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Abstract: Uranium mining activities have contributed to the distribution and uptake of radionu-
clides, which have increased the active concentrations of natural radionuclides in environmental
media, causing elevated human health risks. The present study aims to assess the spatial distribution
characteristics of natural radionuclides in the surface soils and river sediments of the typical granite
uranium mining area in South China, as well as investigate the geochemical features of natural
radionuclides in the soil and sediments to understand their migration processes. The activity concen-
trations for 238U, 226Ra, 232Th, and 40K ranged from 17–3925 Bq/kg, 50–1180 Bq/kg, 29–459 Bq/kg,
and 240–1890 Bq/kg, respectively. The open-pit mining areas and tailings pond locations exhibited
the highest concentrations of activity for all these radionuclides. This distribution points to an
elevated potential health risk due to radiological exposure in these specific areas. Additionally, the
values of radium equivalent activity (Raeq) and annual gonadal dose equivalent (AGDE) in those
areas were higher than the limits recommended by ICRP (2021). 238U and 226Ra have a significant
correlation (0.724), and the cluster analysis was showing a statistically meaningful cluster below
5 indicated that they have similar behavior during parent rock weathering and watershed erosion,
and the distribution of 232Th and 40K were influenced by the addition of rock types. The activity ratios
of 226Ra/238U, 226Ra/232Th, 238U/40K, and 226Ra/40K variation indicated that 40K more mobile than
226Ra and 238U, U(VI) was reduced to U(IV) by organic matter in the downstream area and re-entered
into the sediment during the sediment surface runoff in the small watershed of the uranium ore
open-pit mining area. Therefore, it is necessary to further seal up and repair the tailings landfill area.

Keywords: natural radionuclides; granite uranium mining areas; radiological hazards; river sediments
and soils

1. Introduction

All organisms inevitably experience exposure to radioactive radiation throughout
their existence on Earth. This radiation primarily originates from radionuclides, and can
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be classified into artificial radionuclides (such as 137Cs, 239Pu, and 134Cs) and natural
radionuclides (such as 238U, 226Ra, and 232Th) [1]. Approximately 85% of the radioactive
radiation arises from natural radionuclides [2], which pose a threat to the survival of living
organisms. These radionuclides primarily result from natural radioactive decay series
(238U, 232Th, and 40K), with a half-life equivalent to the age of the Earth [3]. They are widely
distributed in various terrestrial environments, such as soil, sediment, rock, beach, air,
vegetation, rivers, and oceans [1,4], and are affected by diverse geological and geographical
factors [5].

The worldwide per capita annual effective dose of natural radiation is reported to
be 2.4 mSv [1], while in China, it has increased from 2.3 mSv in the early 1990s to around
3.8 mSv by 2016 [6]. The rise in radiation dose resulting from human activities has implica-
tions for public health concerns [7]. Anthropogenic activities can increase the concentration
of heavy metals and radionuclides [8–10]. Activities associated with ore mining and pro-
cessing can contribute to elevated levels of naturally occurring radioactive materials and
heavy metals in soils and sediments [9–13]. Specifically, uranium mining activities involve
minerals from uranium deposits that are rich in 238U and 232Th decay series nuclides, as
well as 40K [14,15]. During uranium mining and processing, these natural radionuclides
can be released from ore minerals [16], leading to media contamination, as well as food and
water contamination due to various pollutants originating from mining operations [17,18].
Currently, the global accumulation of uranium tailings exceeds 2 billion tons [14], with only
a small fraction of old abandoned tailings ponds having been remediated [6]. According to
estimates by the United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR), the collective annual dose to surrounding residents from uranium mines,
mills, and tailings is approximately 50–60 person-Sv [14]. Comprehending the migration of
radionuclides in uranium ore fields is of paramount importance for safeguarding the local
ecological environment and the well-being of residents.

