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Abstract: The rapid growth of urbanisation and e-commerce has increased the number of home deliv-
eries that need to be made in retail operations. Consequently, there is also an increase in unexpected
incidents, such as adverse traffic, unavailability of parking space, and vehicle breakdowns. These
disruptions result in delays, higher costs, and lower service levels in the last-mile delivery operation.
Motivated by free, innovative, and efficient tools, such as the Google application programming
interface (API) and Google OR, we built a model to measure the impact of disruptions in the last-mile
delivery operation. Our model considers customers’ geographic information, speed estimation
between nodes, routing optimisation, and disruption evaluation. Disruptions are considered here
as external factors such as accidents and road works that imply the closure of or slow access to
certain roads. Computational experiments, based on a set of real data from three different cities
around the world, which contrast in size and characteristics (i.e., Boston, US; Bogotá, Colombia; and
Pamplona, Spain), were conducted to validate our approach. The tests consider 50 different instances
of up to 100 customers per city and analyse the impact of disruptions in terms of travelled time and
distance. Our results provide managerial insights for key stakeholders (i.e., carriers, consumers, and
government) to define policies and development plans that improve the resilience and capabilities of
cities’ transportation systems.

Keywords: last-mile delivery; disruptions; Google API; Google OR

1. Introduction

In the last decade, e-commerce has grown due to the increased demand of con-
sumers [1]. Thus, last-mile deliveries (LMDs) have become crucial for delivering goods
to customers, making city centres one of the most important and complex areas. City
centres are characterised by a limited area structure, road disruptions, traffic accidents, and
congestion, making freight deliveries within cities a challenge [2–4].

As observed by Ref. [5], deliveries in city centres require a large number of trips, vehi-
cles, and kilometres travelled, generating higher costs in goods distribution. Considering
this fact, technology has emerged as an essential component for mitigating uncertain future
events, e.g., the Internet of things, big data analytics, blockchain technologies, and artificial
intelligence [6]. Among the emerging technologies for LMDs, web mapping platforms and
application programming interfaces (APIs) are extensively considered due to their stronger
spatial analysis capability for route efficiency, route optimisation, travel cost, etc. [7,8].

Even though LMD problems have been widely studied, there is still an opportunity
for innovative last-mile delivery solutions [9]. This paper aims to contribute to fulfilling
this gap and proposes an analytical model, based on Google API and Google OR, to
measure the impact of an n-number of disruptions in the last-mile delivery operation. To
validate our approach, we conducted computational experiments using real data from
three different cities (i.e., Boston, US; Bogotá, Colombia; and Pamplona, Spain) to evaluate
the impact of up to 100 disruptions in different city contexts. These cities were selected
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because they are located in different geographical areas and present different characteristics
in population, history, and urban development. Our results provide managerial insights
for key stakeholders (i.e., carriers, consumers, and government) to improve the resilience
and capabilities of the cities’ transportation systems.

The remainder of this paper is organised as follows. In Section 2, we present a related
literature review. In Section 3, we introduce the proposed approach. The multicase study
details and results are discussed in Section 4. Finally, we provide some conclusions and
future research directions in Section 5.

2. Literature Review

Last-mile logistics refers to the direct connection between the service provider and
the end customer [10]. Due to its relevance, the number of articles on city logistics for
determining issues, modelling efforts, trends, and gaps has increased [10]. In this context,
understanding and analysing transport behaviour in different cities allows estimating the
impact of last-mile operations in cities [11].

The type of city and its infrastructure play an important role in transport behaviour.
From a practical perspective, Ref. [12] present an analysis of developed and developing
countries’ logistics efficiency. The authors affirm there is a wide range of logistics perfor-
mance levels among cities due to discrepancies between transport networks, infrastructure,
and transport regulations, as well as the influence of the economic sector. In order to
control decision making by companies, local governments have established strategies for
transport management. Policies and management strategy provision for city logistics tend
to be against the management strategies of logistics enterprises [13]. Refs. [13,14] present
a collection and analysis of different public policies for urban transport behaviour. Thus,
the significant challenges facing last-mile logistics are the infrastructure, local government
management, and transport behaviour for decision making [10].

