables on the extraction efficiency of phenolic compounds from quince fruit.

Source Sum of Squares df  Mean Square F Value p-Value
Model 4.25 x 100 3 1.42 x 106 7.6519 0.0022
Ultrasonic power 2.42 %105 1 2.42 x 105 1.30814 0.2696
Extraction time 78.961 1 78.961 4.27 x 10+ 0.9838
Temperature 4.01 x 10¢ 1 4.01 = 106 21.64713 0.0003
Lack of Fit 2.38 x 10¢ 11 2.16 x 10° 1.853435 0.2570
Pure Error 5.83 x 105 5 1.17 x 10°

To determine the most effective values of the variables, the three-dimensional surface plots

(Figure 1), were designed according to the final predictive Equation (2), given below:

Response (TPC) = 5510.47 + 155.6X1 + 2.81X2 — 633.01Xs.

)

Figure 1A shows the overall response of extraction time, and ultrasound power to the TPC. The
total phenols decreased when the extraction time extended and slightly increased when the ultrasonic
power got stronger. This response shows that the long use of strong ultrasound has a negative effect

on phenolic compounds.
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Figure 1. Response surfaces plots for total phenols (TP) in Japanese quince fruit, in the function of
ultrasound power, extraction time, and temperature. (A)—Extraction time and ultrasound power;
(B)—extraction time and temperature; (C)—extraction temperature, and ultrasound power.

Figure 1B,C confirms the analysis results that the temperature had a significant effect on the
extraction efficiency, concerning both extraction time and ultrasonic strength. As the temperature
raised, the phenols content decreased, as high temperatures caused degradation of compounds. To
verify the model and the predicted amount of phenolic compounds (6296.3 mg/100 g), optimum
extraction conditions were as follows: 20 min, at 30 °C with 480 W ultrasound power. The observed
value obtained under these conditions was 6147 mg/100 g and the absolute error (AE) value 2.4%.

Compared to simple maceration, ultrasonic extraction increased the phenol extraction from quince
fruit by 14.5%, and the process time reduced from 24 h to 20 min.

3.2. Biochemical Composition and Antiradical Activity of Japanese Quince Fruit Extracts

The biochemical composition and antiradical activity of JQ fruits are presented in (Table 4). No
significant difference was detected between cultivars using Folin—Ciocalteu assay for TPC, ranging
from 3906 to 4550 mgGAE/100 gDW. Previous studies found a twice-lower TPC in JQ fruits; these

differences may have been due to another extraction method, and that result was expressed in fresh
weight [8].

Table 4. The biochemical composition and antiradical activity of Japanese quince fruits.

Proverties Japanese Quince Cultivars
P ‘Darius’ ‘Rondo’ ‘Rasa’
TPC, mgGAE/100 g 4550 +3942 3906 +772 4366+ 3852

Content of proanthocyanidins, mg/100 g1550.1 + 31.4 2879.7 + 20.1 <1233.4 £ 15.6 ®
RSA (DPPH), pmol TE/100 gDW 1159+592 99.1+22% 106.5+2.32
RSA (ABTS), umol TE/100 gDW 559.7 £34.2% 372.0+5.0¢ 681.6 +11.7 =

Ascorbic acid (vitamin C), mg/100 g 168+2.1a 169+1.12 114+28P
Total fiber content, g/100 g 28.5+25a 285+3.02 312+322

The different letters in the same line indicate statistically significant differences between cultivars (p
<0.05). Results represent means + SD (n = 3).
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However, the total content of proanthocyanidins (condensed tannins) differed significantly
between cultivars, was lowest in ‘Rondo’ and highest in ‘Darius’ (Table 4). The total
proanthocyanidins content accounts for 22-34% of the total polyphenol content. Proanthocyanidins
have several types of bioactivities, e.g., antioxidant, cardio protective, neuroprotective, including
antimicrobial activity [41]. The antiradical activity of the extracts with DPPH assay have shown a
slight difference between cultivars and had a strong correlation with their TPC and
proanthocyanidins content, r = 0.95, and 0.99, respectively. This is in agreement with previously
provided studies, which demonstrated a strong correlation between the antiradical activity of berry
fruits and their TPC [39,42]. A weaker correlation was found between antiradical activity by ABTS
assay with TPC and proanthocyanidins content, r = 0.78, and 0.63, respectively. JQ fruits had a
considerable amount of ascorbic acid (vitamin C), and appreciably similar to the previous study of
nine JQ genotypes [1]. The total fiber content was not different between cultivars, averaged 30 g/100
g, and it is in agreement with the previously performed study of 12 JQ genotypes [12].

