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Abstract: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental
contaminants originating from many everyday products. Perfluorooctane sulfonic acid (PFOS) and
perfluorooctanoic acid (PFOA) are two PFAS that are commonly found at high concentrations in
aquatic environments. Both chemicals have previously been shown to be toxic to fish, as well as having
complex and largely uncharacterized mixture effects. However, limited information is available on
marine and estuarine species. In this study, embryonic and larval sheepshead minnows (Cyprinodon
variegatus) were exposed to several PFAS mixtures to assess lethal and sublethal effects. PFOS alone
was acutely toxic to larvae, with a 96 h LC50 of 1.97 mg/L (1.64–2.16). PFOS + PFOA resulted in a larval
LC50 of 3.10 (2.62–3.79) mg/L, suggesting an antagonistic effect. These observations were supported
by significant reductions in malondialdehyde (105% ± 3.25) and increases in reduced glutathione
concentrations (43.8% ± 1.78) in PFOS + PFOA exposures compared to PFOS-only treatments,
indicating reduced oxidative stress. While PFOA reduced PFOS-induced mortality (97.0% ± 3.03),
perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) did not. PFOS alone did not affect
expression of peroxisome proliferator-activated receptor alpha (pparα) but significantly upregulated
apolipoprotein A4 (apoa4) (112.4% ± 17.8), a downstream product of pparα, while none of the other
individually tested PFAS affected apoa4 expression. These findings suggest that there are antagonistic
interactions between PFOA and PFOS that may reduce mixture toxicity in larval sheepshead minnows
through reduced oxidative stress. Elucidating mechanisms of toxicity and interactions between PFAS
will aid environmental regulation and management of these ubiquitous pollutants.

Keywords: PFAS; PFOS; PFOA; mixtures; mechanism of toxicity; PPARα; oxidative stress

1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are a ubiquitous class of contaminants
commonly found in firefighting foams, cookware, clothing, and many other sources [1–3].
Due to their amphiphobic properties and chemically inert carbon–fluorine bonds, PFAS
have long environmental half-lives and are considered “forever chemicals” [4]. Their per-
sistence and toxicity resulted in some PFAS being listed in the Stockholm Convention as
potential human and ecosystem hazards [5]. PFAS have been shown to cause endocrine
disruption, reproductive and developmental toxicity, disruptions in lipid homeostasis, and
oxidative stress in mammals and fish [6,7]. Despite production bans, PFAS, particularly
perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still ubiqui-
tously found in most environments around the world [8–10]. Aqueous film-forming foams
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(AFFFs), which have been shown to be toxic to several aquatic species [11], are a major
source of PFAS pollution in the environment, with a significant proportion coming from
legacy and ongoing use on military bases and aircraft carriers [12,13]. PFOS concentrations
as high as 8.97 mg/L have been recorded in surface waters near U.S. Air Force bases [14],
which far exceeds the US EPA saltwater benchmark for PFOS of 0.55 mg/L [15]. PFAS have
also been shown to bioaccumulate within individual organisms and biomagnify across
trophic levels [16–18].

Although many groups have studied the effects of PFAS on aquatic organisms, over
95% of PFAS fish studies on the US EPA ECOTOX Knowledgebase have been conducted in
freshwater species [19]. Salinity can influence PFAS kinetics [20–23], as well as toxicity [24].
As the ocean serves as a tertiary sink for many PFAS, it is imperative to better understand
their effects on saltwater species.

The mechanisms of PFAS toxicity are still largely unknown and seem to differ across
individual PFAS. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear
receptor that regulates lipid and fatty acid metabolism and has been linked to PFAS
toxicity [25,26]. There is evidence of PPARα activation by PFAS, particularly those with
carboxylic acids, being linked to toxic effects [27]. In contrast, PFAS with sulfonic acids
are typically less potent PPAR agonists but induce greater acute toxicity [25]. A potential
mechanism of toxicity for sulfonic acids (e.g., PFOS) is the induction of reactive oxygen
species (ROS) which results in oxidative stress [28–30]. While PPARα activation and ROS
generation are potential modes of action for some PFAS species, further work is required to
validate these mechanisms.

