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Abstract: In this study, joint inventory replenishment planning of an Alibaba distribution system is
investigated, which contributes to the circular economy concept. The distribution system includes
suppliers, central distribution centers, and front distribution centers. The total replenishment cost
of the distribution system can be reduced by setting up distribution centers at producers’ locations
(PDCs), which also helps to reduce the wastages of commodities during the transportation and CO2

emission released by transportation. The joint replenishments of multiple products are constrained
by a maximum joint replenishment quantity. Trans-shipments happen among different distribution
centers. The considered problem seeks to find the replenishment quantities of products among
stocks, which can minimize the total replenishment cost of the system, and is formulated as a
novel mathematical model. The effectiveness of our proposed model is validated by computational
experiments based on Alibaba’s data. The results indicate that PDCs and trans-shipments can bring
about lower replenishment costs if a common service level of the system is given.

Keywords: inventory management; e-commerce; distribution systems; optimization; circular economy;
CO2 emission; distribution centers at producers’ locations

1. Introduction

Nowadays, e-commerce has become an important form of business in the world.
To quickly respond to the demands of clients with smaller costs and a better degree of
satisfaction, all e-commerce enterprises concentrate on effective inventory management of
distribution systems.

At the same time, increasing environmental problems have brought up many sustain-
ability concerns by governments and companies in recent years [1]. Novel approaches
need to be developed for the management of systems, which can decrease negative envi-
ronmental effects [2]. For example, it is possible to manage cost efficiency in a distribution
system through well-designed inventory replenishment planning, which can decrease
transportation among stocks in the distribution system and contribute to reducing car-
bon emission. In addition, reduced inventory trans-shipment will also help to decrease
unnecessary material waste and loss during transportation.

Owing to the resource scarcity problem, many companies have been more conscious
about environmental awareness and precautions taken [2]. Therefore, the circular economy
(CE) has been widely mentioned, which aims to maximize the value of materials circulating
within the economy as well as minimize material consumption [3]. CE includes materials’
production, distribution, consumption, reuse, collection, and recycle processes [4]. At
present, the CE concept has been integrated into supply chain management to decrease
inventory transportation and carbon emission in distribution, e.g., for an omni-channel
supply network design [2].
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As we know, Alibaba is one of the biggest e-commerce companies in the world, which
attempts to strengthen its inventory management for preserving its dominant position
and seek circular economy simultaneously. Therefore, a typical inventory replenishment
planning problem (IRPP) that occurs in Alibaba’s distribution system is discussed. In
this system, CDCs (central distribution centers), FDCs (front distribution centers), PDCs
(distribution centers at producers’ locations), and suppliers are included. The suppliers
manufacture products and transport them to the distribution centers. The CDCs distribute
products to the FDCs. The clients are served only by the FDCs. PDCs are usually nearby to
its suppliers, and receive products from suppliers and send them to CDCs and FDCs. The
function of PDCs is to decrease transportation costs in replenishment planning, which will
be discussed in the following section.

In this study, the IRPP refers to a single period. Alibaba often decides its replenishment
planning, named ‘early product pushing down replenishment’ (EPPDR), before an annual
activity such as the ‘double 11 promotion’. Alibaba first held this promotion in 2009 and its
transaction volume was ¥498.2 billion in 2020. In order to cope with the massive demand
during a single-period promotion, Alibaba uses EPPDR to respond to customer orders in
time. In detail, all products are delivered to the stocks in the studied distribution system
before promotion. Thus, the replenishment lead times are not considered. The following
are some characteristics about the replenishment: the joint replenishment with multi-
ple products and maximum replenishment quantity, and the horizontal trans-shipment
among stocks.

In past studies, single-period inventory problems [5] and multi-period inventory
problems [6,7] have been widely investigated. As mentioned before, EPPDR is adopted,
which means that a single-period inventory problem is studied in this paper. In addition,
many papers just studied the inventory replenishment problems with only one type of
product [8–10], where both the inventory replenishment policy of every stock and the
inventory distribution policy were addressed in two-echelon distribution systems without
replenishment quantity constraints [11]. For a change, we consider a multi-product joint
replenishment problem in a multiple-echelon distribution system with replenishment
quantity constraints for all stocks.