The present study area was one of the old typical granite-type uranium mines in
China. The mining and processing of uranium ore have significantly impacted both the
normal production activities and the living environment of the local population, leading
to increasingly prominent environmental issues [19]. The prolonged mining activities
have caused substantial damage to the surface environment within the uranium ore field,
exacerbating the environmental challenges faced in the area. Previous studies investigated
the activities of 238U, 226Ra, 232Th, and 40K in the soil of mining areas and found that the
external exposure level of gamma radiation in the uranium mining areas is much higher
than the normal value [19,20]. The enrichment mechanism of uranium in the sediment cores
of downstream reservoir, adjacent to the uranium deposit, has been investigated using
activity ratios of 230Th/234U and 230Th/238U, as well as δ238U isotopes [21]. However, due to
the different geochemical behaviors of 238U, 226Ra, 232Th, and 40K during watershed erosion
and transport, the enrichment patterns of these nuclides in the area differ. Unfortunately,
there has been a lack of research on the redistribution of radioactive nuclides in the soil
and sediment surrounding this specific uranium mining region. The present study aims to
assess the spatial distribution characteristics of natural radionuclides in the surface soils
and river sediments of the uranium mining area, as well as investigate the geochemical
features of these radionuclides in the soil and sediments to understand their migration
processes. Additionally, the study aims to evaluate the environmental risks associated
with radioactivity and provide the geochemical behavior of 238U, 226Ra, 232Th, and 40K
during the surface runoff in uranium mining areas, and will contribute to the formulation
of effective strategies and policies aimed at reducing radiological exposure and ensuring
the protection of human health and the environment.

2. Methods and Materials
2.1. Study Area

The uranium deposit area is situated in the neighboring regions of Jiangxi Province
and Guangdong Province, characterized by a hilly and mountainous landform and a hu-
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mid subtropical monsoon climate. The annual average temperature is 22–25 ◦C. The area
experiences significant surface runoff, and Taojiang River runs through it (Figure 1). The
local economy primarily relies on economic crops such as rice, forest trees, fruits, metal
minerals, small hydropower stations, and animal husbandry. The area under study repre-
sents a typical granite-type uranium deposit, and is the largest of its kind in Guangdong
Province [22]. It is located in the Guidong granite massif, in northern Guangdong Province,
China. The U deposit predominantly consists of medium-grained biotite granite, with Early
Jurassic porphyritic and Late Jurassic muscovite microgranite [23]. The ore minerals are
predominantly composed of pitchblende, pyrite, hydrogoethite, hematite, and sphalerite,
with an average U content of 5–13 mg/kg [24]. The original in situ resources of the deposit
were estimated to be between 1500 and 5000 t U, with grades ranging from 0.1–0.3% U [25].
Uranium hydrometallurgical industry was established in 1957, utilizing heap leaching
techniques with sulfuric acid [23]. Solid and liquid waste generated from mining and
hydrometallurgical activities contain elevated levels of radionuclides as well as various
harmful non-radioactive elements, raising concerns about environmental pollution [21]. A
mining area restoration project has been initiated since 2019.

Toxics 2024, 12, x FOR PEER REVIEW 4 of 18 
 

 

2. Methods and Materials 
2.1. Study Area 

The uranium deposit area is situated in the neighboring regions of Jiangxi Province 
and Guangdong Province, characterized by a hilly and mountainous landform and a hu-
mid subtropical monsoon climate. The annual average temperature is 22–25 °C. The area 
experiences significant surface runoff, and Taojiang River runs through it (Figure 1). The 
local economy primarily relies on economic crops such as rice, forest trees, fruits, metal 
minerals, small hydropower stations, and animal husbandry. The area under study rep-
resents a typical granite-type uranium deposit, and is the largest of its kind in Guangdong 
Province [22]. It is located in the Guidong granite massif, in northern Guangdong Prov-
ince, China. The U deposit predominantly consists of medium-grained biotite granite, 
with Early Jurassic porphyritic and Late Jurassic muscovite microgranite [23]. The ore 
minerals are predominantly composed of pitchblende, pyrite, hydrogoethite, hematite, 
and sphalerite, with an average U content of 5–13 mg/kg [24]. The original in situ resources 
of the deposit were estimated to be between 1500 and 5000 t U, with grades ranging from 
0.1–0.3% U [25]. Uranium hydrometallurgical industry was established in 1957, utilizing 
heap leaching techniques with sulfuric acid [23]. Solid and liquid waste generated from 
mining and hydrometallurgical activities contain elevated levels of radionuclides as well 
as various harmful non-radioactive elements, raising concerns about environmental pol-
lution [21]. A mining area restoration project has been initiated since 2019. 

 
Figure 1. Distribution of sampling points in the study area. The xz represents the topsoil samples 
and xzse represents river sediment samples. 

2.2. Sample Collection and Analysis 
In October 2020, samples were collected from the uranium mining area (Figure 1). A 

total of 21 samples were collected, comprising 8 sediment samples obtained from the 
opencast mining catchment and 13 surface soil samples. The surface soil samples were 
collected with dimensions of 10 cm length × 10 cm width × 5 cm depth, and each sample 
weighed approximately 100 g. River sediments were collected using a box sampler, with 
a sampling depth of 5 cm and a sample size ranging from 500–1000 g. All samples were 

Figure 1. Distribution of sampling points in the study area. The xz represents the topsoil samples
and xzse represents river sediment samples.