PFAS are almost always present as mixtures in the environment as a result of their
manufacturing processes [1,31], which can affect their kinetics and toxicity. Some com-
pounds can act as agonists of nuclear receptors, such as PPARα, while others can act as
antagonists. Furthermore, the expression of the same enzyme can either be upregulated or
downregulated depending on the PFAS compound or species [7]. While there is a limited
number of PFAS mixture studies conducted in saltwater fish, many other freshwater fish
and non-fish species have been used to assess PFAS mixture toxicities, although there
is no clear trend towards additive, synergistic, or antagonistic effects [32–39]. To reduce
uncertainty in PFAS risk assessments, it is pertinent to better understand the effects of PFAS
as mixtures and how selected components can affect toxicity.

In this study, embryonic and larval sheepshead minnows (Cyprinodon variegatus) were
exposed to PFOS or PFOA, two commonly detected PFAS in aquatic environments, to assess
the toxicity of the two compounds individually, as well as in binary mixtures. Larvae were
then exposed to PFOS, PFOA, perfluorohexanoic acid (PFHxA), or perfluorobutanoic acid
(PFBA) to assess lethal and sublethal effects individually, or as a mixture with PFOS. PFHxA
and PFBA were selected because they both have the same functional group (carboxylic
acid) as PFOA, differing only by carbon chain length to test the role of carbon chain
length in augmenting the toxicity of PFOS. Sublethal endpoints included oxidative stress,
quantified by malondialdehyde (MDA) and reduced glutathione (GSH) concentrations, and
gene expression of pparα and a specific downstream product, apolipoprotein A4 (apoa4),
quantified by qPCR. The aim of this study was to determine the effects of several PFAS,
as individual compounds or mixtures, on sheepshead minnow embryos and larvae and
to explore the role of two potential molecular initiating events of PFAS toxicity, pparα
activation and oxidative stress.

2. Materials and Methods
2.1. Chemicals

PFOS (CAS: 1763-23-1, 97% purity, Santa Cruz Biotechnology, Dallas, TX, USA), PFOA
(CAS: 335-67-1, 95% purity, Millipore Sigma, St. Louis, MO, USA), PFHxA (CAS: 307-24-4,
97% purity, Toronto Research Chemicals, North York, ON, Canada), and PFBA (CAS: 375-22-4,
98% purity, Millipore Sigma, St. Louis, MO, USA) were dissolved in deionized (DI) water
and stored at room temperature in a dark environment. Optima-grade methanol (Fisher
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Chemical, Pittsburgh, PA, USA), HPLC-grade water (Honeywell Burdick and Jackson,
Muskegon, MI, USA), and ammonium acetate (Thermo Scientific, Waltham, MA, USA)
were used for chromatographic analyses of PFAS in exposure solutions.

2.2. Maintenance of Sheepshead Minnow Culture

Adult sheepshead minnows were maintained at a light cycle of 16:8 light/dark in a
flow-through system. To collect embryos, adults were randomly collected and transferred
to 40 L tanks for spawning at a male/female ratio of 1:2. All fish were fed TetraMin
tropical flakes.

2.3. Exposure Regime

Embryos were collected, sorted for proper stage and viability, and mixed to avoid batch
effects. All embryos were <6 h post-fertilization (hpf). Larvae were hatched from collected
embryos and sorted for viability. All larvae were <24 h post-hatch (hph). All exposures
were 96 h static-renewal, conducted in glass environmental chambers with test conditions
set at 25 ◦C and a 16:8 light/dark cycle. Embryos were exposed in 20 ppt filtered seawater
at a volume of 30 mL in 50 mL glass containers, while larvae were exposed at 200 mL in
230 mL glass containers. All exposures were conducted in triplicate (separate containers)
without aeration with a plastic lid to minimize evaporation. Water quality (temperature,
dissolved oxygen (DO), salinity, pH) was monitored daily. The following thresholds, based
on the American Society for Testing and Materials method E 1241-98 [40], were used to
determine acceptable water quality: temperature (25 ◦C ± 2), DO (>4.00 mg/L), salinity
(20 ppt ± 1), and pH (7.80 ± 1.00). Larvae were fed freshly hatched artemia daily ad
libitum. Exposure solutions were made fresh daily and renewed 100% every 24 h.

