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Abstract: Background: This paper discusses the optimization of a novel fuzzy hierarchical location-
routing problem, taking into consideration reliability. The mathematical model presented aims to
determine the optimal locations of production centers and warehouses, as well as the optimal routing
of vehicles, in order to minimize total costs. Methods: Because of the uncertainty surrounding the
demand and transportation cost parameters, a fuzzy programming method was employed to control
the model. To solve the mathematical model, both GA and PSO algorithms were used. Results: The
results show that as the uncertainty rate increases, the total costs also increase. Additionally, the
results indicate that the maximum relative difference percentage between the solutions of the GA
and PSO, and the optimal solutions are 0.587 and 0.792, respectively. On the other hand, analysis
of numerical examples demonstrates that the Baron Solver is unable to solve large-scale numerical
examples. Conclusions: By comparing the results of GA and PSO, it is observed that PSO was able to
solve numerical examples in less time than GA, while GA obtained better results than PSO. Therefore,
the TOPSIS method was used to rank the different solution methods, which resulted in GA being
recognized as an effective algorithm with a utility weight of 0.972.

Keywords: fuzzy hierarchical location-routing problem; reliability; meta-heuristic

1. Introduction

The ever-increasing development of urbanization, industries, and especially support
industries has resulted in the movement of people and goods becoming a problem with
constantly increasing complexity. Urban growth has led to a higher demand in the trans-
portation industry, which in turn has caused major cities and industries to face numerous
issues such as traffic congestion, air pollution, long travel times for daily commutes, in-
creased fuel consumption, and vehicle depreciation [1]. To address these traffic problems
and the economic, social, and environmental challenges arising from them in big cities,
manufacturing industries, and the service sector, a well-equipped and efficient transporta-
tion system is necessary. Transportation is a crucial sector of any country’s economy and
one of the primary contributors to the cost of finished products [2]. One of the reasons
why the vehicle routing problem (VRP) is considered a significant issue in combination
optimization and has garnered the attention of many researchers is its practical application
in the real world.

Today, many goods distribution companies use multiple warehouses for collecting
and distributing goods. However, using a warehouse for distributing goods within the

Logistics 2023, 7, 64. https://doi.org/10.3390/logistics7030064 https://www.mdpi.com/journal/logistics

https://doi.org/10.3390/logistics7030064
https://doi.org/10.3390/logistics7030064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/logistics
https://www.mdpi.com
https://orcid.org/0000-0001-7428-1739
https://orcid.org/0000-0002-6500-6708
https://orcid.org/0000-0003-3772-4216
https://doi.org/10.3390/logistics7030064
https://www.mdpi.com/journal/logistics
https://www.mdpi.com/article/10.3390/logistics7030064?type=check_update&version=1


Logistics 2023, 7, 64 2 of 16

service area may not be economically viable [3]. In certain situations, direct services from
the central warehouse to customers may not be possible. In such cases, service is provided
through intermediate points, commonly known as urban distribution centers [4]. The
Hierarchical Vehicle Routing Problem (HVRP) arises in two-echelon transportation systems,
particularly in the field of urban logistics. In these systems, the cargo is transported to a
main terminal and then sent to the final customers. The HVRP considers two echelons:
the first involves delivering goods from production centers to warehouses, and the second
involves delivering goods from warehouses to customers. To minimize the total routing
cost at each echelon [2], a constraint on the number of vehicles is imposed. It is evident
that the HVRP is an extension of the classical Vehicle Routing Problem (VRP) and, as a
result, it is NP-Hard. Thus, finding the optimal solution in polynomial time is impossible.
The complexity of this problem is further heightened by the presence of numerous input
parameters, including the number of vehicles, customers, and routes [5,6].

In this paper, vehicle routing is not the only consideration; in addition to this decision,
the location of potential centers is also of great importance. Therefore, strategic decisions
such as determining the location of production centers and warehouses, as well as tactical
decisions such as vehicle routing between production centers and warehouses, and between
warehouses and customers, are made. The objective function of minimizing total costs is
considered in order to achieve these decisions. Due to the lack of access to historical data,
demand and transportation costs are considered as uncertainty parameters. Therefore, a
fuzzy programming method is proposed to control the model, and Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) are used to solve the model.

This paper is divided into six sections. The second section discusses the literature
review. The third section presents a novel fuzzy hierarchical location-routing problem
(FHLRP) and utilizes a fuzzy programming method to control the model. In the fourth
section, problem-solving methods are presented, and an initial solution is designed for
GA and PSO. The fifth section examines the results and includes various numerical exam-
ples. Additionally, the prioritization of solution methods is conducted using the TOPSIS
method. Finally, the sixth section concludes with discussions on recommendations for
future research.

