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Abstract: Objective: We aimed to investigate the relationship between metal exposure and novel
immunoinflammatory indicators. Methods: Data on adults participating in the National Health and
Nutrition Examination Survey (NHANES) from 2009 to 2018 were analyzed. Various statistical models
were employed to assess the association between metal exposure and novel immune-inflammation-
related indicators. Additionally, the impact of metal exposure on inflammation in different gender
populations was explored. Results: This study included 4482 participants, of whom 51.1% were male.
Significant correlations were observed among various metals. Both elastic net (ENET) and linear
regression models revealed robust associations between cadmium (Cd), cobalt (Co), arsenic (As),
mercury (Hg), and immunoinflammatory indicators. Weighted quantile sum (WQS) and Quantile g-
computation (Q-gcomp) models demonstrated strong associations between barium (Ba), Co, and Hg
and immunoinflammatory indicators. Bayesian kernel machine regression (BKMR) analysis indicated
an overall positive correlation between in vivo urinary metal levels and systemic inflammation
response index (SIRI) and aggregate index of systemic inflammation (AISI). Furthermore, Co, As,
and Hg emerged as key metals contributing to changes in novel immunoinflammatory indicators.
Conclusions: Metals exhibit associations with emerging immunoinflammatory indicators, and
concurrent exposure to mixed metals may exacerbate the inflammatory response. Furthermore, this
relationship varies across gender populations.

Keywords: metals; inflammation; national health and nutrition examination survey; gender;
inflammatory index

1. Introduction

Metals are naturally occurring elements that are integral to numerous environmen-
tal and biological processes [1]. However, human activities, including industrial and
agricultural practices, contribute to the release and migration of these metals, leading
to environmental pollution and adverse impacts on ecosystems and human health [2].
Environmental problems caused by metals and their mixtures pose a significant global
public health concern [3]. Compared with single-metal pollutants, compound pollutants
(coexistence of multiple metals) are more common. Metal composite pollutants exhibit
characteristics of universality and complexity, with uncertain ecological effects stemming
from addition, antagonism, and synergism [4]. Human exposure to metal contaminants
occurs through various routes, including the ingestion of contaminated water and food,
inhalation of polluted air, and dermal contact [5]. Elevated levels of specific metals have
been associated with various health issues. For instance, copper exposure has been associ-
ated with an increased risk of nonalcoholic fatty liver disease (NAFLD) [6], while heavy
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metals such as iron, mercury, manganese, cuprom, and lead have been implicated in the
development of Parkinson’s disease [7]. Additionally, cadmium exposure has been linked
to chronic kidney disease [8].

Immunoinflammatory indicators, including lymphocytes, neutrophils, and albumin,
serve as hematologic indicators reflecting inflammatory or nutritional immune status [9].
These indicators are valuable for early disease detection and prognosis assessment. Previ-
ous research suggests that increased metals levels, such as Pb, Cd, Hg, and As, upregulate
interleukin-6 (IL-6) expression, potentially leading to decreased lymphocyte levels [10].
Similarly, elevated Ni levels in patients with lung cancer correlate with increased IL-6
levels. However, single indicators like lymphocytes and interleukins are susceptible to
confounding factors and may not provide a comprehensive assessment of the body’s in-
flammatory and immunotrophic status [11]. Novel inflammation indicators, such as the
aggregate index of systemic inflammation (AISI), system inflammation response index
(SIRI), and the Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) score, offer more
accurate evaluations than single indicators by [12–14] integrating and analyzing various
inflammatory cell levels, providing a holistic view of the body’s immune inflammatory
status. The HALP score offers a comprehensive assessment of immuno-nutritional function
with higher stability compared to traditional indicators. For instance, a study demonstrated
that the HALP score can quickly assess the nutritional level in patients with bowel can-
cer [15]. SIRI dynamically changes with immune inflammatory responses, reflecting cancer
progression and treatment efficacy [16], while AISI offers a comprehensive assessment of
systemic inflammatory status through whole blood cells, providing a more holistic view
compared to traditional indicators [17].

Emerging evidence indicates that metals can trigger Alzheimer’s disease through
inflammatory responses [18,19], disrupting immune homeostasis and inducing inflamma-
tion [10,20,21]. Therefore, early monitoring of immune and inflammatory indicators aids in
disease detection and prognosis prediction in metal-induced disorders. Novel indicators
such as the HALP score, which assesses nutritional immunity and the inflammatory re-
sponse [22], offer improved prognostic accuracy compared to indicators such as C-reactive
protein. However, only a few studies have explored the relationship between metals and
these novel inflammatory metrics, with existing research predominately focused on tradi-
tional inflammatory metrics. Therefore, this study aims to analyze the association between
metal exposure and novel indicators, such as HALP scores, to enhance the prediction of
adverse health outcomes stemming from metal exposure.