The inclusion of communication and information technologies makes part of the
solution to deal with last-mile logistics [15]. Some solutions are aimed at understanding
urban transport behaviour by collecting and analysing large amounts of data. For example,
the use of application programming interfaces (APIs) to carry out efficient scheduling
and real-time optimisation of last-mile logistics [15]. Ref. [16] recognises the importance
of urban transport data to understand transport behaviour in a city for efficient logistics
decisions. As a result, the efforts in the development of models and API have increased [17].
Ref. [18] presents the strengths and limitations of an API-based approach to studying
urban transport.

The accessibility to a massive amount of data has motivated the development of
methodologies to treat and use data efficiently. In general, these methodologies focus on
data cleaning strategies and data accuracy validation [6]. From a logistics perspective,
managing large amounts of data and making transport decisions are among the challenges
of logistics operations [8]. The inclusion of these data in the models for decision making
gives the opportunity to estimate the travelling demand, travelling cost, and the level of
congestion in urban areas [19].

Data models that interact with the geographical structure of cities allow extracting
macro- and microscale transport information [20]. As a result, web mapping platforms,
such as OpenStreetMap and Google Maps, have emerged for supporting decision making
in transport operations [8,21,22]. Ref. [8] presents an analysis in which they look at the
relationship between travel times and congestion levels in a city. The authors show that
these studies shed light on transport behaviour. Similar studies show the relevance of these
studies for policymaking, urban transport [8,18,23,24], emergency management [25], and
environment protection [25,26].

Some applications of Google Maps API include vehicle routing problems [25]. Ref. [27]
studies the public transport of 13 German cities to determine the average of a reasonable
detour in passenger transport. Although studies on traffic behaviour and its potential
disruptions have been found, there is a lack of research related to measuring the impact of
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multiple disruptions on transportation operations [28]. Several commercial and industrial
projects are looking to develop strategies to manage and reduce the impact of disruptions
in transport operations [29]. This leads us to the following research questions:

• How can we measure the impact of disruptions in transportation operations?
• How can we manage disruptions to improve the resilience and capabilities of trans-

portation systems?

Aiming to close the research and practical gap, this article presents routing strategies
to manage disruptions in urban transport. Routing decisions are based on a statistical
analysis of data from the Google Maps API to understand urban transport behaviour and
the impact of disruptions in terms of congestion. In this field, studies determine the routing
decisions under the criterion of the shortest path. These studies do not consider possible
variations in the route, i.e., the occurrence of a disruption in the shortest path.

3. Proposed Approach

In this section, we present a new method for the collection of data and the analysis of
disruptions in last-mile delivery operations that allows comparing different cities and/or
regions. Figure 1 shows the general representation of the proposed approach.
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Figure 1. Proposed approach.

In the first step, we select the city to be studied. Using a geographic information
system (GIS) software, a polygon in a geospatial vector data format defines the geographic
boundaries of the city. These geographic boundaries may correspond to any region,
neighbourhood, or other geographic area specified a priori by the decision maker. Once
the polygon has been defined, we generate m random points (i.e., customers) inside its
geographic boundaries. As pointed out by Ref. [30], this random generation makes it
possible to subsequently estimate real traffic data.

The second step consists of estimating the corresponding distances and speeds be-
tween each pair of points generated in the previous step. To do so, we use the Google
Maps Directions API [31]. According to Ref. [25], the main benefits of using Google Maps
API are the easy preparation of the data set, the utilisation of updated road data and road
congestion, and the distinction between peak hours and off-peak hours. Therefore, using
the travel information calculated by Google API is a promising, easy-to-use, and low-cost
method to retrieve real-time traffic data [30].

