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Abstract: Background: The slot planning problem is a container allocation problem within a certain
location on a vessel. It is considered a sub-problem of a successful decomposition approach for the
container vessel stowage planning problem. This decision has a direct effect on container handling
operations and the vessel berthing time, which are key indicators for the container terminal efficiency.
Methods: In this paper, an approach combining a rule-based fuzzy logic algorithm with a rule-based
search algorithm is developed to solve the slot planning problem. The rules in the proposed fuzzy
logic algorithm aim at improving the objective function and minimizing/eliminating constraint
violation. Results: The computational results of 236 slot planning instances illustrate the efficiency
and effectiveness of the proposed algorithm. Conclusions: The results show that the proposed
approach is fast and can produce optimal or near-optimal solutions for a comprehensive industrial
set of instances.

Keywords: fuzzy logic; stowage planning; slot planning

1. Introduction

Goods trading has globally increased after the development of standard containers in
1956 by Malcolm McLean [1]. A standard container is a metallic box that can withstand both
substantial external forces and high vertical compression stress. Therefore, it allows the
formation of high stacks of containers [2]. Containerized shipping facilitated size expansion
of vessels, hence expanding the goods transportation worldwide across countries [3].

According to the statistics of the United Nations Conference on Trade and Devel-
opment, the world’s global container throughput was 752 million TEUs (Twenty-foot
Equivalent Units) in 2017, which displays a 34% growth from 560 million TEUs in 2010 [4].
Whereas in 2019 the container throughput reached approximately 802 million TEUs, with
an increase of 2.3 percent compared to 2018 [5]. According to Container Trade Statistics
(CTS), the COVID-19 pandemic negatively impacted global trade, yet container throughput
increased by 6.9% in September 2020 when compared to that of September 2019.

The continuous increase in the global trade volumes raises the demand for a cost-
effective mode of transportation, which consequently, presents a dilemma for shipping
companies. This situation has led to the deployment of large container vessels, which can
transport up to 20,000 TEUs [6]. However, with larger more economic vessels, the decision
to stow a very large number of containers becomes a real challenge.

The container vessel transports containers employing few crew members and travels
a fixed cyclic route of ports. In the port, quay cranes are used for loading and unloading
the containers to and from the vessel. The number of needed quay crane movements
increases with larger container vessels. Consequently, the time required for vessels to stay
at each port (i.e., berthing time) is increased, and the turnover of the container vessel is
consequently decreased [2,7].
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The key performance indicator of the container vessel is the fast turnover that will
eventually increase the profit to both ports and shipping companies [1,8]. Additionally, the
probability of vessels reaching their destinations at lower sailing speeds is increased, with
lesser berthing times, translating into lesser fuel consumption and CO2 emissions [9].

Since the operating costs for shipping companies are partially determined by the
port’s fees, it is significant to effectively manage the intricate activities in the port to reduce
the vessel’s turnaround time and handling charges [10]. The effective arrangement of
containers on board vessels (i.e., stowage planning) affects the berthing time, the containers’
handling operations, the vessel’s stability during sailing, and the handling operations.
Hence, an effective stowage plan is a key to reach higher productivity and ensuring the
safety of the vessels [11–13].

Container stowage planning is defined as the problem of assigning a set of “C”
containers of diverse types to a set of “L” dedicated storage spaces within the vessel. This
is an NP-hard problem [14,15]. Several structural and operational constraints must be
ensured by this assignment. These constraints are related to both the vessel and containers
to achieve different objectives. One of these objectives is minimizing the loading time [16].

In the past, stowage plans were manually engendered by stowage coordinators. How-
ever, in recent years, increasing interest is directed towards finding effective optimization
algorithms to help large vessels stowage coordinators, who are striving for lower costs
through shortening berthing times, continuous changes in the load lists, among others.
Hence, the objective of the shipping companies, in this case, is to find an optimum solution
in a reasonable time despite the increase in the complexity of the problem. In practice,
producing effective stowage plans is complicated owing to the following causes:

• Thousands of loading/unloading moves are required for large container vessels [17].
• The proposed algorithms should be fast with a runtime of less than 10 min, to cope

with the last-minute load list changes. This is a practical requirement from the shipping
companies to evaluate different forecast scenarios for the load list for the upcoming
ports in the vessel’s route [7].

• The stowage coordinators have limited time to produce the stowage plans [18].
• The complex interactions between the low-level stacking rules, the high-level stress

limits and the stability requirements of the vessel impose a trade-off between minimiz-
ing the overstowage and making use of the span of the quay cranes. In the meantime,
overstowage is considered as container blockage that can lead to unnecessary addi-
tional movements of the containers during the loading/unloading operations [18].

The stowage planning problem is a complex problem, consequently, in this work,
a solution approach with an embedded hierarchical decomposition of the problem is
introduced. Generally, the proposed approach mimics the work process of human stowage
coordinators, thus, making the problem scalable and producing satisfactory results of the
real instances in a reasonable time [9,17,19–21].

There are explicitly two techniques adopted for the solution of this problem [22].
These two solution approaches consider the problem solution as follows:

• Single-phase approaches [23]: This approach represents the structure of the vessel as a
set of slots and consists of formulating a model to describe the whole stowage problem
at once to minimize the overstowage. Most of these approaches have a common
denominator, is to sacrifice model accuracy (e.g., doesn’t consider the vessel’s stability,
or only a very simplified representation is used such as weight distribution) to achieve
scalability. In this case the input data consists of the overall list of Containers-To-
Load (CTLAll Vessel) onto the vessel (presented in a transportation matrix: the number
of containers loaded and unloaded in each port in the vessel’s route). In addition
to vessel characteristics (mostly treating the vessel as rectangular bays rather than
the true vessel’s configuration). Due to the problem simplification, this approach
cannot guarantee obtaining optimal solution for application requirement if used on
commercial sized vessel in a reasonable time [24]
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• Two-phase approaches [9] as depicted in Figure 1 This approach classifies the con-
straints and objectives into high-level and low-level

• High-level constraints and objectives: These include vessel stability and balancing
requirement that is essential for seaworthiness [2], (including the draft, trim,
metacentric height (GM), and stress moments such as shear, bending and torsion,
in addition to satisfying the weight and volume capacity limits as well as capacity
limits of the different container types of the bays) [18]. The common objectives
are the minimization of hatch overstowage (minimize the number of containers
on deck that need to be removed in order to gain access to containers below deck)
and crane make-span.