To determine acute toxicity (LC50) of PFOS and PFOA, 10 sheepshead minnow em-
bryos and larvae were treated with PFOS (1.25, 2.5, 5, 10 mg/L), PFOA (12.5, 25, 50,
100 mg/L), a mixture of PFOS and PFOA at a 1:1 ratio (1.25, 2.5, 5, 10 mg/L), or 100 mg/L
PFOA with PFOS (1.25, 2.5, 5, 10 mg/L). Concentrations were based on the limit of solu-
bility of the tested compounds, which was 10 mg/L for PFOS and 100 mg/L for PFOA,
followed by a geometric series to generate lower concentrations. Mortality was assessed
after 96 h.

To assess mixture toxicity of PFAS, 20 larvae were treated with 100 mg/L PFOA,
PFHxA, or PFBA, with or without 2 mg/L PFOS for 96 h. The PFOS concentration represents
the LC50 value, while the PFOA concentration represents the no adverse effect concentration
(NOAC). Larvae were weighed, rinsed with 20 ppt seawater, flash frozen in liquid nitrogen,
and stored at −80 ◦C for gene expression analysis.

To determine the threshold of the antagonistic effects of PFOA, 20 larvae were treated
with 2 mg/L PFOS and co-treated with 6.25, 12.5, 25, 50, or 100 mg/L PFOA for 96 h.
Mortality was assessed after 96 h.

To assess the effects of oxidative stress on PFOS + PFOA mixture toxicity, 50 larvae
were treated with 2 mg/L PFOS, 12.5 mg/L PFOA, or a binary mixture for 96 h. The
PFOA concentration represents the lowest tested concentration that significantly reduced
PFOS-induced mortality. Mortality was assessed after 96 h. Larvae were weighed, rinsed
with 20 ppt seawater, flash frozen in liquid nitrogen, and stored at −80 ◦C for oxidative
stress assays.

2.4. Oxidative Stress Assays

MDA concentrations were quantified in sheepshead minnow larvae whole body
homogenate (50 larvae per treatment in triplicate) based on previously published meth-
ods [41,42]. To a 1.5 mL centrifuge tube, the sample and 4× volume of cold 50 mM
potassium phosphate buffer were added. The tissue was homogenized using a tissue
homogenizer on ice for 60 s then centrifuged at 4 ◦C at 13,000× g for 5 min. After cen-
trifuging, 75 µL of the supernatant was transferred to a new 1.5 mL centrifuge tube, to
which 10.5 µL of 2% butylated hydroxytoluene was then added. To the tube, 1050 µL of
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0.375% thiobarbituric acid was added, then the tube was vortexed. Using a needle, a small
hole was poked in the cap of the tube, then the tube was heated at 92 ◦C for 15 min. After
heating, 300 µL supernatant was transferred into a 96 well plate in triplicate to be read at
532 nm on a BioTek Epoch 2 microplate spectrophotometer (Agilent, Santa Clara, CA 95051,
USA). MDA concentrations were determined using a standard curve.

GSH concentrations were quantified in sheepshead minnow larvae whole body ho-
mogenate (50 larvae per treatment in triplicate) based on previously published
methods [43–45]. To a 1.5 mL centrifuge tube in an ice bath, the sample and 10× volume of
cold 5% sulfosalicylic acid were added. The tissue was homogenized using a tissue homog-
enizer on ice for 60 s then centrifuged at 4 ◦C at 13,000× g for 5 min. After centrifuging,
100 µL of the supernatant was transferred to a new 1.5 mL centrifuge tube in an ice bath,
to which 100 µL cold 5% sulfosalicylic acid was then added. To a new 1.5 mL centrifuge
tube, 20 µL supernatant, 478 µL 143 mM sodium phosphate buffer, 114 µL NADPH, 68 µL
Ellman’s reagent, and 120 µL DI water were added, then the tube was vortexed. To a
96 well plate, 295 µL of the tube contents was loaded into each well. To each well, 5 µL
50 U/mL glutathione reductase was added, followed by the plate being sealed with an
adhesive PCR plate seal, flipped three times to mix, tapped on the benchtop to eliminate
bubbles, then read at 412 nm on a BioTek Epoch 2 microplate spectrophotometer every 15 s
for 6 time points. GSH concentrations were determined using a standard curve.