Thirdly, we optimise the routing operation to visit n different combinations of the
random customers generated in the first step (see Figure 2). This optimisation is done
by solving the traditional vehicle routing problem (VRP) through Google OR-Tools and
using the tabu search heuristic [32]. On the one hand, Google OR-Tools is an open-source
optimisation library, tuned for solving the VRP and its several variants, as well as other
traditional problems in operations research [33]. On the other hand, tabu-search-based
heuristics is a very competitive procedure that has traditionally provided very practical
results [34]. Although we used Google OR-Tools due to its high performance [35], there
are other well-known and open-source libraries such as VRPy or VRPH that could be
adapted to our approach. Other valuable approaches to solving VRPs are those based on
simheuristics procedures [36], which also allow the resolution of routing problems quickly.
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Figure 2. Route optimisation pseudocode.

In the fourth step, we generate 1-to-d disruptions into the optimal routes founded
during the third step (see Figure 3). Disruptions in last-mile delivery can be caused by
different internal factors (e.g., mechanical failures) and external factors (e.g., car accidents
or road works) [37]. In our approach, we consider only external factors and assume that
those accidents (or road works) imply the closure or slow access to certain roads. Therefore,
disruptions mathematically mean the removal of up to d arcs in the optimal routing solution
and entail a nonoptimal route with overtime associated. Finally, we compute and compare
these overtimes to define the impact of d disruptions in the last-mile delivery operation.
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4. Computational Experiments and Results

Delivering goods inside cities is a complex and dynamic operation that, according
to each context, has unique issues to deal with [38]. For example, unstable local freight
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policies, lack of infrastructure, unplanned settlements (e.g., slums) with difficult access,
etc., are some of the peculiar aspects that are addressed by larger cities in developing
economies [30]. Moreover, although European and US cities share similar living standards
and levels of wealth, their characteristics are quite different. For example, there are less
dense but larger cities in the US [39], while Europe has medieval-structured cities, and their
citizens have a higher proportion of using green modes of urban mobility [38]. In order
to evaluate and compare the impact of disruptions in different cities’ context, a multicase
study was carried out using three different cities around the world: Boston (US), Bogotá
(Colombia), and Pamplona (Spain).

Boston (US), founded in 1630, has an area of about 127 km2. Although Boston has
an estimated resident population of 700,000, the Greater Boston population is more than
8 million inhabitants [40]. Bogotá, founded in 1538, is the capital of Colombia and is the
largest city. Its population is around 7.5 million inhabitants (DANE, 2020) and has an area
of about 497 km2. Finally, Pamplona (Spain), the capital of the Autonomous Community of
Navarre and founded in 75 BC, has an estimated resident population of 210.000 and an area
of about 25 km2 [41]. We implement the proposed approach in each of these three cities,
which contrasts in size, culture, and infrastructure characteristics, in order to measure and
compare the impact of disruptions in the last-mile delivery operation (see Figure 4).
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The approach was run using the Python interface version 3.7.4 and a time limit of
5 min per instance on an Intel(R) 8-Core (TM) i9 personal computer with 2.3 GHz and 16
GB RAM. First, we generated 50 different instances from 20 to 70 customers to visit per city.
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After implementing the tabu search procedure (Figure 2), we generated 1-to-d disruptions,
where d is the number of customers evaluated in each instance (Figure 3). The objective is
to analyse the relationship between the number of customers, disruptions, and both the
total travelled time and distance. Table 1 and Figure 5 show the obtained results in terms
of travelled distance and time. In the average results, Bogotá has the highest travelled time
(10.5 h) and distance (199.5 km), followed by Boston and Pamplona. However, regarding
the impact of disruptions, each arc removed increases the average travelled time by 3.2%,
8.0%, and 9.7% in Bogotá, Boston, and Pamplona, respectively. That is, the impact of
disruptions is smaller in larger cities. We obtained similar results in terms of distance,
as each arc removed increases the average travelled distance by 4.0%, 5.1%, and 8.1% in
Bogotá, Boston, and Pamplona, respectively. There is no linear proportion between time
and distance, as in urban logistics the shortest path does not guarantee the shortest time.

Table 1. Average results for instances from 20 to 70 customers.