Using the HPLC method, five phenolic compounds identified: (-)-epicatechin, (+)-catechin,
chlorogenic acid, rutin, and isoquercitrin (Table 5). The total flavan-3-ol (catechin and epicatechin)
content accounts for around 94% of the total polyphenol content, indicating that they are the main
polyphenol compounds in JQ fruits. Our results, that JQ fruits had more epicatechin, and less catechin
and chlorogenic acid, coincided with previous studies [3,8].

Table 5. The quantitative composition of phenolic compounds in quince fruit, ug/g DW.

Japanese Quince Cultivars

Compound, pg g7 DW ‘Darius’ ‘Rondo’ ‘Rasa’
Isoquercitrin 38.8+£252 333+32b 424+19-
Rutin 37.8+3.4¢c 574+22b 66.7+22a
(+)-Catechin 131.8+6.1¢ 1829+832 157.9+10.2%P

(-)-Epicatechin ~ 3535.1 + 60.2 23343.1 + 55.1 ©3575.9 + 50.5 =
Chlorogenic acid 1529+712 98.6+63c 113.7+4.4"
Total 3896.3 + 65.2 23715.2 + 58.1 23956.7 + 53.7 2
The different letters in the same line indicate statistically significant differences between the

individual compounds in the samples (p < 0.05).

No significant differences in TPC obtained by the HPLC method between cultivars. However,
some differences were found between individual phenols, ‘Rasa’ had the highest amount of rutin,
‘Rondo’” and ‘Darius’ had more catechin and chlorogenic acid, respectively. There was a strong
correlation between TPC using both Folin-Ciocalteu assay and HPLC method (r = 0.87), suggesting
that TPC in JQ fruit was stable.

3.3. Antibacterial Activity

Our results show that all JQ cultivar possessed antimicrobial activity against three Gram-
positive and three Gram-negative bacteria, and the most sensitive was Enterococcus faecalis (ATCC
29212) (Table 6). However, none of the extracts showed antifungal activity against Candida albicans
yeast. Antibacterial activity of JQ extracts had a concentration-dependent manner, and the strongest
inhibition effect was found using a 5% concentration (Table 6). As the concentration of the JQ extracts
increased 10-fold, the inhibitory effect doubled. Extracts of ‘Rondo” with 0.5% concentration has not
inhibited the growth of Staphylococcus aureus (ATCC 25923), but the effect was due to the increased
concentration. The lowest concentration extracts of all cultivars did not show any antibacterial effect
on Salmonella enterica serovar Typhimurium (ATCC 14028), but 1% and 5% extracts inhibited this strain
quite well. These results confirm previous studies, that extracts with higher phenols concentrations
have stronger antibacterial activity [43,44].
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Table 6. Antibacterial activity of Japanese quince fruit extracts.

apanese Quince Cultivars
Extract Jap Q

Microorganism . o ‘Rasa’ ‘Darius’ ‘Rondo’
Concentration, %

Inhibition Zone Size, mm

0.5 11.0£01  11.0+0.1 11.7+0.5
Bacillus subtilis (ATCC 6633) 1 14.0+01  12.0+0.1 12.7+0.4
g 21.7+05 183+1.2 18.0+0.1
= 0.5 130201 120+01 17704
$~ Enterococcus faecalis (ATCC 29212) 1 17.0+0.1 15.0+0.1 20.6 +0.5
E 5 30.7+05 25.3+1.3 27.0+0.2