2.5. Gene Expression Analysis

Gene expression analysis methodologies were based on Magnuson et al. [46]. Pooled
larvae (20 larvae per treatment in triplicate) were homogenized with a tissue homogenizer
on ice, and total RNA was extracted using a Direct-zol RNA Miniprep Plus Kit (Zymo
Research, Irvine, CA 92614, USA). Extracted RNA was analyzed on a NanoDrop spec-
trophotometer (Thermo Fisher Scientific) to ensure 260/280 ratios were above 1.95. RNA
was diluted to a concentration of 1 µg/µL, then 1 µg was reverse transcribed to cDNA
using a QuantiTect Reverse Transcription Kit (Qiagen, Germantown, MD, 20874, USA)
per the manufacturer’s instructions using an Applied Biosystems Veriti 96 Well Thermal
Cycler (Thermo Fisher Scientific, Waltham, MA 02451, USA). Quantitative polymerase
chain reaction (qPCR) was performed on an Applied Biosystems 7500 Fast Real-Time
PCR System using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories,
Hercules, CA 94547, USA). Each reaction contained 100 ng cDNA along with a 10 µM
concentration of specific forward and reverse primer pairs for targeted genes. Primers were
obtained from Integrated DNA Technologies (San Diego, CA, USA), and their efficiencies
were calculated before use (Table S1). Thermal cycling conditions for qPCR were as follows
for all target genes: denaturation at 95 ◦C for 5 min, 40 cycles of 10 s denaturation at 95 ◦C,
annealing and extension for 60 s at 54 ◦C, followed by a melt curve from 54–95 ◦C at 0.5 ◦C
increments. The housekeeping gene, β-actin, was used to normalize gene expression, as
there were no significant differences in expression between any treatment and the control.
Samples were run in triplicate, and the 2−∆∆Ct method was used to calculate relative fold
change [47].

To measure pparα activation, the expression of apoa4, a sensitive and specific downstream
product that is not regulated by another PPAR, was selected based on Nagasawa et al. [48]
and was quantified following PFAS treatment.

2.6. Water Chemistry Analysis

Water samples were taken at 0 and 24 h of exposure from each treatment and stored at
−20 ◦C in a dark environment until analysis. Due to the lengthy chromatographic method
and large volume of solvent used per run, water samples were pooled from each replicate
which resulted in one measurement per concentration. All samples were directly injected
(10 µL) into an Agilent Infinity II (Agilent, Santa Clara, CA, USA) liquid chromatography
instrument attached to a SCIEX Triple Quad 5500+ LC-MS/MS (SCIEX, Framingham, MA,
USA). A Zorbax Diol (4.6 mm ID, 12.5 mm, 6 µm particle size) attached to an Agilent
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InfinityLab Poroshell 120 EC-C18 column (4.6 mm ID, 100 mm, 2.7 µm particle size) was
used for separation of PFAS and each sample run with a ramping LC solvent gradient with
methanol and nanopure water, each containing 10 mmol/L ammonium acetate. A flow
rate of 0.4 mL/min was used, and the column was maintained at room temperature.
Two multiple reaction monitoring (MRM) transitions were employed for each PFAS, one
for quantitation and the other for confirmation of the PFAS (Table S2). The PFAS water
concentrations are available in the Supplementary Materials (Table S3).

2.7. Statistical Analyses

Probit analyses were conducted in SAS version 9.4 (SAS Institute, Cary, NC 27513,
USA) to calculate LC50 concentrations of PFOS, PFOA, and binary mixtures to embryos
and larvae. Significant differences between LC50 concentrations were determined via a
ratio test in SAS version 9.4. All other statistical analyses utilized one-way analysis of
variance (ANOVA) with a Tukey HSD post hoc test and were conducted in GraphPad
version 9.4.1 (GraphPad Software, Boston, MA 02110, USA, www.graphpad.com (accessed
on 9 January 2024)). All data were assessed for normality and homogeneity of variance
by plotting residuals and quantiles of the data sets. A p-value of 0.05 was utilized for all
statistical analyses.