City Distance (km) Time (h)

Bogotá 199.5 10.5
Boston 90.1 3.3

Pamplona 38.5 2.1
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Secondly, we generated 50 different instances with 100 different customers to evaluate
the impact of a larger number of disruptions in scenarios with the same name of potential
customers to visit per city. The results obtained for this configuration are shown in Table 2
and Figure 6. It is evident, again, that size and congestion in a larger city such as Bogotá
imply both the longest travel time and distance. On average, delivering to 100 customers
is 3.5 and 1.4 times slower in Bogotá than in Boston and Pamplona, respectively. We can
also see that variance is higher in Bogotá than in the other cities. Specifically, the standard
deviation is 0.46 h and 10.45 km in Bogotá, 0.25 h and 6.1 km in Boston, and 0.21 h and
3.74 km in Pamplona. Finally, regarding the impact of disruptions, each arc removed (for
100-customer instances) increases on average the travelled time by 4%, 8%, and 10% in
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Bogotá, Boston, and Pamplona, respectively. These results are similar to those obtained in
smaller instances (i.e., 20 to 70 customers) and endorse the conclusion that larger cities are
more sensitive to the disruption of arcs.

Table 2. Average results for instances with 100 customers.

City Distance (km) Time (h)

Bogotá 338.5 17.8
Boston 138.6 6.0

Pamplona 74.6 3.9
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Finally, the results allow us to conclude that the impact of disruptions in the trans-
portation network depends on the city’s road network and the dispersion of customers’
location. This fact is related to the number of streets and alternative routes connecting
customers and distribution centres. For example, a disruption in cities with a limited road
network can cause the route to be completely redefined due to the absence of alternative
routes. In terms of customer location, the distribution could be scattered depending on the
city size. For example, customers can be dispersed in cities like Bogotá or Boston, while in
Pamplona, the customers tend to be concentrated in certain zones. Thus, a disruption in
small cities such as Pamplona can restrict access to a set of customers, while in large cities,
a disruption may affect one or few customers due to the number of customers per km2.
In these cases, the greater the number of disruptions, the longer the travel times and
distances are.

5. Conclusions

This paper proposed a model based on Google API and Google OR-Tools to measure
the impact of disruptions in the last-mile delivery operation. Our model considers cus-
tomers’ geographic information, speed estimation between nodes, routing optimisation,
and disruption evaluation. The proposed method was validated on a set of real data from
three different cities, i.e., Boston, US; Bogotá, Colombia; and Pamplona, Spain. For the
computational experiments, we generated random locations of customers for each city,
and the evaluated disruptions considered the total travelled time and distance. The results
allow us to conclude that the impact of disruptions in the transportation network depends
on the city size, the city’s road network, and the dispersion of customers’ location. In this
paper, the larger the city is, the most sensitive the disruption of arcs is, having an increase
in the travelled distance up to 4% instead of 8% obtained by the smaller city. Additionally,
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the results provided managerial insights for key stakeholders to improve the resilience and
capabilities of the cities’ transportation systems.

In terms of future research, there are opportunities to include a city’s population den-
sity or real delivery information of a parcel company to represent more real-like scenarios.
Moreover, the impact of disruptions in peak times in terms of costs and CO2 emissions,
considering different levels of disruptions, can also be studied. Furthermore, another direc-
tion for future research is to design robust routes for having a minimal impact on deliveries
when disruptions occur. Finally, other solution methods and cities could be tested.
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27. Masłowski, D.; Kulińska, E.; Kulińska, K. Application of routing methods in city logistics for sustainable road traffic. Transp. Res.
Procedia 2019, 39, 309–319. [CrossRef]

28. Camargo, C.Q.; Bright, J.; McNeill, G.; Raman, S.; Hale, S.A. Estimating Traffic Disruption Patterns with Volunteered Geographic
Information. Sci. Rep. 2020, 10, 1271. [CrossRef]

29. Kivimaa, P.; Laakso, S.; Lonkila, A.; Kaljonen, M. Moving beyond disruptive innovation: A review of disruption in sustainability
transitions. Environ. Innov. Soc. Transitions 2021, 38, 110–126. [CrossRef]