2. Literature Review

Due to the importance of VRP and facility location, extensive research has been
conducted over the past decades, resulting in various developments and solutions. For
instance, Zhang et al. [7] proposed a VRP that aimed at minimizing both the total distance
and CO2 gas emissions. They utilized a hybrid artificial bee colony algorithm to solve this
problem. In another study, Ghahremani-Nahr et al. [8] presented a multi-objective model for
the food bank network that simultaneously addressed the location-routing inventory and
allocation issues. They employed NSGA II and MOGWO algorithms to solve this problem.
Alinaghian and Shokouhi [9] developed a mathematical model to solve the multi-depot
multi-compartment VRP. The objective function of their model focused on minimizing
the number of vehicles and the distances traveled on all routes. To solve this model, they
utilized a hybrid adaptive large neighborhood search. Additionally, Brandão [10] designed
an open VRP that took into account time windows and employed an iterated local search
algorithm to find a solution. Babaee Tirkolaee et al. [11] developed a multi-objective mixed-
integer linear programming model for the two-echelon green capacity VRP, considering
environmental issues and time window constraints for the perishable product delivery
phase. Breunig et al. [12] introduced an algorithm for the two-echelon VRP and examined
the results using an exact algorithm. Their goal in this model was to reduce the total
vehicle routing costs. Yan et al. [13] dealt with making strategic and tactical decisions in the
two-echelon VRP. They presented a model to reduce the costs of locating warehouses and
distributing products through different vehicles in the first and second echelon.

Ji et al. [14] modeled an inventory VRP for perishable products with a time window
constraint. Their goal was to minimize total costs with respect to uncertain demand. Del-
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laert et al. [15] investigated the multi-product two-echelon capacity VRP considering time
windows. In this study, they presented an accurate method for optimal routing in the
first and second echelons, and the results showed the high efficiency of their solution
method. Du et al. [16] presented a new model for the two-echelon VRP in which a fleet of
homogeneous vehicles is responsible for delivering products to customers. Huang et al. [17]
presented a model for a two-echelon VRP in which the location decisions of intermediate
warehouses and the optimal routing of vehicle transport are considered. They used a
heuristic algorithm with a Hamiltonian graph to solve the problem. Zhou et al. [18]
proposed a two-echelon VRP with simultaneous pickup and delivery as well as a soft
time window. They used the Tabu search algorithm to find the optimal transport routing.
Goli et al. [19] presented a new solution method for a two-echelon distribution system
using electric vehicles considering the time window. In the first, the required products are
sent from a central warehouse to the satellite stations, and in the second, these products are
distributed to different customers. Nozari et al. [20] modeled a multi-depot VRP model
where demand and transportation costs were considered as fuzzy numbers. They used a
fuzzy robust method to control the model. Hajghani et al. [21] presented a two-echelon
vehicle routing-location model under uncertainty, in which distribution center location
decisions and vehicle routing decisions are made simultaneously. Zhou et al. [22] presented
an exact algorithm for solving the two-echelon VRP for unmanned aircraft. In this model,
several drones were responsible for providing services to customers. Jia et al. [23] addressed
the optimization of VRP from multiple distribution centers called depots. This issue
included determining the appropriate transportation route from warehouses to satellites
and delivery from satellites to final customers. Du et al. [24] designed an energy-efficient
collaborative delivery network for various express companies to provide fast delivery
services to customers. They modeled a two-echelon capacitated VRP considering carbon
emissions for rapid delivery network optimization. Sluijk et al. [25] studied the two-echelon
VRP with stochastic demand, and they used an efficient algorithm to optimize the paths in
the both of the first and the second echelons.

A review of the research literature shows that the models presented for the VRP
mainly focus on location-routing-allocation decisions. This means that only one echelon
is responsible for archiving the optimum route of the vehicle. However, considering the
complexity of the VRP, this paper introduces a novel FHLRP that addresses vehicle routing
and facility location at both echelons. This means that in each echelon, vehicle routing and
facility location are considered simultaneously. Additionally, in all previous research, the
reliability of facility location and vehicle routing has not been taken into account. Based on
the literature review, the innovations of the paper can be summarized as follows:

• Designing a comprehensive model of FHLRP.
• Considering reliability in positioning-routing to increase customer satisfaction.
• Using the fuzzy programming method to control the demand and transportation cost

parameters due to the lack of access to historical data.

3. Definition of the Problem

The multi-depot VRP is the general form of VRPs that are used to serve customers. In
this problem, each vehicle departs from a depot and returns to the same depot after meeting
its customers. This problem has three decision stages. In the first stage, each customer is
assigned to a depot and the customers are grouped. Then, in the second stage, a vehicle is
assigned to the customers of a group, and finally, in the third stage, the manner and order
of meeting the customers is determined by a vehicle. The development of mathematical
models for the VRP has led to considering this type of problem at two different echelons,
as shown in Figure 1. In this type of problem, which is called an HLRP, the goal of vehicle
routing is at the first and second echelons. This type of problem in the first echelon usually
uses vehicles with higher capacity, while smaller vehicles are used for vehicle routing from
the second echelon. The development of the mathematical model for vehicle routing can
lead to a reduction in the total costs of location and routing.
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Figure 1. An example of an HLRP.