• Low-level constraints and objectives: These are mainly the shipping line stacking
rules that concern the way each container is loaded into a position on the vessel.
These rules include but not limited to that the weight and height capacities are
satisfied, and that reefers (refrigerated containers) are assigned to positions with
a power supply. The objective reflects the rules of thumb of stowage coordinators
(explained later) to obtain stowage plans that are robust to fluctuations in the
forecasted demands [18].
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Figure 1. The stowage planning decomposition into a master planning phase and a slot plan-
ning phase.

This technique, shown in Figure 1, subdivides the stowage planning problem into two
consecutive phases the multi-port master planning phase or class-based stowage planning
and the slot planning phase. The vessel is subdivided into several “Locations” (i.e., bay
sections). In this case, the input data consisting of CTLAll Vessel (a list of containers to be
loaded at the current port and a forecast for the later ones), in addition to vessel and ports
characteristics. In this phase (Master Planning Phase), only high-level constraints and
objectives are implemented to generate a master layout plan. The output of this phase is an
assignment of all groups of containers to specific locations in the vessel.

The output of this phase is the input of the slot planning phase. The CTLAll Vessel is
consequently subdivided into (n) lists (Containers-To-Load list for each location) (CTL(1) to
CTL(n)) each of which would be required to undergo a second phase of optimization (Phase
2) with a Slot Planning Algorithm (SPA) to satisfy the low-level constraints and objectives.
This approach is the most successful in terms of model accuracy and scalability [25]. This
phase is can be either performed by the shipping line or the terminal’s operators to optimize
the loading sequencing [2].

As mentioned earlier, there is an increasing practical demand from shipping companies
that the whole stowage plan is generated fast enough within less than 10 min [2]. Putting
into consideration that there are about 100 locations [18] in a large container vessel and that
the first phase is time-consuming, result in the fact that each independent slot planning
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problem needs to be solved within 1 s [18]. This imposes a practical time constraint for
this problem.

Slot planning is considered an NP-hard problem because it deals with hundreds of
containers, which makes solving the problem a hard task [7]. The emphasis of this study
is the slot planning phase (second phase of the two-phase technique) while considering
the below deck locations only. The problem is denoted as the Container Stowage Problem
for Below Deck Locations (CSPBDL). Additionally, it introduces an algorithm based on a
structured rule-based search to solve the problem.

The detailed stowage plan has the objective of finding a specific cell/slot for each
40′/20′ container within each location, which was the output of the master plan while
considering the stack constraints. To generate a valid stowage plan, these constraints must
be fulfilled. The containers in the problem are of different types and their characteristics
are as follows:

• The size; ISO containers are normally 8′ wide, height (8′6′ ′ and 9′6′ ′), length (20′, 40′

and 45′);
• The weight;
• The Discharge Port or Port Of Destination (POD) (i.e., where it would be unloaded);
• Whether the container is refrigerated and needs an electric power supply (i.e., reefer

container); and
• Other special containers must be placed according to a complex set of separation

rules, for example, containers with dangerous goods (IMO containers) and pallet-wide
containers which are slightly wider.

Figure 2 illustrates the different terminologies pertaining to the slot planning problem.
(a) is the side view of the abstract arrangement of the bays on the vessel separated into tiers
on deck and below deck by a line representing the hatch cover. (b) is a single bay divided
into 4 different locations (L1, L2, L3, L4) showing the available reefer cells. (c) is a single
stack with a 20′ container occupying a slot and 40′ occupying a cell.
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The capacity of a container vessel is defined in TEU (twenty feet equivalent unit). The
cargo space of a container vessel is divided into a number of subsequent bays, as shown in
Figure 2a. In the figure, there is a hatch cover (represented by a red dotted line). This is a
flat, leak-proof structure that prevents the vessel from taking in water. This cover divides
the vessel (i.e., each bay) into on-deck and below-deck areas.

Each bay is split into several locations. A location is a set of vertical stacks and
horizontal tiers that could be over or under the deck as shown in Figure 2b, the bay is
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divided into four Locations (L1, L2, L3, and L4), where a group of containers may be
assigned for allocation. Each stack allows for the vertical stacking of containers. Figure 2b
also illustrates the existence of blocked slots at the bottom of the vessel, represented in
black, where no containers can be allocated because of the layout of the vessel.

A cell results from the intersection between the horizontal tier and the vertical stack.
It can either hold a single 40′ container or two 20′ containers as shown in Figure 2c. A
cell consists of a fore-slot (bow-side position) and an aft-slot (stern-side position). Some
of these cells/slots have access to power plugs to provide electricity to reefer containers.
They are termed ‘reefer cells/slots’ as shown in Figure 2b. Finally, each container stack has
weight and height limit restrictions.

The problem of assigning a set of 20′ and 40′ containers to a set of under deck
cells/slots is the problem under consideration in this research. These containers could be
either high cube containers (9′6′ ′ high) or standard (8′6′ ′ high), both being either reefer or
not. One important remark that must be considered is that the loading and unloading of
the containers are performed by quay cranes. This implies that they can only access the top
container of a stack first.

The following constraints and objectives define the Container Stowage Planning
Problem for an Under Deck Location (CSPUDL) as stated in [7]:

1. The assigned containers to a certain stack must be stacked on top of each other (i.e.,
no container can physically hang in the air).

2. A cell must be either empty or fully loaded and should satisfy the length constraints
(i.e., the two slots are occupied by two 20′ containers or one 40′ container ==> Hence,
the number of 20′ containers must be even).

3. 20′ containers are forbidden to be stowed above a 40′ container.
4. A 20′/40′ reefer container must be placed in a slot/cell that has access to a power

plug, respectively.
5. The sum of the weights and heights of the allocated containers must conform to the

stack weight and height limits.
6. Already existing containers cannot be reallocated.

The objective function is presented in Equation (1) for the necessary sets and variables
depicted in Table 1.