30. Costa, C.; Ha, J.; Lee, S. Spatial disparity of income-weighted accessibility in Brazilian Cities: Application of a Google Maps API.
J. Transp. Geogr. 2021, 90, 102905. [CrossRef]

31. Google Google Maps Platform. Available online: https://cloud.google.com/maps-platform (accessed on 8 March 2021).
32. Google Vehicle Routing. Available online: https://developers.google.com/optimization/routing (accessed on 8 March 2021).
33. Zhang, K.; He, F.; Zhang, Z.; Lin, X.; Li, M. Multi-vehicle routing problems with soft time windows: A multi-agent reinforcement

learning approach. Transp. Res. Part C Emerg. Technol. 2020, 121, 102861. [CrossRef]
34. Gendreau, M.; Laporte, G.; Potvin, J.-Y. Metaheuristics for the Capacitated VRP. In The Vehicle Routing Problem; Society for

Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002; pp. 129–154.
35. VRPy Performance Profiles. Available online: https://vrpy.readthedocs.io/en/latest/benchmarks.html#benchmarks (accessed on

8 March 2021).
36. Juan, A.A.; David Kelton, W.; Currie, C.S.M.; Faulin, J. Simheuristics applications: Dealing with uncertainty in logistics,

transportation, and other supply chain areas. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg,
Sweden, 9–12 December 2018; pp. 3048–3059.

37. Dettenbach, A.M.C.; Ubber, S. Managing Disruptions in Last Mile Distribution. In Proceedings of the 2015 48th Hawaii
International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 1078–1087.

38. Verlinden, T.; Van de Voorde, E.; Dewulf, W. Ho.Re.Ca. logistics and European medieval structured cities: A search for cost
generators. Transp. Policy 2020, 99, 419–429. [CrossRef]

39. Beghelli, S.; Guastella, G.; Pareglio, S. Governance fragmentation and urban spatial expansion: Evidence from Europe and the
United States. Rev. Reg. Res. 2020, 40, 13–32. [CrossRef]

40. US Census Bureau Boston city MA 2018 Population Estimates. Available online: https://www.census.gov/programs-surveys/
popest.html?intcmp=serp (accessed on 8 March 2021).

41. Ayuntamiento de Pamplona Población Total Pamplona/Iruña a 2 de enero de 2020. Available online: https://www.pamplona.
es/sites/default/files/2020-01/Pamplona-barriospoblaciontotalenero2020_0.pdf (accessed on 8 March 2021).

http://doi.org/10.1016/j.comcom.2020.02.069
http://doi.org/10.1080/23249935.2020.1722287
http://doi.org/10.1080/00045608.2013.792172
http://doi.org/10.1016/j.autcon.2017.01.014
http://doi.org/10.1080/15230406.2014.976656
http://doi.org/10.1038/nature25181
http://doi.org/10.31142/ijtsrd25214
http://doi.org/10.1080/13658816.2019.1608997
http://doi.org/10.1080/19475683.2011.625977
http://doi.org/10.1016/j.trpro.2019.09.052
http://doi.org/10.1016/j.trpro.2019.06.033
http://doi.org/10.1038/s41598-020-57882-2
http://doi.org/10.1016/j.eist.2020.12.001
http://doi.org/10.1016/j.jtrangeo.2020.102905
https://cloud.google.com/maps-platform
https://developers.google.com/optimization/routing
http://doi.org/10.1016/j.trc.2020.102861
https://vrpy.readthedocs.io/en/latest/benchmarks.html#benchmarks
http://doi.org/10.1016/j.tranpol.2020.07.013
http://doi.org/10.1007/s10037-019-00136-0
https://www.census.gov/programs-surveys/popest.html?intcmp=serp
https://www.census.gov/programs-surveys/popest.html?intcmp=serp
https://www.pamplona.es/sites/default/files/2020-01/Pamplona-barriospoblaciontotalenero2020_0.pdf
https://www.pamplona.es/sites/default/files/2020-01/Pamplona-barriospoblaciontotalenero2020_0.pdf

	Introduction 
	Literature Review 
	Proposed Approach 
	Computational Experiments and Results 
	Conclusions 
	References