Furthermore, joint replenishment for one stock has gained much attention over the
past years [12]. In previous studies, ordering costs of multiple products were considered in
joint replenishment [13], which can reduce the ordering costs of an inventory system [14,15].
Inventory systems with a group of retailers and a single warehouse [16,17] or with multiple
suppliers, distributors, and buyers [18] were studied. Nevertheless, the replenishment
quantity constraints and horizontal trans-shipments were not taken into account in these
studies. A game-theoretical analysis of joint decisions on carbon emission reduction
and inventory replenishment for key supply chain players was presented when facing
effort-dependent demand, where just a retailer and a supplier were involved [19]. In
addition, the lateral trans-shipments were already considered for stocks located in the same
echelon [9,20–22]. However, only one product and no joint replenishment were considered
in the inventory systems of these studies, which is different from our study.

Various inventory polices have been proposed for distribution systems in the litera-
ture, such as order-up-to policies [23], (R, Q) or (R, nQ) policies [24–26], (s, Q) [27], (s, S)
policies [28], and so on. Different methods were adopted to optimize the above inven-
tory polices in inventory systems, including analytical methods [29,30], simulation-based
methods [31–34], and scenario-based methods [35].

In addition, the inventory replenishment planning of a distribution system of Alibaba
was recently studied for a safety stock inventory policy [36] and a single promotion
period [37]. However, in their studied distribution systems, the producers’ distribution
centers (PDCs) were not considered, and horizontal inventory replenishments among
stocks in the same echelon were not allowed. Furthermore, a multiple-period distribution
system was studied in [36], but a single-period distribution system is investigated in
this paper.
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By carefully comparing it with the reference, to the best of our knowledge, the con-
sidered inventory replenishment problem is different from all previous studies in follow-
ing aspects.

a. The joint replenishment of products with distribution centers at the producers’
locations for a three-echelon distribution system is studied.

b. Each replenishment is constrained by a maximum joint replenishment quantity.
c. Horizontal and vertical replenishments of products are allowed for each stock.

These features are from the operation practice of e-commerce companies such as Al-
ibaba, which makes the studied inventory replenishment problem much more challenging
and complex. Thus, the contribution of this work is to propose an inventory replenishment
model that simultaneous takes into account all the features, which can contribute to the
circular economy concept significantly through efficient management of inventories. Thus,
we can realize the decrease of both replenishment costs and CO2 emissions.

The structure of the study is set as below. Section 2 presents the problem description.
Section 3 formulates the models and gives the corresponding analysis. Section 4 proposes
computational experiments for testing the performances of the models. Section 5 concludes
the paper and gives future directions.

2. Problem Description

A traditional distribution system for retailing transports commodities from the suppli-
ers to the retailers, passing through the wholesalers, which can be explained in Figure 1.
Large wastages of commodities may occur in the system because of multiple wholesalers.
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Figure 1. A traditional distribution system for retailing.

In recent years, e-commerce has been booming. In this paper, we consider a multiple-
echelon distribution system operated by Alibaba, displayed in Figure 2. In the system,
CDCs (central distribution centers), FDCs (front distribution centers), PDCs (distribution
centers at producers’ locations), and suppliers are included. Fast moving products are
transported among stocks. A normal distribution is supposed for the demand of each
stock, where stationary demand is assumed. Note that this study can easily be applied to
the situation wherein the demand of each stock is subject to other types of distributions
such as uniform distribution or Poisson distribution. The dashed lines in Figure 2 denote
the direct replenishment from suppliers to FDCs. As the suppliers are usually far away
from FDCs, direct replenishment is operated with larger transportation costs and smaller
replenishment quantities.
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Figure 2. A three-echelon distribution system of Alibaba. CDC, central distribution center; FDC,
front distribution center.