POS ∑
c∈C

Oc + PDP ∑
s∈S

∑
d∈D

psd + PS ∑
s∈S

as + PR ∑
s∈S

∑
h∈Hs

(
Rhs ∑

c∈F
Echs ∗ (1− Rc) + ∑

c∈T
Echs ∗ (0.5Rhs − Rc)

)
(1)

The first objective primarily targets the economic aspects of a stowage plan, while
the other objectives are considered as the rules of thumb of the shipping industry. Better
stowage plans are provided in downstream ports of the vessel’s voyage owing to:

• using fewer stacks and fewer PODs within a stack in the current port
• increasing the available space in a location
• reducing the possibility of overstowage in the downstream ports
• Increasing the number of reefer containers to be loaded in the downstream ports.

In order to evaluate the quality of the generated valid solutions that satisfy the above-
mentioned constraints, a set of objectives are defined as follows, the values of the different
penalties are defined by Delgado et al. [7] and Pacino and Jensen [18]:

1. Overstowage is minimized. An over-stowed container is a container that has a POD
further than any of the containers, which are located beneath it as shown in the second
stack in Figure 3. A penalty of POS = 100 units is paid for each over-stowed container.

2. Having containers of different PODs within the same stack is minimized. A penalty
of PDP = 20 units is paid for each POD that is included within a stack. For example, in
Figure 3, the total penalty is 120 for the four stacks is added to the objective function.
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3. The number of non-empty stacks (i.e., used stack) is minimized. A penalty of PS = 10 units
is paid if there is at least one container located in a stack. For example, in Figure 3, the
total penalty is 40 for the four occupied stacks added to the objective function.

4. Locating a non-reefer container in a reefer cell is minimized. A penalty of PR = 5 units
is paid for each reefer slot that is occupied with a non-reefer container is added to the
objective function.

Table 1. Sets, penalties, and decision variables used in this problem.

Sets

C Set of containers to be loaded, where c ∈ {1, 2, . . . , C}
T Set of 20′ containers
F Set of 40′ containers
S Set of stacks, where s ∈ {1, 2, . . . , S}
D Set of Ports of Discharge (PODs), where d ∈ {1, 2, . . . , D}
Hs Set of cells in stack s
Rhs Number of reefer plugs in cell h of stack s
Rc Indicated whether container c is reefer or not, where Rc ∈ {0, 1}

Penalties

POS Penalty for each Over-Stowed container
PDP Penalty for each Ports of Discharge (PODs) within a stack
PS Penalty for an open Stack
PR Penalty for stowing a non-reefer container in a Reefer cell/slot

Decision Variables

Oc ∈ {0, 1} Indicates whether container c is an overstowing container or not
psd ∈ {0, 1} Indicates whether stack s has a container with a POD d or not
as ∈ {0, 1} Indicates whether stack s is empty or not

Echs ∈ {0, 1} Indicates whether container c is assigned to cell h of stack s or not
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The rest of the paper is organized as follows: Section 2 includes the literature review
and Section 3 presents a detailed description of the proposed methodology. Subsequently,
Section 4 results and discussion. Finally, Section 5 presents the conclusions and future work
directions.
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2. Literature Review

The stowage planning problem is a variation from the container premarshalling and
the container stacking problems [26,27]. It is tackled in the literature through two different
types of approaches: the single-phase approach and the decomposition approach. The
single-phase approach deals with the whole vessel at once considering the container vessel
having a set of available slots and assigning a specific container to a specific cell/slot. The
latter approach decomposes the problem into two successive phases: the multi-port master
planning phase and the slot planning phase.

2.1. The Single-Phase Approach

The single-bay stowage planning problem was solved in 1998 by Avriel et al. [28].
The authors developed a binary linear programming model, and a heuristic procedure
called the Suspensory Heuristic (SH) to minimize the number of onboard shifts (to remove
over-stowing containers) at each container terminal. This problem assumes that the vessel
is one large bay. Later, Dubrovsky et al. [29] presented a Genetic Algorithm (GA) approach
for the solution of the same problem. The results of the GA approach were similar to
those obtained by the (SH). Furthermore, a state-of-the-art heuristic solution approach was
proposed by Ding and Chou [30] that improved the results of the (SH).

Rashed et al. [31] proposed a rule-based greedy algorithm to solve the same problem,
the algorithm was simple and effective when it was compared against the performance
of the heuristic of Ding and Chou [30] in one of the instances. Roberti and Pacino [32]
developed a decomposition method to solve the same problem to find the optimal container
stowage plans and it outperformed the proposed methods in [28,30].

Azevedo et al. [33] considered the container vessel to be three dimensional. They used
beam search heuristics and representation by rules to minimize the number of shifts and the
sum of the vessel’s instability measures. The authors then extended the work in [23,34–36].
In [23,35] they used the representation by rules with a genetic algorithm solution approach
and a participatory learning system. In [34] the representation by rules combined with
three meta-heuristics: simulated annealing, beam search and GA solution were used to
solve the problem. Finally, in [36] the stowage planning problem was integrated with
the scheduling of the quay cranes problem and solved using representation by rules in
addition to GAs and simulation. Lee et al. [37,38] presented a new solution approach based
on the constraint test ordering optimization under the theme of the automated stowage
planning problem.

2.2. The Decomposition Approach

This approach was introduced by Wilson and Roach in 1999 [39]. They solved both
phases and considered different types of containers. The first phase had multiple objectives
and was solved by branch and bound technique considering the vessel’s stability and
segregation rules. Whereas the second phase was solved by packing heuristics and Tabu
search algorithms to minimize multiple objectives. The authors then introduced a simple
mathematical formulation for both phases [17].

Kang and Kim [40] used a similar decomposition approach as [17] but they considered
only 40′ containers. The authors presented a mathematical formulation for the first phase
and solved it by a “greedy heuristic” based on the transportation simplex method. The
second phase was solved by a tree search method. The overall objective was to minimize the
time spent at container terminals while considering the vessel’s stability and stacking rules.