In Figure 1, the network of HLRP including production centers, warehouses, and
customers is shown. Adopting strategic decisions, such as determining the location of pro-
duction centers and warehouses, as well as tactical decisions like vehicle routing between
production centers and warehouses and between warehouses and customers, aims to mini-
mize the total costs associated with location and routing. Given the uncertainty in demand
and transportation costs, it is recommended to use the fuzzy programming method to
manage the model. The model presented in this paper is built on the following assumptions:

• Network levels include production centers, warehouses, and customers.
• All customer demands for different products must be met.
• The amount of demand and transportation costs are uncertain.
• The capacity of production centers and warehouses is known.
• It is a single period and single product model.
• Various types of vehicles are considered.
• The reliability percentage of each vehicle is known.

According to the above assumptions, the optimization model of the FHLRP consider-
ing the reliability is presented based on the following symbols. In these symbols, M is a set
of potential production centers, D is a set of potential warehouses, L is a set of customers,
and V is a set of vehicles (N1 ∈ {M ∪ D}, N2 ∈ {L ∪ D}).

In this model, the fuzzy programming method is used to deal with uncertainties in the
parameters of the created model, i.e., transportation cost and other demand costs. In this
method, the linearity of the problem is maintained. In addition, the number of objective
functions and constraints remain constant [26]. Due to the computational efficiency and
simplicity, the triangular fuzzy distribution method has been used to deal with the inaccu-

rate parameters of the model. Suppose
∼
C is a triangular fuzzy number, the membership

function of this fuzzy number µ
∼
C(x) is defined as Equation (1):

µ
∼
C(x) =


fc(x) = x−cp

cm−cp
i f cp ≤ x ≤ cm

1 i f x = cm
gc(x) = co−x

co−cm
i f cm ≤ x ≤ co

0 i f x < cp or x > co

(1)

The expected distance EI and the mathematical expectation EV of the triangular fuzzy
number are calculated from the following relations:

EI
(∼

C
)
= [Ec

1, Ec
2] =

 1∫
0

f−1
c (x)dx,

1∫
0

g−1
c (x)dx

 =

[
1
2
(
cm + cp

)
,

1
2
(co + cm)

]
(2)
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EV
(∼

C
)
=

Ec
1 + Ec

2
2

=
cp + 2cm + co

4
(3)

According to the stated equations, the controlled model of the HLRP is as follows:

Min E[OBF] = ∑
m∈M

f mmZm + ∑
d∈D

f ddYd + ∑
i∈N2

∑
j∈N2

∑
v∈V

[
cp

vij+2cm
vij+co

vij
4

]
Rvij

+ ∑
i∈N1

∑
j∈N1

∑
v∈V

[
cp

vij+2cm
vij+co

vij
4

]
Xvij + ∑

m∈M
pm Hm

+ ∑
l∈L

∑
v∈V

f vvGvl + ∑
d∈D

∑
v∈V

f vvQvd

(4)

s.t.:
∑

i∈N2

∑
v∈V

Rvil ≤ 1, ∀l ∈ L (5)

∑
i∈N2

Rvil = ∑
i∈N2

Rvli = Gvl , ∀l ∈ L, v ∈ V (6)

∑
d∈D

∑
l∈L

Rvdl ≤ 1, ∀v ∈ V (7)

∑
i∈N2

∑
l∈L

(
(1− α)

[
demo

l + demm
l

2

]
+ α

[
demm

l + demp
l

2

])
Rvil ≤ cv, ∀v ∈ V (8)

∑
i∈L′

∑
j∈L′

Rvij =
∣∣L′∣∣− 1, ∀v ∈ V, L′ ⊆ L,

∣∣L′∣∣ ≥ 2 (9)

∑
d∈D

Bdl ≤ 1, ∀l ∈ L (10)

∑
l∈L

(
(1− α)

[
demo

l + demm
l

2

]
+ α

[
demm

l + demp
l

2

])
Bdl ≤ cadYd, ∀d ∈ D (11)

∑
l∈L

Rvdl + ∑
i∈N1

Rvli − Bdl ≤ 1, ∀d ∈ D, l ∈ L, v ∈ V (12)

Elv ≤ cv ∑
i∈N2

Rvil , ∀l ∈ L, v ∈ V (13)

∑
l∈L

∑
v∈V

Rvdl = ∑
i∈N1

∑
v∈V

Xvid = Yd, ∀d ∈ D (14)

∑
d∈D

∑
v∈V

Xvmd ≤ Zm, ∀m ∈ M (15)

∑
j∈N1

Xvij = ∑
j∈N1

Xvji = Qvi, ∀i ∈ N1, v ∈ V (16)

∑
i∈N′1

∑
j∈N′1

Xvij =
∣∣N′1∣∣− 1, ∀v ∈ V,

∣∣N′1∣∣ ⊆ N1,
∣∣N′1∣∣ ≥ 2 (17)