To further improve the replenishment planning, a producers’ distribution center (PDC)
is added to the three-echelon distribution system by Alibaba, which can be illustrated
in Figure 3. Initially, supplier 1 and 2 supplied the CDCs directly. PDC 1 (producers’
distribution center) was added, near to its suppliers, so that the suppliers can quickly send
products to the PDC.
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Although there are long distances between the PDC and CDCs 1–4, the PDC can
continual replenish products to CDCs. Thus, the service level can be increased and the
replenishment lead time can be decreased. Furthermore, the replenishment cost of the
system can also be reduced, which will be discussed in Section 4. Here, the suppliers, the
PDC, and the CDCs provide products to FDCs 1–6. Lost sales cases may occur in each FDC.
In addition, vertical replenishment (CDC 1 to FDC 1) and the horizontal replenishment
(FDC 2 to FDC 5) are allowed, but reverse replenishment from a stock in higher echelon to
a stock in lower echelon is not permitted. The dashed lines in Figure 3 denote the direct
replenishment from suppliers or PDC to FDCs.

In the distribution system, the e-commerce company carries out inventory replenish-
ments to the stocks before its promotion activity in a short time, where multiple products
may be replenished at the same time. Therefore, all replenishments can be executed without
lead time. Each replenishment is constrained by a maximum joint replenishment quantity,
which is different in diverse distribution channels. Furthermore, we assume that each stock
first receives products from its predecessor and then sends products to its successor. Note
that Alibaba does its replenishment planning on account of historical demand forecast and
their errors for the consideration of lost sales in each stock [38].

Initially, there is a given on-hand inventory quantity of each product in each stock. The
transportation costs and maximum joint replenishment quantity of the distribution system
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are also predefined. After that, the products are replenished among stocks in different
echelons and trans-shipped between stocks in the same echelon. The goal of replenishment
planning is to obtain a minimum total replenishment cost of the distribution system under
the condition that the predefined service level is reached at each FDC.

Normally, e-commerce companies seek to achieve an overall same service level for
each product at each FDC. Thus, this study can contribute to the CE concept by reducing
inventory transportation among stocks and material loss during transportation, which is
mainly in the production process and distribution process of the CE concept.

3. Models and Analysis
3.1. Models

Firstly, the notations used in the model for the studied distribution system are given
in advance.

Indices
i,j: stock index, i,j = 1, . . . , N, N denotes the number of stocks
k: product index, k = 1, . . . , K, K denotes the number of products
Main Parameters
S: the number of suppliers, then let SS denote supplier’s set
P: the number of PDCs, then let PS denote PDC’s set
C: the number of CDCs, then let CS denote CDC’s set
F: the number of FDCs, then let FS denote FDC’s set
N: the number of stocks, N = S + P + C + F, then let NS denote stock’s set
I0
ki: earlier on-hand inventory quantity of each product in each stock before replenish-

ment, k = 1, . . . , K, i = 1, . . . , N
µki: demand forecast of each product in each stock
σki: standard deviation of demand forecast of each product in each stock
dki: real demand of each product in each stock, which obeys a normal distribution

with mean µki and standard deviation σki
αt: target common service level of the inventory system, 0 ≤ αt ≤ 1
zαt : z-value associated with αt
scij: transportation/shipping cost of per unit product from stock i to stock j, where

scij = scji and the triangle inequality, scin + scnj ≥ scij, i, j, n = 1, . . . , N, but n 6= i, n 6= j
f cij: fixed set-up cost of per unit product from stock i to stock j
v

k
: volume of per unit product k

Qmax
ij : maximum joint replenishment quantity of a replenishment between any two

stocks (i,j = 1, . . . , N)
M: a large number, M > 0
Variables
Iki: on-hand inventory of each product in each stock when replenishment is finished
xk

ij: replenishment quantity of each product between any two stocks
yij: if the replenishment of products happens between any two stocks i and j, yij = 1,

otherwise yij = 0
Next, we formulate the joint replenishment planning problem in Alibaba’s distribution

system as a mathematical model SPJRPP.
Mixed-integer programming model SPJRPP:

ZSPJRPP =
K

∑
k=1

N

∑
i=1

N

∑
j=1,j 6=i

xk
ij · vk

· scij +
N

∑
i=1

N

∑
j=1,j 6=i

f cij · yij (1)