In 2011, Pacino et al. [9] tackled both phases. In the first phase, they minimized the
hatch cover overstowage and the quay crane make-span, while considering the vessel’s
stability constraints and excluding the bending moments and ballast water. The authors
presented and solved an IP model for the problem. Alternatively, the second phase was
solved by a combination of constraint programming and local search to satisfy multiple
objectives. If no feasible solution was found, the local search rolls out containers (removing
the containers from the solution).
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Generating a stowage plan from the terminal point of view was approached by
Ambrosino et al. [20]. They used a three-step heuristic including a Tabu search method
to minimize the loading time. The proposed solution approach had some difficulties
with large vessels [20]. The authors improved the solutions by using constructive loading
heuristic and ant-colony optimization in [21]. Ambrosino and Sciomachen [19] addressed
the stowage of hazardous containers that must follow certain rules and solved the problem
using bin-packing heuristics.

The following papers solved only the master planning subproblem or the slot planning
subproblem (first or the second phase, respectively) of the decomposition approach:

2.2.1. The Master Planning Phase

The Master Planning Problem (MPP) was approached by Pacino et al. [41]. They
proposed an LP model with ballast tanks to generate the master plan taking into consid-
eration the stability and stress moments constraints to minimize the change in the tank
configuration. Later, Pacino proposed a large neighborhood search approach to solve the
MPP [25].

Alternatively, Ambrosino et al. [42] introduced two exact Mixed Integer Programming
(MIP) models for the problem while considering the stability constraints to minimize the
vessel’s berthing time. The authors solved the problem using heuristics that are based on
the solution of relaxations of models.

Ambrosino et al. extended their work in [43] to include a circular route for the vessel
and different types of container (i.e., reefers and open tops) intending to minimize the
weighted sum of the number of onboard shifts, and quay crane unbalance. The problem
was formulated as a mathematical model. After that, the authors extended the solution
approach in [44] and introduced a new Mixed Integer Programming (MIP) based heuristic
to solve the model.

2.2.2. The Slot Planning Phase

The Slot Planning Problem (SPP) for under deck locations has been approached [7,18,45–47].
The objective function used in these papers was to minimize a scalar objective function in-
cluding four components: overstowage; stacks used; avoiding having multiple destinations
in the same stack; and having a non-reefer container placed in a reefer slot to satisfy the
stacking rules. The problem solution considered 20′, 40′, high cube, and reefer containers.

Delgado et al. [45], solved the problem using constraint programming by testing a
total of 17 instances and found optimal solutions for them all. Additionally, Pacino and
Jensen [46] solved the same problem using a local search extended heuristic and then
expanded their work to include an integer programming model. To test the solution, their
instance number was increased to 133 approaches and their results were as follows: the
average run time was 0.18 s for the tested instances whereas 86% of the instances reached
the optimal solution [18,47].

The local search extended heuristic demonstrated a faster solution than the constraint
programming in larger instances. Delgado et al. [7] delivered extensive experiments on
236 instances and provided an integer programming model to solve the problem. However,
constraint programming was able to solve 90% of the instances in less than one second. It
was faster than the integer programming model.

Furthermore, Parreño et al. [2] included the IMOs containers in the problem and
introduced an additional objective, which is the minimization of the rolled out containers.
Additionally, they developed a Greedy Randomized Adaptive Search Procedure (GRASP)
algorithm and presented a novel integer programming formulation. Finally, they compared
different strategies with the GRASP algorithm and equated their work against the constraint
programming and constraint-based local search.

Fuzzy logic was also used in container stacking problems. Ries et al. [48] addressed the
storage space allocation problem in port. The problem consisted of a 2-phase framework
with a fuzzy logic system to first assign an exact position within a block space in the yard
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of a port to every incoming container, ensuring operational efficiency. The algorithm had
good performance with respect to other algorithms proposed in the literature and the
results had low variability.

Valdés-González et al. [49] introduced a fuzzy logic based intelligent system for
container stacking. The system had a distinct criterion for a real-time decision for accepting
or rejecting an entry request to the stacking areas of the port in Valparaiso, Chile. Rekik
and Elkosantini [50] used a multi-agent system coupled with a fuzzy logic framework for
the online container stacking in ports.

In summary, the number of papers related to the slot planning subproblem on its
own with certain criteria that is most important to shipping companies is rather small.
Although fuzzy logic usage in the container stacking problem is also scarce, it showed
that its implementation provided an efficient decision tool in a wide variety of problems.
Furthermore, fuzzy logic showed high-quality results in many applications; scheduling [51],
sequencing [52], and routing [53] among others. Therefore, fuzzy logic is adopted here.
The objectives and constraints were predefined by the underdeck locations and decided by
the shipping line. The NP-hard problem is a crucial sub-problem of the stowage planning
problem and therefore the time saved in reaching the optimal or near-optimal solutions
of the slot planning problem helps the stowage coordinators in developing an effective
complete stowage plan.

3. Proposed Methodology

The approach adopted in this research is based on a fuzzy logic system and a rule-
based search algorithm. To understand the approach, a brief introduction of the fuzzy logic
system is presented followed by the detailed description of the elements of the fuzzy logic
specific to its application in the proposed solution approach. Finally, the explanation of the
whole proposed approach to solve the slot planning problem is presented.

Fuzzy Logic can be considered a rule-based approach [48]. It is composed of fuzzy
sets; the elements in any fuzzy set take a different degree of membership (weights) within
an interval [0, 1], called the membership functions. Fuzzy logic allows the association of
crisp quantitative values of the variables (e.g., weight, height) with linguistic terms (e.g.,
“light”, “heavy”, “high, “low”, etc . . . ) to determine the output with the introduction of
some rules. A Mamdani-type fuzzy system [54] is used in this research. A Mamdani-type
fuzzy system consists of three consecutive phases: fuzzification, inference mechanism with
fuzzy rule-base, and defuzzification [49], as shown in Figure 4.
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The presented framework deals with the second phase of the decomposition solution
approach, namely the slot planning problem. The proposed solution makes use of a fuzzy
logic system implementation. The proposed fuzzy system has four input variables:

• Height eligibility (He)
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• Weight eligibility (We)
• Number of ports eligibility (Ne)
• Port eligibility (Pe)

Triangular membership functions are employed as they are the most common and
they best describe the situation [54,55]. The first three input variables He, We, and Ne,
shown in Figure 5a–c, have the same triangular membership functions. Each variable
has three linguistic variables (i.e., “Low”, “Med”, and “High”). On the other hand, the
membership function of Pe is also triangular, however, it is slightly different due to the
nature of the variable. It is shown in Figure 5d.