2.2. Sample Collection and Analysis

In October 2020, samples were collected from the uranium mining area (Figure 1).
A total of 21 samples were collected, comprising 8 sediment samples obtained from the
opencast mining catchment and 13 surface soil samples. The surface soil samples were
collected with dimensions of 10 cm length × 10 cm width × 5 cm depth, and each sample
weighed approximately 100 g. River sediments were collected using a box sampler, with
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a sampling depth of 5 cm and a sample size ranging from 500–1000 g. All samples were
carefully placed in resealable plastic bags and transported to the laboratory for further
analysis. The soil samples were dried at 60 ◦C until a constant weight was achieved, while
the sediment samples were subjected to freeze-drying until a constant weight was obtained.
Each dried sample was finely pulverized by ceramic mortar and passed through a 20 mesh
screen for sieving. Subsequently, the samples were securely sealed in plastic centrifuge
tubes (60 mm height × 15 mm diameter) [26]. The sealed samples were stored for at least
6 months in a cool, dry spot away from sunlight place for counting to establish a secular
equilibrium between 234Th and 238U to radionuclide analysis [27].

The specific activities of 238U, 226Ra, 232Th, and 40K were measured using gamma-ray
spectrometry with a highly pure germanium (HPGe) coaxial detector (Canberra GCW3523,
CANBERRA Industries Inc, Meriden, CT, USA). To minimize background noise, the detec-
tor was shielded by an ultralow background lead cylinder, resulting in a background count
of 0.9 counts per second (cps) within the energy range of 10–2000 keV. The detector had an
energy resolution of 2.2 keV and a relative detection efficiency of 50.2% [26]. The activity
of 238U was determined using the gamma line at 63.3 keV for 234Th. The activity of 226Ra
was determined by those of its decay products: 214Bi (609 keV) and 214Pb (352 keV). The
activity of 232Th was determined by the 232Th decay series of 228Ac (338 keV and 911 keV),
208Tl (583.2 keV), and 212Pb (238.6 keV) [27–29]. The activity of 40K was directly measured
based on the gamma-ray energy peak at 1460 keV. The efficiency calibration of the detector
systems was conducted using standard samples (IAEA375 and IAEA-447)(International
Atomic Energy Agency, Vienna, Austria) as part of the quality assurance/quality control
(QA/QC) method to ensure the reliability of the data. In order to make the uncertainty of
each radionuclide less than 10% at the 95% confidence level, the sample counting times
were 12–48 h. A procedure blank sample was also measured for 72 h. The radionuclide
measurements were analyzed at the Key Laboratory of the Ministry of Education, Qinghai
Normal University, Xining, China. The spatial distribution of 238U, 226Ra, 232Th, and 40K
has been drawn using ArcGIS 10.2(Environmental Systems Research Institute, RedLands,
CA, USA).

2.3. Calculation of Radiological Indices

In this study, several parameters were calculated to assess the potential risks posed by
the radionuclides under investigation in terms of their radiation levels, potential health
effects, and the associated carcinogenic risk. These parameters include radium equivalent
activity (Raeq), outdoor gamma absorbed dose rate (DR), annual effective dose equivalent
(AEDE), annual gonadal dose equivalent (AGDE), and excess lifetime cancer risk (ELCR)
were calculated for these radionuclides.

To assess the gamma radiation hazard associated with soil, the radium equivalent
activity was used as the radiation hazard index. It is generally accepted that Raeq should
not exceed 370 Bq/kg, and these limits are stated to be equivalent to an effective dose of
1.5 mGy/a based on gamma external radiation dose [1]. The specific formula is as follows:

Raeq = CRa + 1.43CTh + 0.077Ck (1)

The CRa, CTh, and CK are the active concentrations (Bq/kg) of 226Ra, 232Th, and
40K, respectively.

Based on the activity levels of 226Ra, 232Th, and 40K, the absorbed gamma dose rate
(DR, nGy/h) of terrestrial gamma radiation in the air at 1 m level was calculated. It is
calculated as follows [1]:

DR = 0.462CRa + 0.604CTh + 0.0417CK (2)

The CRa, CTh, and CK are the active concentrations (Bq/kg) of 226Ra, 232Th, and 40K,
respectively [1].