Subject to:

Iki = I0
ki +

N

∑
j=1,j 6=i

xk
ji −

N

∑
j=1,j 6=i

xk
ij, i = 1, . . . , N, k = 1, . . . , K (2)
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Iki ≥ µki + zα t · σki, i = 1, . . . , F, k = 1, . . . , K (3)

N

∑
j=1,j 6=i

xk
ij ≤ I0

ki, i = 1, . . . , S, k = 1, . . . , K (4)

xk
ji = 0, i ∈ SS∪ j ∈ NS, i ∈ PS∪ j ∈ CS, i ∈ PS∪ j ∈ FS, i ∈ CS∪ j ∈ FS, k = 1, . . . , K (5)

K

∑
k=1

v
k
· xk

ij ≤ Qmax
ij , i, j = 1, . . . , N (6)

K

∑
k=1

v
k
· xk

ij ≤ yij ·M, i, j = 1, . . . , N (7)

xk
ii = 0, i = 1, . . . , N, k = 1, . . . , K (8)

Iki, xk
ij ≥ 0, 0 ≤ α ≤ αt, yij ∈ {0, 1}, i, j = 1, . . . , N, k = 1, . . . , K (9)

The objective function (1) is to find the minimal total replenishment cost of the dis-
tribution system. Constraints (2) denote the relationship of inventory movement of each
product in all stocks. The common service level α of the inventory system is guaranteed by
constraint (3). Constraint (4) indicates that a supplier cannot provide the replenishment
quantity of each product that is larger than its on-hand inventory of this product to its
successors. Constraint (5) denotes that each product is not allowed to be transported among
suppliers or from a stock in a higher echelon to a stock in a lower echelon. Constraint
(6) indicates that the maximum joint replenishment quantity should be observed by each
replenishment. Constraint (7) links up the two variables xk

ij and yij. Constraint (8) implies
that no replenishment happens between the same stocks. Constraint (9) presents the range
of all variables.

By solving model SPJRPP, the total replenishment cost of the distribution system is
minimized and an optimal inventory replenishment solution is generated. Thus, the un-
necessary products’ transportation and material losses are avoidable. Then, CO2 emissions
are also reduced. This will contribute to the distribution process of the CE concept.

Because of the maximum joint replenishment quantity constraints, the target common
service level of the inventory system αt may not always be achieved. In order to always
achieve αt, we can define the following parameter sce

ij and the decision variable qij, and
replace constraint (6) with constraint (10). If the sum of the required replenishment quanti-
ties of all products is larger than the maximum joint replenishment quantity, qij ≥ 0. Thus,
all qij must be finished using external freight capacity, where a greater replenishment cost
must be paid. Then, objective function (1) can be revised to Equation (11).

sce
ij: shipping cost of per volume product from stock i to stock j by external freighters

qij: replenishment volume of product over the given maximum joint replenishment
quantity between any two stocks i and j, which must be purchased from external freighters

K

∑
k=1

v
k
· xk

ij − qij ≤ Qmax
ij , i, j = 1, . . . , N (10)

ZSPJRPP =
K

∑
k=1

N

∑
i=1

N

∑
j=1,j 6=i

xk
ij · vk

· scij +
N

∑
i=1

N

∑
j=1,j 6=i

f cij · yij +
N

∑
i=1

N

∑
j=1,j 6=i

sce
ij · qij (11)

3.2. Analysis

As we mentioned in Section 1, there are some features for our proposed model SPJRPP,
such as the joint replenishment of multiple products, the maximum joint replenishment
quantity, the horizontal inventory replenishments, and the distribution centers at produc-
ers’ locations (PDC). In order to prove the advantages of model SPJRPP, the following
comparisons can be conducted based on the total cost of the distribution system.
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a. The distribution system without (left) and with (right) PDC, which is shown in
Figure 4.
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4. Results

To validate and evaluate the model SPJRPP, computational experiments will be carried
out in the following. Using the data of Alibaba in [37], we generate three sets of examples,
where each set has ten instances.