∑
d∈D

Ddv ≤ cv ∑
d∈D

∑
i∈N1

Xvij, ∀v ∈ V (18)

∑
v∈V

Ddv ≤ cadYd, ∀d ∈ D (19)

Hm = ∑
d∈D

∑
v∈V

DdvXvmd, ∀m ∈ M (20)
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Hm ≤ camZm, ∀m ∈ M (21)

∑
i∈N2

∑
j∈N2

∑
v∈V

e−λv Rvij + ∑
i∈N1

∑
j∈N1

∑
v∈V

e−λv Xvij ≥ mλ (22)

Rvdl , Gvl , Bdl , Yd, Xvmd, Zm, Qvd ∈ {0, 1} (23)

Elv, Ddv, Hm ≥ 0 (24)

Equation (4) shows the objective function of the mathematical model, which includes
minimizing the costs of routing, locating, producing, and deploying multiple vehicles.
Equation (5) ensures that each customer is visited only once. Equation (6) guarantees that
every vehicle returns to the same warehouse after visiting the customers. Equation (7)
indicates that each tour can be completed by at most one vehicle, which means that some
vehicles may not be used. Equation (8) states that the amount of product transported by
each vehicle does not exceed its capacity. Equation (9) represents the equation related to
sub-tour elimination. Equation (10) states that each customer can receive a maximum of
one gift from a warehouse. Equation (11) ensures that only the capacity of the selected
warehouses can be used. Equation (12) guarantees that if a customer is assigned to a
warehouse, one of the vehicles must deliver the product to that customer. Equation (13)
shows the maximum quantity of products delivered to each customer. Equation (14) states
that if the warehouse is located at node “d”, the vehicle can be moved from that node.
Equation (15) shows that if the production center is located at node “m”, the vehicle can pass
through that center. Equation (16) states that the vehicle must return to the same center after
leaving the production center. Equation (17) represents the equation related to sub-tour
elimination. Equation (18) shows the amount of product distributed by each production
center, and Equation (19) ensures that this volume of distribution does not exceed the
capacity of the center. Equations (20) and (21) also represent the equations related to the
volume of products produced by each located production center. Equation (22) guarantees
the establishment of the minimum reliability of the entire network by considering the
different capabilities of the vehicles in the network. Equations (23) and (24) also represent
the type of decision-making variables.

In this section of the paper, the modeling of the FHLRP is discussed. Considering that
the problem under investigation is NP-hard, GA, and PSO have been used to solve it. The
subsequent section covers the initial solution and parameter tuning of GA and PSO using
the Taguchi method.

4. Solution Methods
4.1. Designing the Initial Solution

The most important issue in solving mathematical models with GA and PSO is de-
signing the initial solution. This solution should be designed in such a way that it can
lead to the exploration of the entire problem space by the algorithms used. In Figure 2, we
consider the initial solution for a hypothetical example that includes 2 production centers,
3 warehouses, 5 customers, and 4 types of vehicles.
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To decode the solution presented in Figure 2, the following steps are performed
in order:

• Part 1: Location

Step 1: Calculate total customer demand.
Step 2: Choose the highest priority among the warehouses and compare the capacity of

that center with the total demand (the highest priority among the warehouses is warehouse
number 1 with priority 9).

Step 3: If the capacity of this warehouse alone does not meet the demand, choose the
warehouse with the next highest priority.

Step 4: Continue step 3 until the warehouse capacity meets the total demand and
reduce the priority of unselected warehouses to 0.

Step 5: Select the highest priority among the production centers and compare the
capacity of that center with the total demand (the highest priority among the production
centers is production center number 2 with priority 10).

Step 6: If the capacity of this center alone does not meet the demand, select the
production center with the next highest priority.

Step 7: Continue step 6 until the capacity of production centers meets the total demand
and reduce the priority of unselected production centers to 0.

Step 8: Warehouses and production centers whose priority is not 0 are selected as
actual warehouses and production centers.

• Part 2: Vehicle routing between warehouse and customers

Step 1: Select the first vehicle from the vehicle preferences in echelon 1 (Vehicle 2 will
be selected).

Step 2: Select the highest priority among clients as the first visiting node (client 2 with
priority 7 is selected).

Step 3: The sequence of customer visits by the selected vehicle continues until the
vehicle capacity is less than the customer demand.

Step 4: If all customers have not been visited, the next vehicle is selected and steps 1
to 3 are repeated.

• Part 3: Vehicle routing between production centers and warehouses

Step 1: Select the first vehicle from the vehicle preferences in echelon 2 (Vehicle 1 will
be selected).

Step 2: Select the highest priority among warehouses with no priority 0 as the first
visited node (warehouse 1 is selected with priority 9).

Step 3: The sequence of visits to the warehouses by the selected vehicle continues until
the vehicle capacity is less than the demand of the warehouses.