Toxics 2024, 12, 95 5 of 16

The annual effective dose equivalent (AEDE, mSv/y) is an assessment of potential
biological effects associated with populations exposed to ionizing radiation, and effective
dose rates are used for radiation protection. This study calculates the outdoor annual
effective dose equivalent. Its calculation formula is as follows [1]:

AEDE = DR × DCF × OF × T (3)

The DR is the absorbed gamma dose rate, DCF is the dose conversion coefficient
(0.7 Sv/Gy), OF is the outdoor occupancy coefficient (20%), and T is the time coefficient
(8760 h) [1].

Annual gonadal dose equivalent (AGDE, µSv/y) is a measure of the genetic signifi-
cance of the annual dose equivalent received by the reproductive organs (gonads) of the
population. The relationship is as follows [30]:

AGDE = 3.09CRa + 4.18CTh + 0.314CK (4)

The CRa, CTh, and CK are the active concentrations (Bq/kg) of 226Ra, 232Th, and 40K,
respectively [30].

The lifetime risk of fatal cancer is related to the likelihood of developing lifetime cancer
at a certain exposure [28]. Excess lifetime cancer risk (ELCR) estimates the probability that a
human population will develop cancer from exposure to naturally occurring radionuclides
during a given lifetime. This is calculated using the following formula [31]:

ELCR = AEDE × DL × RF (5)

where DL is the life expectancy (70 years), and RF is the fatal risk factor per year, equal to
0.057 Sv−1 [1,31].

The spatial distribution of Raeq, DR, AEDE, AGDE, and ELCR has been drawn using
ArcGIS 10.2.

3. Results and Discussion
3.1. Radioactivity of Radionuclides

The activities of natural radionuclides (238U, 226Ra, 232Th, and 40K) in the surface soil
and sediments of the study area are depicted in Figure 2. Among them, the highest value
of 238U is the tailings pond landfill area (xzse11) at 3925 ± 20 Bq/kg, while the lowest
value of 17 ± 2 Bq/kg is observed in the soil upstream of the tailings pond (xz10). The
activity of 226Ra is 50–1180 Bq/kg, with the highest value recorded in xzse05 and the lowest
value in xz10. The activity of 232Th ranges from 29–459 Bq/kg, and that of 40K ranges from
240–1890 Bq/kg. The average activities of 238U, 232Th, 226Ra and 40K were 537 ± 966 Bq/kg,
130 ± 98 Bq/kg, 360 ± 351 Bq/kg, and 983 ± 382 Bq/kg, respectively. These average values
not only exceed the soil measurements reported by a previous study [20] in the same
area, but are also significantly higher than the global average values (35 Bq/kg for 238U,
35 Bq/kg for 226Ra, 30 Bq/kg for 232Th, and 400 Bq/kg for 40K [1], and the average values
for China (33 Bq/kg for 238U, 32 Bq/kg for 226Ra, 41 Bq/kg for 232Th, and 440 Bq/kg for
40K [1]. Furthermore, these values also exceed the average values of these radionuclides
in the Earth’s upper crust (33 Bq/kg for 238U, 33 Bq/kg for 226Ra, 43 Bq/kg for 232Th, and
720 Bq/kg for 40K [32]. The variation coefficient, which indicates the degree of variation
or heterogeneity, follows the order: 238U (180%) > 226Ra (97%) > 232Th (76%) > 40K (39%).
This implies that the distribution of 238U and 226Ra in the study area is highly heteroge-
neous, likely influenced by the distribution of uranium deposits and human activities
such as mining [33]. On the other hand, the variation coefficient for 40K is relatively small,
indicating a more stable and less affected distribution on the surface, less influenced by
lithology and human activities (mining activities).
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3.2. Spatial Distribution Characteristics of Radionuclides