Logistics 2021, 5, x FOR PEER REVIEW 11 of 25 
 

 

 
(a) Membership functions of  

 
(b) Membership functions of  

  
(c) Membership functions of  

 
(d) Membership functions of   

 
(e) Membership functions of SGL 

Figure 5. Membership functions of the input variables. 

The proposed slot planning problem solution is an iterative process, as it pairs a con-
tainer form the CTL list with a slot/cell in a certain stack from the set of eligible stacks ∈ S. Figure 6, illustrates the flow chart of the proposed problem solution algorithm. The 
flow chart of Figure 6, contains the following main steps: 
• Sort input Containers-To-Load (CTL) List as depicted in Section 3.1 
• Fill empty slots in half-empty cells with 20′ containers from the CTL list as will be 

presented in Section 3.2 
• Perform the Solution Construction with all necessary iteration as will be described in 

Section 3.3 
• Compute the Feasibility Check and Penalty Calculation for the solution obtained 

above as will be discussed in Section 3.4 
These steps are discussed in detail in the following sub-sections. 

3.1. Sort Containers-to-Load (CTL) List 
The containers in the CTL list are progressively sorted according to their length, POD, 

and whether they are reefer or not. The containers are first ordered in descending order 
according to their length. Then, all the containers of the same length are arranged accord-
ing to their POD in a descending order to prevent overstowage. Finally, all the containers 
of the same POD are arranged according to their reefer characteristics: first the reefer, then 
the non-reefer containers. 

Figure 5. Membership functions of the input variables.

According to the proposed fuzzy logic system presented herein, each one of the four
fuzzy variables has three membership functions. The total number of possible combinations
would be 81 (3 × 3 × 3 × 3). This is the number of rules that are needed to implement
the fuzzy inference mechanism with a rule-base. These rules are used to evaluate the
corresponding output variables of the system. This output is called the Stack Goodness
Level (SGL).

The SGL is used to determine how much this particular stack is conforming to fulfilling
the objectives and the constraints of the problem. The sub-sets of this fuzzy output are
taken to be 9 (i.e., vvvlow, vvlow, . . . , vvhigh, vvvhigh). These membership functions are
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shown in Figure 5e. As an example of the rules utilized in this system, the following is one
of the 81 rules:

If (He is low) and (We is low) and (Pe is good) and (Ne is medium) then (SGL is medium)

The remaining 80 rules take up the same form of the rule stated above. The range of
the de-fuzzified values of the SGL is taken to be from 0 to 1, where 0 denotes a very bad
stack adherence to the objectives and the constraints of the system. Alternatively, 1 denotes
full-stack adherence to the fulfilment of the objectives and the constraints of the system.

Since this paper is only concerned with the second phase of the stowage planning
problem (the slot planning problem), it takes the output of the first phase (the multi-port
master planning problem) as its given input. The first phase produces a list of Containers-
To-Load (CTL) for each location on the ship. In some cases, there are locations that have
pre-existing containers, and their exact positions are given. These containers are grouped
into a Containers-Loaded (CL) list. The elements of this list cannot be changed at any stage
of the problem solution (i.e., the positions of the pre-existing containers within the location
cannot change). The CL list is considered the initial condition of the slot planning problem.

The proposed slot planning problem solution is an iterative process, as it pairs a
container form the CTL list with a slot/cell in a certain stack from the set of eligible stacks
Se ∈ S. Figure 6, illustrates the flow chart of the proposed problem solution algorithm. The
flow chart of Figure 6, contains the following main steps:

• Sort input Containers-To-Load (CTL) List as depicted in Section 3.1
• Fill empty slots in half-empty cells with 20′ containers from the CTL list as will be

presented in Section 3.2
• Perform the Solution Construction with all necessary iteration as will be described

in Section 3.3
• Compute the Feasibility Check and Penalty Calculation for the solution obtained

above as will be discussed in Section 3.4
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These steps are discussed in detail in the following sub-sections.

3.1. Sort Containers-to-Load (CTL) List

The containers in the CTL list are progressively sorted according to their length, POD,
and whether they are reefer or not. The containers are first ordered in descending order
according to their length. Then, all the containers of the same length are arranged according
to their POD in a descending order to prevent overstowage. Finally, all the containers of
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the same POD are arranged according to their reefer characteristics: first the reefer, then
the non-reefer containers.

Figure 7, shows an example of the ordering of the CTL list, where (L, P, R, H, W)
are the container’s length in feet, POD, reefer type (“0” for non-reefer and “1” for reefer),
height in meters and weight in tons, respectively.
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3.2. Fill Empty Slots in Half-Empty Cells with 20′ Containers from the CTL List

This step is fulfilled starting with a condition to check whether a pre-existing CL
list exists. If so, the presence of single 20′ containers on their own in a cell (Half-Empty
cells) is checked. If found, such a case would require another 20′ container matching the
characteristics of the empty slot from the CTL list to be placed next to it. In order to do
so, a list L of 20′ eligible containers is composed of the available CTL list fulfilling all the
required conditions outlined earlier. Care must always be taken to consider whether this
slot is a reefer slot or not. Moreover, it should have a POD of a number that is preferably
equal to or less than the minimum POD for all the pre-existing containers found in this
particular stack to avoid further handling moves during the unloading process.