Step 4: If all non-priority warehouses have not been visited, the next vehicle is selected
and steps 1 to 3 are repeated.

• Part 4: Calculation of the objective function

After determining the main decision variables of the problem, the total cost of the
network is calculated.

4.2. Parameter Tuning

At this stage, before solving the large-scale problem using solution methods, GA
and PSO parameters are adjusted by the Taguchi method. In the Taguchi method, the
appropriate factors must be identified first. Then, the levels of each selection factor and the
appropriate test plan for these control factors should be determined. After determining the
test plan, the tests are performed and analyzed with the aim of finding the best combination
of parameters. In this paper, based on Table 1, three levels are considered for each factor. The
design of the test and its implementation are determined for each algorithm, considering
the number of factors and the number of their levels.
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Table 1. Parameter tuning of GA and PSO by Taguchi method.

Solution Method Factor L1 L2 L3 Optimum Value

GA

Max it 100 150 200 200
N pop 100 150 200 200

Pc 0.7 0.8 0.9 0.7
Pm 0.05 0.06 0.07 0.06

PSO

Max it 100 150 200 200
N particle 100 150 200 200

C1 1 1.5 2 1.5
C2 1 1.5 2 2
w 0.5 0.6 0.8 0.5

According to the minimization of the total costs in the proposed model, the amount of
each test should be calculated first. After determining the value of each test, the unscaled

value of each test (RPD) is calculated from Si−S*
i

S*
i

to analyze the Taguchi test design. In the

above relationship, Si is the value obtained from each Taguchi test and S*
i is the best value

of all tests.

4.3. TOPSIS Method

TOPSIS, as one of the MCDM methods, considers both the distance of each alternative
from the positive ideal and the distance of each alternative from the negative ideal point. In
other words, the best alternative should have the shortest distance from the positive ideal
solution (PIS) and the longest distance from the negative ideal solution. The steps of the
TOPSIS method are described below:

• Step 1: Normalize the decision matrix

The following formula can be used to normalize.

rij(x) =
xij√

∑m
i=1 x2

ij

, ∀i, j (25)

• Step 2: Calculate the weighted normalized decision matrix

According to the following formula, the normalized matrix is multiplied by the weight
of the criteria.

vij(x) = wjrij(x), ∀i, j (26)

• Step 3: Determine the positive ideal and negative ideal solutions

The aim of the TOPSIS method is to calculate the degree of distance of each alternative
from positive and negative ideals. Therefore, in this step, the positive and negative ideal
solutions are determined according to the following formulas.

A+ =
(
v+1 , v+2 , . . . , v+n

)
; A− =

(
v−1 , v−2 , . . . , v−n

)
(27)

So that

v+j =
{(

maxvij(x)
∣∣j ∈ j1

)
,
(
minvij(x)

∣∣j ∈ j2
)}

; v−j =
{(

minvij(x)
∣∣j ∈ j1

)
,
(
maxvij(x)

∣∣j ∈ j2
)}

(28)

where j1 and j2 denote the negative and positive criteria, respectively.

• Step 4: Distance from the positive and negative ideal solutions

TOPSIS method ranks each alternative based on the relative closeness degree to the
positive ideal and distance from the negative ideal. Therefore, in this step, the calculation
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of the distances between each alternative and the positive and negative ideal solutions is
obtained by using the following formulas.

d+j =

√√√√ n

∑
j=1

[
vij(x)− v+j (x)

]2
, ∀i; d−j =

√√√√ n

∑
j=1

[
vij(x)− v−j (x)

]2
, ∀i (29)

• Step 5: Calculate the relative closeness degree of alternatives to the ideal solution

In this step, the relative closeness degree of each alternative to the ideal solution is
obtained by the following formula. If the relative closeness degree has value near to 1, it
means that the alternative has shorter distance from the positive ideal solution and longer
distance from the negative ideal solution.

Ci =
d−j(

d+j + d−j
)∀i (30)

5. Analysis of the Results
5.1. Validation of the Model

In this section, a numerical example is considered to validate the presented mathemat-
ical model. The example includes three production centers, four warehouses, six customers,
and eight vehicles. Random data has been used due to the lack of access to real-world
data. The data are generated based on the uniform distribution function as described in
Table 2. These values are sourced from articles related to the topic and are used to justify
the solution space.

Table 2. Interval boundaries of deterministic and uncertainty parameters.

Parameter Value Parameter Value

demo
l ∼ U(100, 150) co

vij ∼ U(30, 40)
demm

l ∼ U(150, 200) cm
vij ∼ U(40, 50)

demp
l ∼ U(200, 250) cp

vij ∼ U(50, 60)
cv ∼ U(400, 500) pm ∼ U(2, 5)
cad ∼ U(600, 800) f vv ∼ U(1000, 1500)
cam ∼ U(700, 1000) f dd ∼ U(10, 000, 12, 000)
f mm ∼ U(10, 000, 12, 000)

In the presented numerical example, the results of the first part are presented assuming
an α = 0.5, due to the use of the fuzzy programming method in controlling uncertainty
parameters. An uncertainty rate of 0.5 represents the encounter of the middle state in the
optimization model. The optimal value of the objective function of the stated numerical
example is USD 45,823.83 at 97.45 s. These results are the outcome of implementing
the model in GAMS 24.8.2 software and using the Baron Solver. The outputs from the
numerical example are shown below. Figure 3 displays the location of production centers
and warehouses, along with the routing of vehicles on the first and second echelon.