The spatial distribution of radionuclides, obtained through inverse distance weighted
spatial analysis, is presented in Figure 3. The activity of 238U exhibits an increasing trend
from the southwest to the northeast in the study area. High activity levels are observed
in the open-pit mining area (xz02–xe06) and the tailings area (xzse11). Samples from the
small watersheds, xzse03 to xzse06, generally show high 238U activity (Figure 3a). This
suggests that the open-pit uranium mining area plays a significant role in the distribution
of 238U, due to the production of a large amount of slag during the mining process, which
then spreads to the surrounding soil. The surface vegetation in the mining area has been
extensively damaged, leading to increased soil erosion in the watershed. As a result, a
substantial amount of highly concentrated uranium soil has rapidly migrated downstream
through surface runoff, intensifying soil erosion. This, in turn, contributes to the high
activity of U in the river sediment within this catchment. Although pit closure and mine
restoration measures have been implemented, the restoration efforts have mainly focused
on the xz02 to xzse03 area during the sampling period. Corresponding treatment has
not been carried out in the middle and lower reaches of the watershed. Consequently,
the upstream area of the small watershed exhibits lower 238U values compared to the
downstream area. This is because the soil used for mine restoration is low-background
soil containing uranium, which is transported from other locations. During surface runoff,
a portion of this soil may erode and be transported downstream, diluting the original
high-uranium sediment. As a result, the 238U activity in the sediment tends to increase from
upstream to downstream. Since 226Ra is a decay product of 238U, its spatial distribution
characteristics are similar to those of 238U, showing an increasing trend from the southwest
to the northeast in the study area, with high values observed in the uranium open-pit
mining area. The changes in 226Ra closely resemble those of 238U in the small watersheds
of the open-pit mining area in the northeast. This indicates that the mine restoration
efforts by the engineering team have exerted a certain control over the pollution of these
two radionuclides.
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The high activity of 232Th is observed in the soil samples located in the southwest of
the study area, specifically in xz13–xz15 and xz22 (Figure 3c). The trend of 232Th activity
shows a decreasing pattern from the south-central to the northeast in the study area. On
the other hand, the high activity of 40K is predominantly distributed in the southern part
of the study area (Figure 3d). As one moves from the south to the north, the 40K activity
generally exhibits a decreasing trend. Interestingly, in the small watershed of the uranium
mining area within the open-pit mining zone, the distribution characteristics of 40K are
completely opposite to those of 238U, 226Ra, and 232Th. The activity of 40K tends to decrease
from upstream to downstream in this particular area.

The high values of 238U and 226Ra in the study area can be attributed to the influence
of uranium mining and tailings. Additionally, the spatial distribution of radionuclides is
also controlled by the lithology [34] and geochemistry condition [35]. In the east of the
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Guidong granite body, where the uranium deposit is located, the Maofeng, Sundong, and
Xiazhuang granites serve as the main host rocks for the ore field [36]. The surrounding
rocks in the northeastern part of the Guidong rock body consist of Cambrian–Ordovician
shallow metamorphic sandstone, shale, and slate [24], while the southwestern part is pri-
marily composed of Devonian–Carboniferous siltstone, sandstone, glutenite, and carbonate
rock [19]. The source rocks of the Guidong pluton contain ancient uranium-rich layers [37],
and the Sinian–Cambrian rock layers have high uranium and thorium contents, reaching
36 mg/kg and 19.5 mg/kg, respectively [38]. The elevated uranium and thorium content
in the rock formations contributes to the high radioactivity of 238U, 226Ra, and 232Th in the
study area. Potassium (K) is mainly enriched in the alkaline feldspar and mica during the
late stage of magma evolution in this area. As the magma evolves, the basic components
(Ca, Mg, and Fe) gradually decrease, while the acid–base components (Si, K, Na, and Li)
increase [37]. The lithology of the rock mass transitions from acidic to intermediate acidic
to super acidic in the early stage, with subsequent intrusion of intermediate-basic magma
and intermediate-acid volcanic activity in the late stage. In terms of uranium content, the
rocks exhibit an increasing trend from the early period to the later period [24]. As a result,
the activity of 40K tends to be higher in the southern part of the study area.

3.3. Radiological Hazards

The spatial distribution of Raeq in the study area is shown in Figure 4, with values
ranging from 112–1513 Bq/kg. The high-value areas are primarily located in the open-
pit mining and tailings areas. The Raeq values in these areas are more than two times
higher than the reference value of 370 Bq/kg recommended by UNSCEAR [1]. There
are five sampling sites (23% of the total) with Raeq values below 370 Bq/kg, mainly
concentrated in the central part of the research area. The presence of high Raeq values
indicates that the study area has a high natural gamma radioactivity geological background.
The relative contributions of 226Ra, 232Th, and 40K to Raeq vary significantly across different
regions. In the open-pit mining catchment (xzse02 to xzse06), the relative contribution
of 226Ra to Raeq ranges from 26–87%, with an average value of 60%. There is a strong
relationship between Raeq and 226Ra in the open-pit mining catchment, with a correlation
coefficient of 0.919 (p < 0.01). This suggests that the variation in 226Ra primarily controls the
characteristics of Raeq in the open-pit mining catchment. In other sampling sites, the relative
contributions of 226Ra and 232Th to Raeq range from 23–64% and 22–61%, respectively, both
with average values of 38%. However, there is a significant correlation between 226Ra and
Raeq (correlation coefficient of 0.823; p < 0.01). Therefore, in the study area, the variation in
226Ra has a dominant influence on the variation in Raeq.