As an example, Figure 8a shows an example of the aft and fore-slots of a case of
pre-loaded 20′ and 40′ containers from the CL list, shown in Figure 8b. The CL list shows
containers numbered from 9 to 17, which are already allocated in the slots of Figure 8a. In
this case, the cell in the third stack and the second tier only contains one 20′ container (#13).
This container is placed in the aft-slot with no matching container in its corresponding
fore-slot. This would incur the utilization of one of the 20′ containers from the CTL list to
fill the corresponding empty fore-slot first before constructing the solution.
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Referring to the example shown in Figure 8a, given that the slot is reefer, then from
the ordered CTL list (shown in Figure 7b) single container that is 20′, reefer, and has a
destination port of number 6 (preferably) or smaller is selected. The list (L = {2, 7, 5, 8})
in this case would contain the following containers in the proper order (#2-reefer-port-6,
#7-reefer-port-5, #5-non-reefer-port-6 and #8-non-reefer-port-6). In this case, container (#2)
is selected since it has the same destination port and is a reefer container. The ordered CLT
list is consequently updated by removing container #2 to become # (5, 8, 7, 1, 4, 6, and 3).
The result of the problem after this step with the corresponding modified CTL list is then
shown in Figure 9.
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3.3. Solution Construction

This is the main part of the algorithm. The corresponding details are shown in the
flowchart of Figure 10. The flowchart mainly consists of a large loop for all the containers
in the CTL list. The loop iterates until there are no more containers left in the CTL list. The
main elements of the solution construction are:

• Assign eligible stacks
• Variables/Output Calculations: calculate the four variables of the slot planning fuzzy

logic system ((He, We, Pe and Ne) and use the fuzzy Mamdani fuzzy logic system to
evaluate the output (SGL) for each stack

• Container Stowage: stow the container to the slot/cell and remove that container from
the CTL list

3.3.1. Assign Eligible Stacks

Initially, the information of a certain container (c) from the CTL list is considered. The
length (lc = 20′ or 40′) and reefer characteristics (rc = 0 or 1) are used to assign allowable
stacks to the set of eligible stacks (Se) for this particular container (c) as shown in Figure 11.

First, the algorithm iterates through the stacks to assign the length eligible stacks (Sle)
and then from these (Sle) assign the reefer eligible stacks (Sre). In the first step, two cases
may arise, either the stack is empty or partially stacked. In the former, if the first available
cell is eligible to stow this particular container of length (lc) then this stack is added to the
set (Sle). In the latter, if lc = 20′ then the top container in the stack must be 20′ as well and
the first available cell is eligible to stow a 20′ container. However, if lc = 40′, then only one
condition is checked; that the first available cell is eligible to stow 40′container. If these
conditions are met, then add this stack to the set Sle.

In the second step, we have two cases as well; first, if the container is reefer, then
iterate through the stacks in the set Sle. If the first available cell can stow a reefer container
then add this stack to the set Sre after all stacks are checked, then Se = Sre. One problem
may arise if after all the stacks are checked and the set Sre is empty then swap with the
next non-reefer in the CTL list with the same lc as indicated by the first condition in the
flowchart of Figure 10. If none exists in the CTL list, then the reefer container to be stowed is
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swapped with an already loaded non-reefer container stowed in a reefer cell from previous
iterations. In this instance the container to be loaded is the non-reefer container the set of
eligible stacks will be (Se = Sle.).
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If the container is non-reefer, then we iterate through the stacks in the set Sle. If the
first available cell can stow a non-reefer container then we add this stack to the set Sre after
all stacks are checked then Se = Sre. One issue may arise if after all the stacks are checked
and the set Sre is empty then Se = Sle. This means that the non-reefer container will be
added in a reefer cell/slot.

The solution construction sub-routine is applied to the same numerical example
outlined in the previous sub-sections to clarify these steps. Consider the example case of
container #5 (20′ non-reefer) at the top of the updated CTL list of Figure 9b.

3.3.2. Variables/Output Calculations

To use the fuzzy system, the four input variables (He, We, Pe and Ne), outlined above,
are calculated for each of the eligible stacks, using Equations (2)–(5) as follows:
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• Height eligibility

He =
Height Container to be loaded + ∑ Heights in the stack

Height limit
(2)

• Weight eligibility

We =
Weight Container to be loaded + ∑ Weights in the stack

Weight limit
(3)

• Port eligibility

Pe =
POD Container to be loaded − POD Minimum in the stack

POD f urthest − POD nearest
(4)

• Number of ports eligibility

Ne =
Number o f ports assigned in the stack

Number o f ports in the problem
(5)

Equations (2) and (3) compute the values of He and We input variables, which are
crucial for the feasibility of the process. If the value of He exceeds 1, this indicates that
adding the container to this stack will violate the height constraint. If the value of He for all
eligible stacks are more than 1, then a rule-based search is performed to swap containers
with some of the containers already assigned from the previous steps to get at least one of
the eligible stacks with He ≤ 1. The same procedure is re-applied if all the values of We are
more than 1 for all eligible stacks until a feasible case is reached.

Pe is a variable that is related to the overstowage, and it is computed from Equation (4).
The value of POD span between the furthest and nearest ports related to the whole problem.
It controls the penalty value of the solution. In the odd cases where the stack is empty or
that all destination ports are the same, the value of Pe is irrelevant to the procedure. It is
then assigned the value of 0 for the fuzzy logic module to function.

Finally, Ne is a variable that is related to the number of PODs in each stack (less is
better) computed when taking into consideration the POD of the container-to-load (c). This
variable affects the penalty value of the solution.

The above computations of the four variables of interest to the fuzzy logic algorithm
may be applied to the same numerical example outlined above to clarify these steps. The
computations relating to container #5 for every stack are shown in Figure 12 for the set of
eligible stacks (Se = {1, 2, 3}.)
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The four fuzzy logic input variables (He, We, Pe, and Ne) are then applied to the fuzzy
logic algorithm implementation block. This process is repeated for each one of the stacks
in the eligible stacks’ list (Se). The resulting output of the fuzzy logic block is the Stack-
Goodness-Level (SGL) for each one of the eligible stacks, as outlined above. The partially-
filled-stacks are considered first to avoid penalties for utilized a new stack. The partially-
filled-stack, which has the maximum value, is the Stack-won (sw = Max(SGLPartially-filled-
stacks)). This stack is then selected.

3.3.3. Container Stowage

If no partially filled stacks are available, then a new empty stack with a maximum
value of Stack-won (sw = Max(SGLEmpty-stacks)) is selected. This way the destination
stack for container c is assigned. The container is stowed in this particular stack. If container
c is a 20′ container then another 20′ should be picked from the CTL list that conforms to the
characteristics of the remaining free slot in the cell of that particular stack (sw). This process
is performed in the same manner, as previously mentioned in the previous sub-section,
using the list L of eligible 20′ containers. The CTL list is then updated by removing the
utilized container(s). The above solution steps are repeated until the CTL list is empty.