According to Figure 3, it can be seen that production center number (1) was selected
from three potential centers, and two warehouses number (2) and (4) were located from four
potential warehouses. The total cost obtained from the numerical example in a small size
consists of location costs (USD 33,968.04), vehicle deployment cost (USD 10,755.77), trans-
portation cost (USD 550.40), and production cost (USD 3249.62). These reasons show that
the biggest costs incurred in the network are location costs or making strategic decisions.



Logistics 2023, 7, 64 10 of 16

Logistics 2023, 7, x FOR PEER REVIEW 10 of 17 
 

 

Table 2. Interval boundaries of deterministic and uncertainty parameters. 

Parameter Value Parameter Value 𝑑𝑒𝑚  ~𝑈(100,150) 𝑐  ~𝑈(30,40) 𝑑𝑒𝑚  ~𝑈(150,200) 𝑐  ~𝑈(40,50) 𝑑𝑒𝑚  ~𝑈(200,250) 𝑐  ~𝑈(50,60) 𝑐  ~𝑈(400,500) 𝑝  ~𝑈(2,5) 𝑐𝑎  ~𝑈(600,800) 𝑓𝑣  ~𝑈(1000,1500) 𝑐𝑎  ~𝑈(700,1000) 𝑓𝑑  ~𝑈(10,000,12,000) 𝑓𝑚  ~𝑈(10,000,12,000)   

In the presented numerical example, the results of the first part are presented assum-
ing an α = 0.5, due to the use of the fuzzy programming method in controlling uncertainty 
parameters. An uncertainty rate of 0.5 represents the encounter of the middle state in the 
optimization model. The optimal value of the objective function of the stated numerical 
example is USD 45,823.83 at 97.45 s. These results are the outcome of implementing the 
model in GAMS 24.8.2 software and using the Baron Solver. The outputs from the numer-
ical example are shown below. Figure 3 displays the location of production centers and 
warehouses, along with the routing of vehicles on the first and second echelon. 

 
Figure 3. Small size numerical example of the FHLRP. 

According to Figure 3, it can be seen that production center number (1) was selected 
from three potential centers, and two warehouses number (2) and (4) were located from 
four potential warehouses. The total cost obtained from the numerical example in a small 
size consists of location costs (USD 33,968.04), vehicle deployment cost (USD 10,755.77), 
transportation cost (USD 550.40), and production cost (USD 3249.62). These reasons show 
that the biggest costs incurred in the network are location costs or making strategic deci-
sions. 

In the following, the cost changes of the whole model presented in different scenarios 
have been investigated. Table 3 shows the changes in the total cost of the problem at dif-
ferent uncertainty rates, vehicle capacity, and production center capacity. 

Table 3. Total cost changes in different scenarios. 𝜶 Total Cost (USD) Changes (%) 
0.1 39,527.61 −13.74 
0.2 41,688.30 −9.02 
0.3 43,685.58 −4.67 
0.4 44,124.15 −3.71 
0.5 45,823.83 0 

Figure 3. Small size numerical example of the FHLRP.

In the following, the cost changes of the whole model presented in different scenarios
have been investigated. Table 3 shows the changes in the total cost of the problem at
different uncertainty rates, vehicle capacity, and production center capacity.

Table 3. Total cost changes in different scenarios.

α Total Cost (USD) Changes (%)

0.1 39,527.61 −13.74
0.2 41,688.30 −9.02
0.3 43,685.58 −4.67
0.4 44,124.15 −3.71
0.5 45,823.83 0
0.6 46,937.18 +2.43
0.7 48,536.33 +5.92
0.8 52,348.66 +14.26
0.9 54,366.47 +18.64

cv (%) Total Cost (USD) Vehicle Number

−30 46,238.44 5
−20 46,238.44 5
−10 45,823.83 4

0 45,823.83 4
+10 45,823.83 4
+20 44,259.67 3
+30 43,211.28 3

cad − cam (%) Total Cost (USD) Total Centers

−30 58,947.22 4
−20 58,647.66 4
−10 45,823.83 3

0 45,823.83 3
+20 45,823.83 3
+30 31,246.91 2

The results from Table 3 indicate that total costs have increased as the uncertainty rate
has increased. This increase in costs is attributed to the rise in customer demand. As the
demand has increased, along with the stability of other factors, the number of vehicles
needed has also increased, resulting in higher overall costs. Additionally, the reduction
in vehicle capacity has necessitated the use of more vehicles, further driving up costs for
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vehicle usage and routing. Consequently, reducing the vehicle capacity by 30% has led to a
change in the number of vehicles required, increasing from four to five.