The spatial distribution of the AGDE is shown in Figure 4. The values of AGDE range
from 355–4718 µSv/y, which is higher than the worldwide average (300 µSv/y) [1]. In the
open-pit mining area, the AGDE varies from 2287–4718 µSv/y, which is more than 7.5 times
higher than the world average. The relative contribution of 226Ra to the AGDE values
ranges from 22–86%, with an average contribution of 48%. There is a significant correlation
between 226Ra and AGDE (Pearson correlation coefficient of 0.917; p < 0.01), indicating that
the variation in 226Ra controls the spatial distribution of AGDE in the study areas.

The ranges of DR, AEDE, and ELCR in the study areas ranged from 51–696 nGy/h,
0.063–0.854 mSv/y, and 0.220 × 10−3–0.299 × 10−2, respectively (Figure 4). With the
exception of sampling site xz10, the DR, AEDE and ELCR values are much higher than the
average world values reported by UNSCEAR [1] (59 nGy/h, 0.070 mSv/y and 0.290 × 10−3,
respectively). The high values of DR, AEDE, and ELCR are predominantly distributed in
the open-pit mining and tailings areas. In these areas, the DR, AEDE, and ELCR values are
approximately 6 times, 5.5 times, and 5 times higher than the average world values reported
by UNSCEAR [1], respectively. Overall, the relative contribution of 226Ra to DR, AEDE,
and ELCR values ranges from 23–83%, with an average value of 50%. There is a significant
correlation between 226Ra and DR, AEDE, and ELCR values (correlation coefficient of 0.929;
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p < 0.01), indicating that 226Ra predominantly influences the spatial distribution of DR,
AEDE, and ELCR in the study areas.
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Given the high radioactivity levels of 226Ra, 232Th, and 40K in the open-pit mining
areas and tailings areas, the values of the AGDE exceed the limits recommended by
ICRP [39] and the general limit of 1 mSv/y. This suggests that protective measures should
be implemented to minimize radiological exposure for individuals living in those areas and
during mining activities. To address the impact of radionuclides in the uranium mining area
on the surrounding environment, environmental remediation measures are necessary. This
includes not only soil restoration in the mining area, but also the cleanup and containment
of river sediments in the affected areas. The high values of radioactive indicators in the
downstream areas of the tailings area may be attributed to flash floods and leaks from
the sealed tailings, which can enter rivers through surface runoff and consequently affect
the aquatic environment. Therefore, it is crucial to implement measures to further seal
and rehabilitate the tailings landfill area to prevent further contamination and minimize
environmental risks.

Comparisons of the mean values of Raeq, DR, AEDE, AGDE, and ELCR in the mining
areas of the present study with similar research conducted worldwide for uranium ore
mining, as well as the levels recommended by UNSCEAR [1], are shown in Table 1.

Table 1. Radiological hazards on uranium deposit in previous studies from other regions in compari-
son to this study.

Raeq
(Bq/kg)

DR
(nGy/h)

AEDE
(mSv/y)

AGDE
(µSv/y) ELCR Country Reference

24,802 11,447 14 76,608 49.1 × 10−3 Australian [40]
781 362 0.444 2458 1.55 × 10−3 Kangra, India [41]
617 289 0.355 1979 1.24 × 10−3 Salamanca, Spain [42]
329 149 0.183 1009 0.639 × 10−3 Manyoni, Tanzania [43]
466 213 0.261 1470 0.913 × 10−3 Egypt [44]

3309 1531 1.88 10,274 6.57 × 10−3 Köprübaşi, Türkiye [45]
12,078 5545 6.8 37,184 23.8 × 10−3 Jiangxi, China [46]
27,508 11,736 14.4 80,976 50.4 × 10−3 Laocai, Vietnam [47]
1049 485 0.594 3301 2.08 × 10−3 Xiazhuang, China This study
370 59 0.07 300 0.290 × 10−3 World average [1]

The highest values of Raeq, DR, AEDE, AGDE, and ELCR were found in Laocai,
Vietnam. This can be attributed to the presence of placer ores containing minerals such as
thorium, monazite, oxinite, checchite, bastnezite, smacskite, manhetite, ilmenite, zircon, and
barite, which have high concentrations of Th and U (with mean mass fractions of 0.157% and
0.016%, respectively) [47]. The lowest radiological hazard values were found in Manyoni,
Tanzania [43], where the host rocks are dominated by gneiss–granite–migmatite complex
geology [43], which may have concentrations of Ra, Th, and K. The values of radiological
hazards in the Xiazhuang uranium deposit fall within the range of previous studies.