In the numerical example given above, SGL values for the eligible stacks (Se = {1, 2, 3})
are listed in Figure 13. Stacks 2 and 3 are considered first since they are partially filled, while
stack one is an empty stack. The maximum value of 0.75 conforms to stack 3. Consequently,
sw = 3. Container (#5) is then stowed in the aft-slot at the top of stack 3.
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Since container (#5) has lc = 20′, another 20′ matching container is selected for the
fore-slot. A list of eligible 20′ containers (L = {8, 1}) is formed for containers having
the same height, reefer characteristic, and POD. Container (#8) is chosen from the top of
the CTL list for the fore-slot and the CTL list is updated. The resulting arrangement of
the two new containers (#5 and #8) in their corresponding stacks is shown in Figure 14.
It is important to mention that the representation of the containers changed by adding
the information (weight, POD, and height) of each container to facilitate following the
computations of the numerical example. The final complete solution of the proposed
example problem is given in Figure 15.
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3.4. Feasibility Check and Penalty Calculation

Given that some swaps may have been performed within the solution construction,
a feasibility check is needed to ensure that the attained solution does not violate the
constraints. This is followed by the calculation of the penalty values, outlined above, for
the proposed solution. If the solution is infeasible then the algorithm failed to find a feasible
solution to this instance.

4. Results and Discussion

The proposed approach was coded using MATLAB R2017a® and the instances were
run on an Intel® Core i7™ CPU @ 3.6 GHz, and 8.00 GB RAM computer. The benchmark
instances were proposed by Delgado et al. [7] and Pacino and Jensen [47] and later solved by
Parreño et al. [2]. The instances include 236 slot planning benchmark instances partitioned
into eleven different groups, where each one is a combination of instances that have similar
features as shown in Table 2. All the 236 instances were solved by the proposed approach.

Table 2. Instances groups and characteristics [2].

Group No. of Inst.
Capacity (TEU) No. of Containers (TEU)

40′ 20′ HC R
No. of Destination Ports

Min. Max. Avg. Min. Max. Avg. 1 2 ≥3

1 13 16 116 63 8 116 54
√

13

2 22 8 168 68 8 136 52
√

22

3 13 30 124 74 8 124 68
√ √

13

4 78 6 208 79 2 202 63
√ √

78

5 36 38 176 97 8 170 81
√ √ √

36

6 15 42 172 73 16 74 46
√ √ √

15

7 14 72 204 147 24 202 117
√ √ √ √

14

8 14 40 148 96 40 136 87
√ √ √

14

9 17 44 220 124 36 200 111
√ √ √ √

15 2

10 8 72 176 122 10 156 93
√ √ √

6 2

11 6 48 176 101 28 148 84
√ √ √ √

3 3

The first column represents the group ID, the second column indicates the number of
instances in each group, and then the (maximum-minimum-average) available capacity of
TEUs in each group is presented. This is followed by the (maximum-minimum-average)
number of containers in (TEUs) in each group. The following columns indicate if the group
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has a specific feature; whether the group has containers that are 20′ or 40′ in size, High
Cube (HC), and/or Reefer (R). The last three columns indicate the number of instances that
have containers belonging to one, two, three, or more destination ports in each group.

The instances are very realistic as almost 81% of the instances have a space utilization
of more than 70%. The percentage of Space Utilization (SU) is defined in [2,7]. It is an
indication of how full a certain location is with containers. It is calculated using the
following formula:

U =
number o f TEUs in the instance

available TEUs within the location
(6)

These results are compared to the Integer Programming (IP) results of Delgado et al. [7].
Figure 16 shows the Space Utilization of the 236 instances as well as the percentage
deviations from the upper-bound results obtained by Delgado et al. [7]. Even though a
tighter solution was reached for instance #225 belonging to group 9, it was not considered
a valid proper solution to compare. This is because in the proposed technique, the solution
obtained was only possible after rolling-out two containers. In other words, these two
containers remained in the CTL list and were not stowed. According to Parreño et al. [2],
this instance has no feasible solution as both techniques found it impossible to reach a
feasible solution for stowing all the containers in its CTL list.
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The remaining 235 instances may be subdivided into the following two categories:

• The first category includes 222 instances of the 236 benchmark instances presented
in Figure 16. Among these instances, four of which yielded tighter upper-bound
that was reached by Integer Programming models of either Parreño et al. [2] or
Delgado et al. [7]. The proposed results yielded improvements in these four instances
of (99.5%, 99.5%, 20% and 99.7%) over the upper-bound of Delgado et al. [7]. All four
instances have an average improvement of 80% for the four instances.

• The second category includes 13 instances. These instances do not have an optimum
solution. As shown in Figure 16, the minimum, maximum and average percentage
deviations from the optimum solution were 1.1%, 32%, and 7.2%, respectively.

# It is important to note that for nine instances out of these 13 instances, the only
contributor to the deviation from the optimal solution was the reefer penalty
(with an average of 3%). These instances belong to six different groups.
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# After investigation, it was found that these instances had either, no to very
few reefer containers to load. On the other hand, the location had a very high
capacity of reefer slots. In these instances, if the relative difference between
the number of reefer containers to load and the number of reefer cells in the
location decreases, worse results are more likely to be achieved. These instances
had an average Space Utilization percentage of 80%.

# Four of these nine instances belong to a group of instances that have no reefer
containers but, in these locations, there exist a high number of reefer slots
relating to the location’s dimension ranging from 8 to 64. These four instances
have an average number of reefer slots that is equal to 25 and have a high
number of HC containers regarding the number of the 40′ containers. In
addition to having an average available capacity and utilization of 92 slots and
88%, respectively.

# Two instances of the 13 instances have an unnecessary stack opened to stow
a single container. This is because the algorithm chooses the eligible stacks
according to the reefer characteristics of the container to load. Given that
at one stage of execution, this was the only stack that had the same reefer
characteristic of the container to load, subsequently, this stack was opened.

# The algorithm also failed to find the optimum solution in the only instance of
four port of destinations. The algorithm failed to perform better port clustering
and yielded a deviation of 12% from the optimum solution.