The inventory quantity of each product at each stock before replenishment is randomly
generated, where the suppliers will hold sufficient inventories of all products. The trans-
portation cost of any two stocks is calculated using Euclidean distance. Furthermore, both
the maximum joint replenishment quantity and the demand information of all products in
FDCs are set from Alibaba’s data.

To perform a sensitive analysis on the tested examples, the common service level αt is
set to 92% (Case 1), 95% (Case 2), and 98% (Case 3). The corresponding zαt is set to 1.41
(Case 1), 1.65 (Case 2), and 2.06 (Case 3), respectively. Furthermore, there are fifteen stocks
that include four suppliers, one PDC, four CDCs, and six FDCs in the distribution system,
where four products are replenished.

To solve the models in all examples, ILOG Cplex 12.9 is employed and run on a
personal computer. As only a few seconds is required to solve a model, the solution
method is not discussed in this paper. Tables 1–9 present all numerical results.

Table 1. Computational results of the first instances set in Case 1.

Cost 1 2 3 4 5 6 7 8 9 10

CWP 36,932.1 36,438.9 38,743.4 36,687 36,694.8 38,981.4 38,405.2 37,720.3 39,171.6 36,551.8

CNP 47,488.2 46,279.3 47,337.7 44,500.3 45,612.4 48,169 47,169.6 49,363.6 48,132.6 44,959.1

CRP 22.2% 21.3% 18.2% 17.6% 19.6% 19.1% 18.6% 23.6% 18.6% 18.7%

Table 2. Computational results of the first instances set in Case 2.

Cost 1 2 3 4 5 6 7 8 9 10

CWP 40,171.2 39,868 41,947.5 40,177.8 39,944.6 42,756.5 42,120.1 41,385.9 42,933.6 40,458.6

CNP 52,539.5 51,436.3 51,884.2 49,376.5 50,592 53,740.9 52,634.3 55,105.8 53,614.9 50,808.2

CRP 23.5% 22.5% 19.2% 18.6% 21% 20.4% 20% 24.9% 19.9% 20.4%
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Table 3. Computational results of the first instances set in Case 3.

Cost 1 2 3 4 5 6 7 8 9 10

CWP 46,143 46,255.7 48,003.3 46,669.3 42,999.3 49,850.3 48,983.6 48,274.1 50,156.5 47,779.5

CNP 61,841.9 61,126.8 60,545.1 58,576.4 59,750.3 64,237.2 62,942.1 65,762 64,448.9 61,811.9

CRP 25.4% 24.3% 20.7% 20.3% 28% 22.4% 22.2% 26.6% 22.2% 22.7%

Table 4. Computational results of the second instances set in Case 1.

Cost 1 2 3 4 5 6 7 8 9 10

CWH 16,693.5 20,031.4 6824.78 5929 12,192.4 17,757.1 12,449.3 8698.53 12,497.5 3816.82

CNH 19,380.2 21,781.6 9928.04 8492.26 16,383.1 20,753.5 15,644.3 12,099.8 16,682.9 7135.07

CRH 13.9% 8% 31.3% 30.2% 25.6% 14.4% 20.4% 28.1% 25.1% 46.5%

Table 5. Computational results of the second instances set in Case 2.

Cost 1 2 3 4 5 6 7 8 9 10

CWH 18,465.2 22,007.6 7222.13 6636.09 13,622.1 19,720.1 13,876.2 9931.27 14,125.2 4397.65

CNH 21,119.6 23,742.4 10,646.3 9322.92 17,788.7 22,697 17,110.5 13,337.3 18,270.5 8018.24

CRH 12.6% 7.3% 32.2% 28.8% 23.4% 13.1% 18.9% 25.5% 22.7% 45.2%

Table 6. Computational results of the second instances set in Case 3.