3.4. Multivariate Statistical Analysis

The values of radionuclides and radiological indices has been normalized before con-
ducting the multivariate statistical analysis. The Pearson correlation coefficient analysis
in Table 2 indicates the relationships between radionuclides and radiological hazard pa-
rameters. It shows that 238U and 226Ra have a significant correlation (0.724; p < 0.01). As
226Ra is the decay product of 238U [1], this high correlation suggests that 226Ra inherits
characteristics from 238U [26], indicating that both radionuclides have similar behavior
during parent rock weathering and watershed erosion [47]. The lower correlations observed
among 40K, 232Th, and 238U series suggest that these radionuclides may have different
sources [48] and undergo different transport processes during surface runoff. This can be
attributed to variations in the host minerals of uranium, thorium, and potassium, which are
different in the study area; the high value of 238U in the study area being distributed in the
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mining and tailings pond regions; and the area containing uranium-rich minerals with high
concentrations, such as asphaltic [19,37]. 232Th, on the other hand, is generally more stable
compared to 238U, and its content is primarily associated with heavy minerals, such as ura-
nothorite and monazite [37]. The distribution of 40K is mainly influenced by potassium-rich
minerals, such as potassium feldspar. The rock types in this region transition from medium
coarse grained porphyritic biotite granite to fine grained porphyritic biotite granite as one
moves from southwest to northeast. The decreasing trend of potassium-rich minerals in
the rocks also contributes to a similar trend in 40K. Consequently, the low of correlation
among 238U, 232Th, and 40K indicates that these elements are controlled by the geological
characteristics and minerals of the study areas. The uranium was in the mining areas
and tailings pond because of the pitchblende, Th was enriched here, and K was enriched
potash feldspar [24,49]. The relationship between these radionuclides indicates that their
distribution is influenced by the specific host minerals present in the study area. The
significant correlations between the radioactive indicators and 226Ra further emphasize that
the activity of 226Ra controls the variations observed in the radiological hazard parameters.
This suggests that monitoring and assessing the activity of 226Ra can serve as a reliable
indicator for evaluating radiological hazards in the study area.

Table 2. Pearson correlation of each nuclide and radionuclide index.

238U 226Ra 232Th 40K Raeq DR AEDE AGDE ELCR

238U 1 0.724 ** −0.112 −0.229 0.610 ** 0.615 ** 0.615 ** 0.606 ** 0.615 **
226Ra 1 −0.046 0.003 0.915 ** 0.924 ** 0.924 ** 0.917 ** 0.924 **
232Th 1 0.181 0.350 0.323 0.323 0.335 0.323
40K 1 0.168 0.180 0.180 0.195 0.180
Raeq 1 0.999 ** 0.999 ** 0.999 ** 0.999 **
DR 1 1.000 ** 1.000 ** 1.000 **
AEDE 1 1.000 ** 1.000 **
AGDE 1 1.000 **
ELCR 1

** p < 0.01.

The cluster analysis based on the Ward method and square Euclidean distance for
radioactive variables in the uranium deposit (Figure 5) revealed three distinct clusters. The
first cluster consisted of 238U and 226Ra, showing a statistically significant concentration
below a square Euclidean distance of 5. The second cluster comprised 232Th, and the third
cluster represented 40K. These cluster results align with the Pearson correlation analysis,
further confirming the associations among the radionuclides. The findings of the cluster
analysis and correlation relationships highlight that the spatial distribution heterogeneity
of radionuclides is primarily governed by their geochemical processes and the regional
geographical environment [38]. This is consistent with the influence of different rock types
on the distribution of radionuclides [50]. The geochemical behavior of natural radionuclides
varies in response to common geological processes within the study area. This suggests
that the interaction between radionuclides and their surrounding environment, including
rock types and geochemical conditions, plays a significant role in shaping their spatial
distribution patterns.
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3.5. Radioactivity Ratio of Radionuclide