On the other hand, changes in facility capacity also affect total costs. As facility
capacity decreases due to a decrease in supply, a larger number of facilities are required to
meet all customer demand. This issue results in an increase in the fixed costs of locating
the facility, thereby increasing the total costs.

5.2. Analyzing a Small Numerical Example with GA and PSO

In this section, before solving various numerical examples, we have conducted an
analysis of a small-sized numerical example using GA and PSO and compared the results
with those obtained from Baron. Consequently, by keeping the size and value of the
mathematical model’s parameters constant, we present the convergence of the solution
methods over 200 consecutive iterations in Figure 4.
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After solving the problem using GA and PSO, the total cost obtained by GA is USD
46,093.17 and by PSO is USD 46,187.18. Therefore, the maximum percentage of the relative
difference between the solutions of the algorithms and the optimal solution is 0.587% and
0.792%, respectively. Additionally, the problem-solving time for GA was 15.67 s and for
PSO was 12.55 s. Table 4 displays the location and routing obtained from solving a small
numerical example using different solution methods.

Table 4. Location and routing obtained from the solution of a small numerical example.

Solution Methods Production Centers Warehouse Customer Optimum Routing Vehicle Number

Baron

1 2-4 - M1 → D2 → D4 → M1 2
- 2 1-5 D2 → L5 → L1 → D2 3
- 2 2 D2 → L2 → D2 1
- 4 3-4-6 D4 → L4 → L6 → L3 → D4 4

GA

1 2-4 - M1 → D2 → D4 → M1 3
- 2 1-2 D2 → L2 → L1 → D2 2
- 2 3 D2 → L3 → D2 1
- 4 4-5-6 D4 → L4 → L6 → L5 → D4 4

PSO

2 1-4 - M1 → D1 → D4 → M1 1
- 1 4-6 D1 → L4 → L6 → D1 4
- 1 3 D1 → L3 → D1 2
- 4 1-2-3 D4 → L2 → L1 → L3 → D4 3
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5.3. Analysis of Large Numerical Examples with GA and PSO

After examining the decision variables of the numerical example of small size using
different solution methods, it was observed that the maximum percentage of relative
difference between the solution methods and Baron is less than 1%. Therefore, numerical
examples of different sizes were analyzed. Table 5 presents the 15 numerical examples in
different sizes in ascending order.

Table 5. Size of numerical examples in different scales.

Sample Problem Production Center Warehouse Customers Vehicles

1 5 6 7 6
2 5 6 8 8
3 8 6 10 10
4 8 8 12 12
5 10 8 15 14
6 10 8 18 16
7 12 10 20 18
8 12 10 23 20
9 15 10 28 22

10 15 12 32 24
11 18 12 35 26
12 18 15 40 28
13 20 15 45 30
14 25 18 50 32
15 30 20 60 35

After designing various numerical examples, the best solution obtained from running
GA and PSO three times is presented in Table 6. Additionally, this table also includes the
time taken to solve different numerical examples using different solution methods.

Table 6. Total costs and solution time obtained from solving different numerical examples.

Sample Problem
Total Cost (USD) CPU-Time (s)

Baron GA PSO GAMS GA PSO

1 69,745.28 70,391.12 70,370.21 128.49 21.72 18.66
2 88,672.24 89,589.11 89,730.15 331.97 23.63 20.37
3 95,748.66 96,822.96 96,837.32 597.29 27.77 23.94
4 112,343.28 114,075.63 113,857.73 972.66 32.91 28.37
5 - 127,890.05 125,566.02 <1000 40.32 34.76
6 - 141,782.57 142,023.64 <1000 52.40 45.17
7 - 161,659.52 162,441.07 <1000 69.59 59.99
8 - 172,868.33 176,139.36 <1000 89.09 76.80
9 - 192,507.95 194,335.84 <1000 111.87 96.44

10 - 209,109.05 208,593.57 <1000 144.69 124.73
11 - 221,201.84 222,350.19 <1000 193.12 166.48
12 - 235,330.92 235,916.97 <1000 249.01 214.66
13 - 257,636.53 260,863.93 <1000 313.00 269.83
14 - 283,291.13 285,776.63 <1000 400.05 344.87
15 - 298,740.32 299,020.68 <1000 488.21 429.47

The results of Table 6 show that Baron was unable to solve numerical examples
greater than five, resulting in a solving time of more than 1000 s. Additionally, the results
demonstrate that PSO has been more successful in solving various numerical examples in a
shorter amount of time compared to GA. On average, GA has exhibited greater efficiency
than PSO in the search for a near-optimal solution. Figures 5 and 6 display the best objective
function and computational time achieved by different solution methods when dealing
with large-sized numerical examples.
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The analysis of numerical examples in different sizes showed that GA was more
efficient than PSO in obtaining near-optimal solutions. However, PSO achieved the final
results in less time. Therefore, since there is no ranking of different solution methods, the
TOPSIS method has been used. In this paper, there are two criteria (mean of objective
function and mean of CPU-Time) and two alternatives (GA and PSO) that are ranked using
the TOPSIS method. Table 7 shows the main characteristics of criteria and decisions and
the normal matrix.
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Table 7. Characteristics of criteria, decision, and normalized matrix.