3. Results
3.1. Acute Toxicity of PFOS and/or PFOA on Embryonic and Larval Sheepshead Minnows

Neither PFOS nor PFOA was acutely toxic to sheepshead minnow embryos at any
tested concentration as individuals (Table 1). PFOS was acutely toxic to larvae, with an
LC50 of 1.97 mg/L (95% confidence interval: 1.64–2.16), while PFOA was not toxic at any
tested concentrations. PFOS + PFOA exposed at a 1:1 ratio yielded an LC50 of 1.99 mg/L
(1.70–2.17) which was not statistically different to PFOS-only LC50 (p > 0.05). However,
PFOS co-treated with a constant 100 mg/L PFOA yielded an LC50 of 3.10 (2.62–3.79) which
was significantly higher (57.4%) than PFOS alone (p < 0.05).

Table 1. Embryonic and larval LC50 values for sheepshead minnows (Cyprinodon variegatus) exposed
to PFOS or PFOA. Values in parentheses indicate 95% confidence intervals. Asterisk (*) indicates
significant differences compared to PFOS-only LC50 determined by an LC50 ratio test.

Chemical Embryonic LC50 (mg/L) Larval LC50 (mg/L)

PFOS >10 1.97 (1.64–2.16)
PFOA >100 >100

PFOS + PFOA (1:1) >10 1.99 (1.70–2.17)
PFOS + 100 mg/L PFOA >10 3.10 (2.62–3.79) *

3.2. Mixture Toxicity of PFOS with PFOA, PFHxA, or PFBA

PFOS at 2 mg/L was the only acutely toxic compound when exposed individually,
while PFOA, PFHxA, and PFBA at 100 mg/L did not cause significant mortality compared
to the control (Figure 1). However, when exposed as a mixture with PFOS, PFOA was
the only compound to significantly reduce PFOS-induced mortality (97.0% ± 3.03), while
PFHxA and PFBA did not result in statistically different levels of mortality compared to
the PFOS-only treatment.

www.graphpad.com
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Figure 1. Percent mortality of larval sheepshead minnows (Cyprinodon variegatus) after a 96 h exposure
to various PFAS mixtures. PFOS = 2 mg/L, and PFOA, PFHxA, and PFBA = 100 mg/L. Letters
indicate significant differences determined by a one-way ANOVA followed by a Tukey HSD post hoc
test. Values represent the mean of three replicates ± standard error of the mean.

3.3. Effects of PFAS on Gene Expression

Pparα was significantly upregulated by PFOA (565.4% ± 27.2), PFHxA (482.8% ± 61.4),
and PFBA (605.6% ± 51.5) at 100 mg/L compared to the control, while PFOS at 2 mg/L
did not statistically affect pparα expression (Figure 2). However, PFOS + PFOA and
PFOS + PFBA treatments resulted in significant reductions in pparα expression compared to
treatments without PFOS (72.3% ± 1.64 and 72.4% ± 3.87, respectively). Apoa4 expression
was significantly upregulated following treatment with 2 mg/L PFOS (112.4% ± 17.8)
compared to the control. PFOS co-treatment with 100 mg/L PFOA resulted in a significant
reduction (45.4% ± 3.78) of apoa4 expression compared to the PFOS-only treatment. All
other treatments did not result in significant changes to apoa4 expression. Due to technical
errors in several replicates, statistical analyses were not feasible for determining apoa4
expression in the PFBA treatments, so those results were excluded.
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Figure 2. Relative gene expression of pparα and apoa4 following a 96 h exposure of larval sheepshead
minnows (Cyprinodon variegatus) to various PFAS mixtures. PFOS = 2 mg/L, and PFOA, PFHxA,
and PFBA = 100 mg/L. Letters indicate significant differences determined by a one-way ANOVA
followed by a Tukey HSD post hoc test. Values represent the mean of three replicates ± standard
error of the mean. NA indicates the missing PFBA apoa4 expression due to technical errors across
several replicates.