Cost 1 2 3 4 5 6 7 8 9 10

CWH 21,504.6 25,420.5 7957.23 7865.67 16,074.5 23,095.5 16,320.2 12,119.2 16,913.7 5818

CNH 24,118.3 27,157.6 11,879.3 10,766.3 20,190.3 26,021 19,625.1 15,454.3 20,986.8 9542.25

CRH 10.8% 6.4% 33% 26.9% 20.4% 11.2% 16.8% 21.6% 19.4% 39%

Table 7. Computational results of the third instances set in Case 1.

Cost 1 2 3 4 5 6 7 8 9 10

MR1 36,421.6 35,687.7 37,834.3 35,792.5 36,111.8 37,972.8 37,521.1 36,871 38,592.4 35,933.4

MR2 35,294.6 34,505.8 35,504.4 34,595.3 34,662.5 36,114.6 35,738.5 35,438.4 36,866.6 34,859.5

MR3 34,796 34,198.4 34,961.8 34,252 34,502.2 35,891.8 35,347.4 34,995.1 36,183.1 34,358

CRM 4.5% 4.2% 7.6% 4.3% 4.5% 5.5% 5.8% 5.1% 6.2% 4.4%

Table 8. Computational results of the third instances set in Case 2.

Cost 1 2 3 4 5 6 7 8 9 10

MR1 39,639.7 38,911.5 41,035.3 39,091.4 39,298.9 41,742.1 41,207.7 40,534.7 42,306.3 39,603.5

MR2 38,141.6 37,344.7 38,381.7 37,419.7 37,632.2 39,304.4 38,976.3 38,603.5 40,408.6 38,196

MR3 37,543.8 37,003.1 37,568.1 37,074.2 37,273.7 39,000.3 38,439.7 37,975.1 39,525.8 37,658.7

CRM 5.3% 4.9% 8.4% 5.2% 5.2% 6.6% 6.7% 6.3% 6.6% 4.9%
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Table 9. Computational results of the third instances set in Case 3.

Cost 1 2 3 4 5 6 7 8 9 10

MR1 45,165.2 44,773.4 46,510 45,052.3 44,849.2 48,209.7 47,556.2 46,844.2 48,729.4 46,280.2

MR2 43,365.9 42,222.7 43,325.6 42,247.3 42,793 44,798.1 44,526.5 44,045.7 46,486.9 43,935.5

MR3 42,308.9 41,811.2 42,033 41,896.8 42,119.2 44,353.2 43,745.4 43,142.1 45,314.7 43,287.9

CRM 6.3% 6.6% 9.6% 7% 6.1% 8% 8% 7.9% 7% 6.5%

Tables 1–3 show the tested results of instance set 1 from Case 1 to Case 3. In these
tables, CNP indicates the total replenishment cost of the system in the absence of PDC;
CWP indicates the total replenishment cost of the system in the presence of PDC; and CRP
denotes the cost decrease by introducing PDC, i.e., CRP = (CNP − CWP)/CNP.

Tables 4–6 show the tested results of instance set 2 from Case 1 to Case 3. CNH indi-
cates the total replenishment cost of the system in the absence of horizontal replenishment;
CWH indicates the total replenishment cost of the system in the presence of horizontal re-
plenishment; and CRH denotes the cost decrease by introducing horizontal replenishment,
i.e., CRH = (CNH − CWH)/CNH.

In addition, three scenarios (MR1, MR2, and MR3) are designed for making another
sensitivity analysis, where the maximum joint replenishment quantities are changed in
each scenario for every instance. In MR1, they are set according to Alibaba’s data. In MR2,
they are set as two times those in MR1. In MR3, they are set as two times those in MR2.
Tables 7–9 show the tested results of instance set 3 from Case 1 to Case 3. CRM denotes the
cost decrease by comparing MR3 with MR1, i.e., CRM = (MR1 −MR3)/MR1.