Solution Method Mean of Objective Function Mean of CPU-Time

GA 178,193.1 150.49
PSO 178,921.6 130.30

Weight 0.5 0.5
Type Negative Negative

Normalized

GA 0.706 0.756
PSO 0.709 0.655

Table 8 shows both positive and negative ideal values and the distance to the positive
and negative ideal solutions.

Table 8. The positive and negative ideal values.

Solution Method Mean of Objective Function Mean of CPU-Time

GA 0.353 0.354
PSO 0.327 0.378

Distance to positive ideal Distance to positive negative

GA 0.051 0.001
PSO 0.001 0.051

The results, considering the preference weight of 0.5 for each criterion, show that GA
was more efficient than PSO with a preference weight of 0.972.

6. Conclusions

In this paper, a FHLRP model is presented with the main goal of minimizing the costs
associated with locating potential warehouses, production centers, and vehicle routing. To
address uncertainty, a nonlinear mathematical model is designed and a fuzzy program-
ming method is used to control the uncertainty parameters. The validation results of the
mathematical model demonstrate that as the uncertainty rate increases, the total costs also
increase, primarily due to an increase in customer demand. Additionally, the results show
that a decrease in vehicle capacity leads to a higher number of vehicles needed, resulting
in increased costs for vehicle usage and routing. For instance, a 30% reduction in vehicle
capacity results in a change from four to five vehicles. Furthermore, the changes in facility
capacity have a significant impact on the overall costs of the model. A decrease in facility
capacity leads to a higher number of facilities required to fulfill customer demand due to
a decrease in supply. Considering the NP-hard nature of the mathematical model, both
GA and PSO are employed to solve the problem. The analysis of the numerical example
exhibits that the maximum relative difference percentage between the algorithm solutions
and the optimal solution is 0.587 and 0.792, respectively. Moreover, GA has a problem-
solving time of 15.67 s, while PSO takes 12.55 s. Based on these findings, both algorithms
are utilized to solve numerical examples of larger sizes. Further analysis of 15 numerical
examples demonstrates the inefficiency of Baron in solving larger numerical examples. In
terms of near-optimal solutions, GA proves to be more efficient compared to PSO, though
PSO achieves results in less time. Therefore, the TOPSIS method is employed to rank the
different solution methods. The results, with a preference weight of 0.5 assigned to each
criterion, indicate that GA is more efficient than PSO with a preference weight of 0.972.

One of the limitations in dealing with the problem is the lack of access to real-world
data, as well as historical data. Another limitation is the implementation of the mathemati-
cal model in the real world, which is hindered by the lack of financial information provided
by organizations.
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As future suggestions, it is important to consider social aspects in the developed
mathematical model. Additionally, the fuzzy robust method should be employed to control
the uncertainty parameters of the problem. Opening the Jackson network for distributing
items to customers is also recommended. Finally, using hybrid algorithms to solve the
problem is suggested.
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Abbreviations

Parameters
∼

deml Customer demand l ∈ L
cv Capacity of vehicle v ∈ V
cad Capacity of warehouse d ∈ D
cam Capacity of production center m ∈ M
f mm The fixed cost of locating a production center at node m ∈ M
f dd The fixed cost of locating a warehouse at node d ∈ D
∼
c ijv Transportation cost from node i to node j by vehicle v ∈ V
pm Product production cost in production center m ∈ M
f vv The fixed cost of using the vehicle v ∈ V
λ Vehicle reliability percentage v ∈ V
mλ Minimum network reliability
Decision variables

Rvdl
value 1; if vehicle v ∈ V moves between arc (i, j) ∈ N2.
value 0; otherwise.

Gvl
value 1; if vehicle v ∈ V visits customer l ∈ L.
value 0; otherwise.

Bdl
value 1; if warehouse d ∈ D serves customer l ∈ L.
value 0; otherwise.

Yd
value 1; if the warehouse is located at node d ∈ D.
value 0; otherwise.

Xvmd
value 1; if vehicle v ∈ V moves between arc (i, j) ∈ N1.
value 0; otherwise.

Zm
value 1; if the production center is located at node m ∈ M.
value 0; otherwise.

Qvd
value 1; if vehicle v ∈ V visits warehouse d ∈ D.
value 0; otherwise.

Elv Product quantity delivered to customer l ∈ L by vehicle v ∈ V
Ddv Product quantity delivered to warehouse d ∈ D by vehicle v ∈ V
Hm The amount of product produced in the production center m ∈ M
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