3.4. Antagonistic Effects of PFOA on PFOS-Induced Mortality

When co-treated with 2 mg/L PFOS, PFOA significantly reduced PFOS-induced
mortality at 12.5, 25, 50, and 100 mg/L, while mortality at 6.25 mg/L did not significantly
differ from PFOS-only treatments (Figure 3). At the threshold concentration of 12.5 mg/L,
PFOA reduced PFOS-induced mortality by 80.1% ± 4.26.
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Figure 3. Mortality of larval sheepshead minnows (Cyprinodon variegatus) after 96 h exposure to
2 mg/L PFOS with various concentrations of PFOA. PFOS was kept constant at 2 mg/L, while
PFOA concentrations ranged from 6.25 to 100 mg/L. Control indicates treatments without PFOS
nor PFOA, while 0 indicates 0 mg/L PFOA + 2 mg/L PFOS. Letters indicate significant differences
determined by a one-way ANOVA followed by a Tukey HSD post hoc test. Values represent the
mean of three replicates ± standard error of the mean.
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3.5. Effects of PFOS and PFOA on Oxidative Stress

All treatments significantly increased MDA concentrations relative to the control, with
2 mg/L PFOS increasing MDA by 105% ± 3.25, 2 mg/L PFOS + 12.5 mg/L PFOA by
71.4% ± 5.36, and 12.5 mg/L PFOA by 66.5% ± 3.18 (Figure 4). PFOS + PFOA significantly
reduced MDA concentrations compared to PFOS-only treatments by 16.5% ± 2.61. GSH
concentrations were significantly reduced by PFOS-only treatments (40.7% ± 1.87), while
PFOS + PFOA and PFOA-only treatments did not result in significant changes. GSH con-
centrations were significantly higher (43.8% ± 1.78) in PFOS + PFOA treatments compared
to PFOS only. A PFOA concentration of 12.5 mg/L was used as this was the determined
threshold concentration of antagonistic effects with PFOS determined in Figure 3.
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4. Discussion

Treatments with PFOS or PFOA, as well as binary mixtures to sheepshead minnow
embryos did not result in significant mortality. However, larvae treated with PFOS experi-
enced significant mortality, with an LC50 of 1.97 mg/L (1.64–2.16), while PFOA treatments
did not result in any significant mortality (Table 1). These results are in agreement with
Burcham et al. [24] where survival of sheepshead minnow embryos was not affected by
PFOS exposure, while larvae were more sensitive. This lack of embryonic sensitivity
may result from the chorion preventing the uptake of the chemicals. Similar trends of
embryos being resistant to chemical toxicity have been observed with polychlorinated
biphenyls (PCBs) [49], 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [50], and bifenthrin [51],
all of which are known to be more toxic in larvae. This is a known occurrence mainly
for hydrophobic chemicals [52] but can also be influenced by several other factors, such
as species-specific chorion properties and exposure conditions [53,54]. PFAS have am-
phiphobic properties, so it is unclear as to how they interact with the chorion, but these
results suggest that the chorion may be hindering PFAS uptake. However, Ankley et al. [55]
observed PFOS uptake in embryonic fathead minnows (Pimephales promelas). Fang et al. [56]
have also reported increased body burdens of PFOS in marine medaka (Oryzias melastigma)
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embryos at 10 days post fertilization (dpf) relative to 4 dpf. Differential gene expression and
biomarker concentrations were observed in treated embryos, which indicates PFOS uptake
rather than only adsorption to the chorion [56]. Since they have also reported that embryos
were less sensitive than larvae, it is possible that embryos may be less sensitive to PFOS
than larvae independent of the chorion, but further work on presence or absence of the
chorion is warranted to better characterize this difference in life stage-dependent toxicity.