As shown in Tables 1–3, if a common service level of the distribution system is given,
the total replenishment cost of the system is greatly decreased by introducing PDCs in all
instances, where the cost decrease percentage in each instance is between 17.6% and 28%.
This is the result of the consolidation of products in PDCs in as opposed to replenishing
to CDCs or FDCs in small batches from suppliers. For the studied distribution system,
Figure 7 reveals that the total replenishment cost reduction percentage is slightly increased
along with the increase of the service level in each instance, which is slightly different in
all instances.
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From Tables 4–6, if a common service level of the distribution system is given, the total
replenishment cost of the system is greatly decreased by allowing horizontal replenishment
for all instances, where the cost reduction percentage in each instance is between 6.4% and
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46.5%. This is due to the horizontal replenishment among CDCs or PDCs, which can avoid
some remote replenishment from PDCs or suppliers. For the studied distribution system,
Figure 8 reveals that the total replenishment cost reduction percentage is slightly varied
along with the variation of the service level in each instance, which is obviously different
in all instances.

Logistics 2021, 5, x FOR PEER REVIEW 11 of 14 
 

 

between 6.4% and 46.5%. This is due to the horizontal replenishment among CDCs or 
PDCs, which can avoid some remote replenishment from PDCs or suppliers. For the 
studied distribution system, Figure 8 reveals that the total replenishment cost reduction 
percentage is slightly varied along with the variation of the service level in each instance, 
which is obviously different in all instances. 

 
Figure 8. Total replenishment cost reduction percentage of the system by adding horizontal re-
plenishment. 

From Tables 7–9, if a common service level of the distribution system is given, the 
total replenishment cost of the system with larger maximum joint replenishment quanti-
ties is lower than that of the system with smaller maximum joint replenishment quanti-
ties for all instances, where the cost reduction percentage in each instance is between 4.2% 
and 8.4%. This is because greater quantities of products can be supplied to a stock in one 
replenishment. For the studied distribution system, Figure 9 reveals that the total re-
plenishment cost reduction percentage is increased along with the increase of the service 
level in each instance, which is also different in all instances. 

 
Figure 9. Total replenishment cost reduction percentage of the system by increasing the maximum 
joint replenishment quantities. 

Figure 8. Total replenishment cost reduction percentage of the system by adding horizontal replenishment.

From Tables 7–9, if a common service level of the distribution system is given, the
total replenishment cost of the system with larger maximum joint replenishment quantities
is lower than that of the system with smaller maximum joint replenishment quantities
for all instances, where the cost reduction percentage in each instance is between 4.2%
and 8.4%. This is because greater quantities of products can be supplied to a stock in
one replenishment. For the studied distribution system, Figure 9 reveals that the total
replenishment cost reduction percentage is increased along with the increase of the service
level in each instance, which is also different in all instances.
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In recently years, new retailing has been widely explored in China, where the demand
for fresh products such as fruit and vegetables is sharply increased. Therefore, e-commerce
companies like Alibaba are continuously improving their distribution systems to better
respond to customers’ demand. As we know, the places of origin of fresh products are
usually far away from cities and located in less developed areas, where only limited trans-
portation capacities are available. Thus, the findings of PDCs and the permit of horizontal
replenishment can significantly decrease the total replenishment cost of the system. Besides
economic effects, there are some social effects. For example, the setup of PDCs brings
the need for human resources and infrastructure input, which can provide employment
opportunities for local areas. Furthermore, the studied distribution system is also beneficial
to realize the circular economy concept. Through effective replenishment planning, not
only is the replenishment cost of the distribution system efficiently decreased, but also the
unnecessary transportations are decreased, which helps to reduce CO2 emissions and the
wastages of commodities.

5. Conclusions

In this paper, we consider joint inventory replenishment planning of Alibaba’s dis-
tribution system towards the circular economy with distribution centers at producers’
locations (PDCs). To address the problem, we formulate a mathematical model and test
thirty instances based on data of Alibaba. The computational results show the validation
of our model and the effectiveness of introducing PDCs and horizontal replenishment into
the distribution system, which can reduce unnecessary products’ transportations and help
move towards the CE concept. The limitation of this research is that stationary demands
are considered for each stock.

In the future, our challenges are to study more complex distribution systems of Alibaba.
For instance, a multi-period replenishment planning problem with non-stationary demands
can be investigated. In addition, inventory replenishment planning with bi-objectives is
worth studying, where both the common service level and the total replenishment cost of
the distribution system must be optimized at the same time.
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