o 0.5 90+01  9.0%0.1 0
Staphylococcus aureus (ATCC 25923) 1 12.0+0.1 10.0+0.1 13.7+0.5
187+04 173+1.1 18.0+0.1
0.5 9.0+£0.1 10.0+0.1 9.7£0.5
Escherichia coli (25922 ATCC) 1 13.0+0.1  12.0+0.1 12.6 £ 0.5
_E 5 19.6+05 153+1.1 17.0+0.1
A 0.5 9.0£01  9.0+0.1 9.6+0.4
% Pseudomonas aeruginosa (27853 ATCC) 1 13.0+0.1 12.0+0.1 11.7+£0.5
E 19.7+0.5 16.3+1.1 16.0 +0.1
S Salmonella enterica serovar Of 1 00+ 01 1 00+ 01 1 70+ 05
Typhimurium (ATCC 14028) 5 197404  173%12 15001

0.5 0 0 0

Candida albicans (ATCC 10231) 1 0 0 0

5 0 0 0

Results represent means + SD (1 = 3).

The extracts of JQ cultivars more inhibited Gram-positive bacteria than Gram-negative, with
very few exceptions. These differences probably depend on Gram-negative bacteria cells properties,
which have an additional outer membrane with lipopolysaccharide molecules [45]. Besides, there are
anumber of reports that plant phenolic extracts have a stronger effect against Gram-positive bacteria
[46-48]. Cultivar ‘Rasa’ had the strongest inhibitory activity against both Gram-positive and Gram-
negative bacteria (Table 6). Interestingly, the fruit of the ‘Rasa’ had a significantly higher amount of
rutin (Table 5). Other studies concluded that plant extracts, with higher levels of rutin, were more
effective against bacteria [49,50]. In addition, rutin showed the ability to enhance the antibacterial
activity of other phenols and antibiotics [51,52]. JQ fruit extracts had a stronger inhibitory effect
against E. coli ATCC 25922 and P. aeruginosa ATCC 27853 than S. aureus ATCC 25923 [20]. The results
of our study showed that only ‘Rasa’ extracts have similar activity, but ‘Darius’ and ‘Rondo’ extracts
had the opposite effect, stronger inhibits S. aureus (ATCC 25923).

Our results also showed that antimicrobial activity of the extracts against bacteria was in good

correlation with their rutin content (r = 0.98, 0.94, 0.92, 0.69, and 0.69 for S. aureus, E. coli, E. faecalis, B.
subtilis, and P. aeruginosa, respectively), and epicatechin content (r = 0.94 for Salmonella ssp.). A previous
study had reported similar results, that E. coli is more sensitive to rutin, and Salmonella to epicatechin
[53]. It was noticed that the antibacterial potent of each cultivar was significantly different on all tested
bacteria, with a few exceptions. The cultivars ‘Rasa” and ‘Darius’ extracts had similar activity on
Staphylococcus aureus and Salmonella ssp., and ‘Rasa’ and ‘Darius’ only on the Salmonella ssp.
There is no doubt that TPC determines the antibacterial activity, however, no significant differences
were detected between cultivars. Differences in efficiency were probably due to the distribution of
individual phenols between cultivars. The mechanisms of action of antibacterial activity are unequal
for individual phenolic compounds, and their combinations [54-57]. Besides, individual bacteria
have different resistance mechanisms, which are based on their biological properties [16].
Nevertheless, all of the bacteria cultures tested were sensitive to JQ fruit extracts.
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4. Conclusions

All three JQ cultivars (‘Rasa’, ‘Darius’, and ‘Rondo’) are rich in bio-compounds and showed an
important antibacterial activity against all tested bacteria. A considerable amount of phenols, vitamin
C, and fiber were determined. The chemical analysis of these cultivars showed the presence of five
phenolic compounds, whose main major compound detected was epicatechin. Our study results
showed that JQ extracts not only have strong antiradical activity but also could effectively fight
against three Gram-positive and three Gram-negative bacteria. The inhibition zone varied between
different concentrations of the extracts and between bacterial strains. The food complemented with
freeze-dried powder of JQ fruit can enrich the diet with strong antioxidants, which are important in
maintaining human health and help to prevent various diseases. In addition, due to their antibacterial
activity, they are very promising as a substitute for chemical preservatives in the food and cosmetic
industry. These results are significant and quite important, especially due to growing consumer
interest for natural products free of chemical additives.
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