While 1:1 exposures of PFOS + PFOA at all concentrations did not result in significant
differences in mortality compared to PFOS only, when PFOA was kept constant at 100 mg/L
during co-treatments with PFOS, the LC50 was significantly higher at 3.10 mg/L (2.62–3.79),
suggesting an antagonistic effect of the mixture (Table 1). PFOS + PFOA co-treatments
significantly reduced PFOS-induced mortality even at PFOA concentrations of 12.5 mg/L
(Figure 3), while co-treatments of PFOS with PFHxA or PFBA did not significantly affect
mortality (Figure 1). However, the level of mortality was significantly different between the
three co-treatments. These results indicate that the length of the carbon chain may correlate
with the level of observed toxicity, as all three compounds had the same carboxylic acid
functional group and only differed by the number of carbons in their backbone. A trend
of increased PFAS toxicity has been observed with increased carbon chain length and the
presence of a sulfonate group [30,35,57], but to our knowledge, this is the first study which
provides evidence of increased antagonistic effects of carboxylic acids with increasing
carbon chain lengths co-treated with PFOS. In a similar study using zebrafish (Danio rerio)
embryos, Ding et al. [32] observed a complex interactive effect of a PFOS-PFOA mixture,
observing antagonistic, additive, and synergistic effects depending on the concentration of
each compound. Conversely, Menger et al. [35] observed only reduced toxicity in zebrafish
embryos exposed to a mixture of nine PFAS compared to individual PFAS. There are few
PFAS mixture studies utilizing fish, but even in non-fish models, such as the American
bullfrog (Rana catesbeiana) [33], Northern leopard frog (Rana pipiens) [34], mouse (Mus
musculus) [36], and Northern bobwhite quail (Colinus virginianus) [37–39], there are no clear
patterns of antagonistic, additive, or synergistic effects of PFAS mixtures.

PPARα activation has been proposed to be a molecular initiating event for toxic effects
of many PFAS [58,59]. However, PFOS, which induced the greatest toxic response, did
not significantly affect pparα expression, while PFOA, PFHxA, and PFBA all significantly
upregulated pparα while not causing significant mortality (Figures 2 and 3). This was
expected as there is a robust weight of evidence toward PFOA having a higher binding
affinity toward PPARα in human and rodent cells [27,59–62]. However, direct binding
affinity to PPARα has also been measured in human and Baikal seal (Pusa sibirica) cells using
competitive binding assays and, in both species, PFOS had a higher binding affinity than
PFOA [63]. Several in vivo studies also report conflicting results. Fang et al. [57] observed
that PFOS significantly downregulated pparα expression in marine medaka embryos at
4 dpf but upregulated it at 10 dpf. Interestingly, Søderstrøm et al. [64] observed synergistic
activation of Atlantic cod (Gadus morhua) pparα when exposed to a PFOS–PFOA mixture
compared to PFOA only, as well as to PFOS, which was found to not activate pparα on
its own. A putative allosteric binding site was identified on the PPARα which, upon
binding with PFOS, stabilizes the receptor and potentially increases the binding affinity
toward PFOA. However, in the present study, the expression of pparα was not affected
when sheepshead minnow larvae were treated with PFOS or a PFOS + PFOA mixture but
was significantly upregulated when treated with PFOA. Several other studies have also
observed upregulation of pparα in response to PFOS treatment in zebrafish embryos [29],
juvenile Atlantic salmon (Salmo salar) [65], and marine medaka [57]. While there is no
clear trend for whether PFOS or PFOA have a greater binding affinity toward PPARα
in fish, Rosen et al. [26] estimated that over 75% of differentially expressed genes of
PFAS-treated mice were PPARα-dependent, indicating the importance of the receptor to
PFAS-mediated toxicity.
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In contrast to pparα, apoa4 expression was only significantly upregulated in the PFOS
treatment, while expression in the PFOS + PFOA co-treatment did not differ from the control
or PFOA treatment. While not statistically significant, a trend of increasing apoa4 expression
was also observed in PFOS co-treatments with PFHxA or PFOA which indicates that PFOS
may be driving this upregulation. Other groups have observed mixed results with apoa4
expression following PFAS treatment, as some groups have reported upregulation in PFOA-
treated fish [66], while others reported downregulation [67]. While few groups have studied
apoa4 expression in PFOS-treated fish, the same mixed trend was observed in PFOS-treated
fish with apoa1 [29,68]. In rat hepatoma cells, PFOS was found to upregulate apoa4 roughly
two-fold higher than PFOA when exposed at 100 µM but downregulated apoa4 at 10 µM
while PFOA upregulated, and both compounds downregulated apoa4 at 1 and 0.1 µM [69].
While PFAS have been shown to affect lipid homeostasis and bioenergetics in several
species [70–72], it is unknown how changes in apolipoprotein concentrations can influence
PFAS toxicity, although some groups suggest that they may act as a transporter of PFAS
throughout the body [73], and their concentrations are often positively correlated to PFOS
and PFOA concentrations in humans [74]. It should also be noted that while apoa4 was
used as a molecular biomarker to confirm pparα activation, the inverse trend was observed
where PFOS did not upregulate pparα while upregulating apoa4, while PFOA upregulated
pparα but not apoa4 (Figure 2). It is unclear as to why this inversed trend was observed,
but differences in the concentrations of PFOS and PFOA may have contributed to this
observation. Since PFOS exposures were conducted at 2 mg/L and PFOA at a higher
concentration of 100 mg/L, pparα regulation may have been affected differently, but the
lack of pparα upregulation in the PFOS + PFOA co-treatment contrasts this possibility. The
difference in apoa4 concentration, despite the differences in pparα regulation, could be due
to differences in receptor activation. While pparα was shown to be upregulated by PFOA,
it does not necessarily mean the receptors were being activated. Conversely, PFOS could
also have been activating pparα but not upregulating its gene expression. While there exist
standardized fluorometric assays for other receptors (e.g., ethoxyresorufin-O-deethylase
assay for the aryl hydrocarbon receptor), it is difficult to confirm PPARα activation without
specialized means and was outside of the scope of this work. Lastly, while APOA4 is
not regulated by other PPARs, it can be regulated by liver X receptors (LXR) in mice [75]
and zebrafish [76]. This indicates that a more specific, targeted gene should be used for
confirming PPARα activation in future studies.