The trends of radioactivity ratios 226Ra/238U (226Ra/238U AR), 226Ra/232Th (226Ra/232Th
AR), and 238U/40K (238U/40K AR), and 226Ra/40K (226Ra/40K AR) with respect to the dis-
tances from sampling sites xz02 to xzse06 in the open-pit mining area are shown in Figure 6.
The 226Ra/238U AR exhibited a general decreasing trend from the mining area towards the
downstream in Taojiang River. In the mining area, the 226Ra/238U AR was above 1.5. The
host mineral for uranium in the area was primarily pitchblende [19,37]. During mining
activities and soil erosion processes, the valence state of uranium changed from U(IV) to
U(VI) under oxidizing conditions, leading to enhanced mobility of uranium [51]. On the
other hand, radium has a strong affinity for particles in freshwater environments [52–54].
The values of 226Ra/238U AR in the soil of the mining areas indicated that uranium was
more easily removed compared to radium. The conversion of uranium from U(IV) to
U(VI) occurred in the mining area due to weathering and mining activities in the upstream
source area. As a result, uranium migrated downstream towards the middle and lower
reaches. The enrichment of uranium ore appeared to be positively correlated with organic
matter [55]. Due to the presence of a large pig farm in the middle reaches of this watershed
(the site was between xzse04 and xzse05), the waste discharged from the pig farm contains
a significant amount of organic matter (observed on-site), leading to an increase in the
downstream area’s organic matter content. The enrichment of organic matter has led to
the sediment becoming an anaerobic environment. In this environment, organic matter
act as electron acceptors, facilitating the reduction of dissolved U(VI) to U(IV), and the
organic matter provides adsorption sites for U(IV) [56], transforming it from a dissolved
state to a particulate state and re-entered into the sediment, leading to a decrease in the
226Ra/238U AR from the source area to the downstream. Overall, the observed trends in the
226Ra/238U AR indicate the influence of weathering, mining activities, and the presence of
organic matter on the mobility and distribution of uranium and radium in the study area.
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The 226Ra/232Th AR ratio exhibited an initial increase followed by a decrease (Figure 6).
However, it showed a decreasing trend in sediments. This behavior can be explained by
the differential migration abilities of their parent radionuclides, 238U and 232Th, during
surface runoff processes in Taojiang River [26]. 238U has greater mobility than 232Th and
can migrate in dissolved form. On the other hand, 232Th is relatively stable and can only
migrate under strong acid conditions [50]. As a result, the 226Ra/232Th AR ratio showed
a decreasing trend in the midstream and downstream during surface runoff processes.
238U/40K AR and 226Ra/40K AR showed an increased trend during surface runoff in
the open-pit mining areas. During weathering, potassium bearing minerals can readily
release K+ ions, which can be easily transferred because the solubility of potassium gives
it high mobility during surface geological processes [50]. The high mobility of 40K in
the supergene process [48] can easily become activated and migrate with surface runoff
during mining processes [26]. Consequently, in the small watershed of the open-pit mining
area, the 40K concentration showed a decreasing trend from upstream to downstream due
to its high migration and emigration [57]. Therefore, the mining process can accelerate
the migration rate of radionuclides, such as 238U, 226Ra, and 232Th, from upstream to
downstream. However, the subsequent remediation efforts in uranium mines have slowed
down the release rate and flux of these radionuclides downstream, leading to the observed
trends in their spatial distribution.

4. Conclusions

The present study described the concentrations, spatial distributions, and assessments
of radiological hazards for natural radionuclides in the sediments and surface soil of a type
of granite uranium mining area in China. The distributions of 238U and 226Ra are controlled
by uranium mining areas, while the spatial distribution of 40K is controlled by magma
evolution. The average activities of 226Ra, 238U, 232Th, and 40K were much higher than the
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world safe value. High values of Raeq, DR, AEDE, AGDE, and ELCR are all located in the
studied uranium mining and tailings areas, among them, due to the impact of uranium
mining, these indicators in uranium mining areas are more than twice the world average,
and even the highest can reach more than 10 times. Therefore, workers or local residents
operating in this area need to take corresponding protective measures. 238U and 226Ra
have a significant correlation (0.724), and the cluster analysis was showing a statistically
meaningful cluster below 5 indicated that they have similar behavior during parent rock
weathering and watershed erosion and the distribution of 232Th and 40K were influenced
by the addition of rock types. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K
variation indicated that 40K was more mobile than 226Ra and 238U in the small watershed
of the uranium ore open-pit mining area. Due to the rich content of organic matter in the
downstream area, U(VI) was reduced to U(IV) by organic matter in the downstream area
and re-entered into the sediment. This study aimed to provide fundamental information
regarding the concentrations, distributions, and potential hazards of radionuclides in
uranium mining area in China. It can contribute to the formulation of policies aimed at
minimizing the adverse effects on human health and the environment and potential impact
and ensure the protection of both human populations and the surrounding ecosystem.
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