# The worst case belonged to group #11 with a deviation value of 32% because
of the overstowage penalty.

Figure 17 shows the deviations of Figure 16 plotted against the percentage of Space
Utilization. The curve shows deviations occurring all in the range over 55% of the space
utilization. This yields to the assumption that the larger values of the Space Utilization
(SU) are susceptible to higher deviations.
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Finally, the average time to obtain the solution was 0.4 s, which is satisfactory for the
one second limitation discussed earlier. The results indicate that the proposed algorithm is
effective and efficient in reaching the optimal solutions of the benchmark instances. The
quality of the solutions is of a high standard as it was able to reach the optimum solution
for most of the cases as will be demonstrated later in this section.

The performance of the proposed algorithm was compared against the following
recently proposed solution approaches to solve the problem of slot planning of under
deck locations:

• GRASP proposed by Parreño et al. [2]
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• Constraint programming proposed by Delgado et al. [7]
• Constraint-based local search proposed by Pacino and Jensen [18].

The comparison is presented in Table 3. The first column indicates the group ID.
Subsequently for each solution method, “%Sol” indicates the percentage of problems
solved, “%Opt” depicts the percentage of problems solved optimally, and T(s) presents the
total run-time needed to solve all the instances in the group.

Table 3. Comparing results from Fuzzy logic with GRASP, CBLS heuristic, and Constraint Program-
ming (CP) algorithms.

Grp# #Inst
Fuzzy GRASP(1 s) CBLS CP(10 s)

%Sol %Opt T(s) %Sol %Opt T(s) %Sol %Opt T(s) %Sol %Opt T(s)

1 13 100 100 4.52 100 100 6.3 100 59 0.1 100 100 0.1

2 22 100 95 8.12 100 100 15.4 100 77 3.6 91 91 21.6

3 13 100 100 5.1 100 100 7.8 100 92 0.5 100 100 0.5

4 78 100 100 28.32 100 99 37.3 100 92 6 99 99 19.7

5 36 100 94 16.41 100 94 22.3 97 58 7.1 92 92 39

6 15 100 93 4.68 100 100 6 93 80 1.2 100 100 5.4

7 14 100 71 6.66 100 93 9 93 79 2.3 64 64 53.5

8 14 100 100 6.4 100 100 6.1 93 43 1.5 93 93 10.5

9 17 94 82 8.69 94 82 12.3 94 47 5.2 88 88 36.5

10 8 100 88 3.33 100 100 4.8 100 88 0.7 100 100 0.7

11 6 100 67 2.56 100 83 3.2 50 17 1.3 83 83 10.3

From the results, the performance of the presented algorithm in terms of the quality
of the solution is equivalent to the GRASP method in terms of the percentage solutions
reached but not in terms of the percentage of optimal solutions reached. Additionally,
the run times are almost the same. However, both CBLS and CP are much faster but the
quality of the solutions is somewhat worse. It seems that the solutions are trapped in a
local optimum. The CBLS is considered the fastest approach but fails to reach the optimum
solutions in more cases. This can be attributed to getting stuck in a local optimum point.

The feasible 235 instances have lower bounds ranging from 30 to 4360 with an average
of 235 and an average utilization that is equal to 82% and minimum and maximum values
of 2.5% to 100%, respectively. This implies that the algorithm performs quite well with
respect to time and optimum solutions achieved in easy and hard instances.

The performance of the algorithm declines for all instances that had an average lower
bound and average utilization value of 290 and 78%, respectively.

Four out of the 13 worse instances belong to group 7, which has instances containing
20′, 40′, reefer, and HC containers combinations. The proposed algorithm only takes into
consideration the reefer characteristic of the topmost available cell in each stack, and it
does not consider the total stack reefer capacity as regards the reefer containers in the CTL
list. This resulted in the use of stacks that had more reefer slots and ended up with more
reefer penalties (PR) added to the objective function.

The presented approach is simple and can easily be implemented to consider more
parameters as the IMOs. However, it might not be the best for a large number of PODs.
This can be attributed to the performance in the instances that had more than three ports
of destination. This condition was only present once in the tested cases (with four PODs).
Further analysis with more test cases incorporating POD numbers larger than three needs
to be conducted for such assertions. Nevertheless, this cannot be considered a drawback of
the proposed solution approach as it is not imperative, because it is a good practice that
the output of the master plan (first phase) emphasizes that each location does not have
containers of more than three/four POD.
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Additionally, the proposed algorithm does not look-ahead into the CTL list in assign-
ing the list of eligible stacks for the current container. In other words, it can choose to add
a reefer penalty PR = 5 for a non-reefer container rather than opening a new stack and
adding discharge port and stack open penalties (PDP = 20 and PS = 10).

Given that that the used instances are real case instances that considers real data
from the shipping company, they reflect the wide variety of cases of different sizes that
are realistic, this implies that the proposed approach is applicable in the industry. The
proposed approach is effective and can be used by the terminal’s operators to optimize the
loading sequencing by taking the time of the container to be transported from the yard to
the vessel as a fifth variable in the fuzzy logic system.

5. Conclusions

In this paper, the slot planning problem for underdeck locations of container vessels is
solved. The paper focuses on the second phase of the decomposition approach to solve
the stowage planning problem which is concerned with the slot planning problem. The
approach is based on a rule-based fuzzy logic system was coupled with a rule-based
search algorithm. The rules in the fuzzy logic algorithm and the search algorithm aimed at
improving the objective function and minimize/eliminate constraint violation.

The computational results showed that the proposed approach is relatively fast. Out of
236 test instances, the algorithm was able to produce optimal solutions for 222 instances and
13 near-optimal solutions with an average deviation of 7.2%, with one instance producing
an infeasible solution. The instances targeted the 20′/40′ (reefer/non-reefer) containers
in less than 1 s, which is well within the time constraint for practical usage. The results
elaborated the efficiency of the proposed algorithm when compared with the state-of-
the-art algorithms and given that it is based on a rule-based approach; consequently, it
has the potential to be generalized to incorporate IMO containers as well as the pallet-
wide containers.

Future research may include extending the proposed approach to incorporate IMO
containers as pallet-wide containers as a first step, subsequently to extend the CSPBDL to
include on-deck locations and special containers such as out-of-gauge containers.
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