Oxidative stress through ROS generation has been proposed as a potential mechanism
of toxicity of PFAS. Sheepshead minnow larvae treated with 2 mg/L PFOS and 12.5 mg/L
PFOA were found to have significantly lower MDA concentrations compared to PFOS-only
treatments, indicating lower lipid peroxidation in the mixture compared to the individual
PFOS treatment (Figure 4). PFOS also significantly lowered GSH concentrations compared
to the control, while PFOS + PFOA co-treatment did not result in significant reductions. This
provides evidence toward reduced oxidative stress potentially playing a role in the reduced
toxicity of PFOS + PFOA mixtures compared to PFOS-only treatments. β-oxidation of fatty
acids, which is regulated by PPARα [77], has been proposed as a potential mechanism of
ROS generation via PFAS [7]. However, the oxidative stress and toxicity results did not
positively correlate with pparα expression in the present study. It is unknown if this is due to
differences in life stages, if the mechanisms are species-specific, or a different reason. While
PFOS and other sulfonic acid-containing PFAS have been attributed as major contributors
to PFAS-induced oxidative stress [29,30,78], both PFOS and PFOA have been shown to
up- or downregulate several oxidative stress genes in myriad fish species (summarized
in Lee et al. [7]). An ROS-generating mechanism of PFOS has been explored in zebrafish
(Shi and Zhou [28]), but there are few comparisons between other individual PFAS and
mixtures, warranting further study.
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5. Conclusions

In summary, none of the tested PFAS caused mortality in embryonic sheepshead
minnows at the tested concentrations, while only PFOS caused mortality in larvae. These
results suggest that sheepshead minnow embryos are not sensitive to PFAS. Co-treatment
with PFOA significantly reduced mortality, as well as lipid peroxidation and depletion of
glutathione in PFOS-treated larvae. PFOS was the only compound not capable of upreg-
ulating pparα expression but was the only compound to upregulate apoa4 expression in
larvae. These findings present preliminary evidence for antagonistic interactions between
PFOA and PFOS, which may contribute to reduced mixture toxicity in larval sheepshead
minnows, potentially through reduced oxidative stress. Further studies are needed to
determine if similar results are observed at environmentally relevant concentrations. Fur-
ther mechanistic studies are also warranted to explore these antagonistic effects and to
identify molecular initiating events to better predict the toxic effects of PFAS mixtures in
developing fish.
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www.mdpi.com/article/10.3390/toxics12010091/s1. There are three supplementary tables and one
supplementary figure. Table S1, primer sequences used for qPCR. Table S2, instrumental conditions
for LC/MS analyses of PFAS. Table S3, measured PFAS concentrations in exposure solutions after 0 or
24 h exposure. Figure S1, relative gene expression of pparα and apoa4 consolidated into one figure.
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