2. Materials and Methods
2.1. Study Design and Participant

The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional
population health survey conducted by the Centers for Disease Control and Prevention
(CDC) and the National Center for Health Statistics (NCHS) in the United States [23].
A representative sample was selected through multi-stage stratified sampling, with all
participants providing informed consent [24]. In this study, data spanning from 2009 to
2018 (five cycles) were obtained from the NHANES official website, comprising a total of
49,694 respondents. Participants lacking laboratory testing information, including those
with no metal-related indicators (N = 41,180) and no relevant blood cell measurements
(N = 1992), were excluded. To ensure the accuracy of the results, we excluded 2040
participants lacking basic covariate data, such as household income and poverty, race,
education, marital status, body mass index (BMI), physical activities, cigarette consumption,
and alcohol consumption. Finally, this study included 4482 participants. The participant
selection process is depicted in Figure 1.



Toxics 2024, 12, 316 3 of 20Toxics 2024, 12, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. Flowchart of the participants included in our final analysis (N = 4482), NHANES, USA, 
2009–2018. 

2.2. Measurement of Indicators 
The collected urine and blood samples were processed, stored, and transported to 

appropriate laboratories for analysis. Metal indices were measured using inductively cou-
pled plasma mass spectrometry, including arsenic, dimethylarsinic acid, barium, cad-
mium, cobalt, cesium, molybdenum, lead, antimony, thallium, tungsten, and mercury. 
These metals are more realistic, offering complete data, and there were fewer individuals 
with values below the lower limit of detection or missing. In particular, for metallic arse-
nic, three specific forms of arsenic (arsenite, arsenic acid, and monomethylarsenic acid) 
had missing values of more than 80%; so, DMA was used to represent the specific type of 
arsenic. For values below the lowest detection level (LOD), the heavy metal variables were 
accounted for as LOD divided by the square root of two. Detailed laboratory methods and 
experimental procedures can be found on the NHANES website [25]. Hemoglobin, lym-
phocyte, and platelet values were measured using a hematology-analyzing device (Amer-
ican Beckman Coulter UniCel DxH 800 Analyzer, CA, USA), while serum albumin levels 
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Figure 1. Flowchart of the participants included in our final analysis (N = 4482), NHANES, USA,
2009–2018.

2.2. Measurement of Indicators

The collected urine and blood samples were processed, stored, and transported to
appropriate laboratories for analysis. Metal indices were measured using inductively cou-
pled plasma mass spectrometry, including arsenic, dimethylarsinic acid, barium, cadmium,
cobalt, cesium, molybdenum, lead, antimony, thallium, tungsten, and mercury. These
metals are more realistic, offering complete data, and there were fewer individuals with
values below the lower limit of detection or missing. In particular, for metallic arsenic,
three specific forms of arsenic (arsenite, arsenic acid, and monomethylarsenic acid) had
missing values of more than 80%; so, DMA was used to represent the specific type of
arsenic. For values below the lowest detection level (LOD), the heavy metal variables were
accounted for as LOD divided by the square root of two. Detailed laboratory methods
and experimental procedures can be found on the NHANES website [25]. Hemoglobin,
lymphocyte, and platelet values were measured using a hematology-analyzing device
(American Beckman Coulter UniCel DxH 800 Analyzer, CA, USA), while serum albumin
levels were assessed using Germany Roche modular P and Roche Cobas 6000 chemistry
analyzers (Penzberg, Germany) [26]. The immunoinflammatory score indices were calcu-
lated with the following formulas: HALP = hemoglobin × albumin × lymphocyte/platelet;
SIRI: Neutrophils × monocytes/lymphocytes; AISI: Neutrophils × platelets × mono-
cytes/lymphocytes [15,17,27].

2.3. Covariates

Covariate classifications were based on previous studies [28–30], including age
(20–39 years, 40–59 years, ≥60 years), gender (male and female), race (Mexican Amer-
ican, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other Race-Including
Multi-Racial), educational level (Less Than 9th Grade, 9–11th Grade (Includes 12th grade
with no diploma), High School Grad/GED or Equivalent, Some College or AA degree,
College Graduate or above), marital status (married, widowed, divorced, separated, Never
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married, Living with a partner), family income to poverty ratio (PIR) categorized as low-
income level (<1.3), middle-income level (1.3–3.5), and high-income level (>3.5) [31]. Other
covariates included alcohol consumption (No, Yes), smoking (No, Yes), and physical activ-
ity (No, Yes). Adult BMI was classified as low (<25 kg/m2), medium (25–30 kg/m2), and
obese (≥30 kg/m2) [32].

2.4. Statistical Analyses

The demographic characteristics of the participants were described using weighted
descriptive statistics, with numbers (n) and percentages (%) for categorical variables and
weighted mean and standard deviation (SD) for continuous variables. The calculated blood
index and all relevant data of the metal were transformed using natural logarithmic trans-
formation (ln). Subsequently, subgroup analyses were conducted by sex, and all statistical
analyses were performed using R4.3.1. Previous studies have demonstrated that in actual
living environments, people are often exposed to a variety of mixed pollutants simultane-
ously, and there exist different association patterns between these environmental pollutants
and health outcomes, such as linear growth, plateau type, and inverted U type [33,34].
Therefore, traditional linear models may inadequately capture these relationships or reflect
true population exposure. Additionally, pollutants have different chemical structures and
biotransformation pathways, and interactions between pollutants and certain covariates
(such as sex) may lead to spurious associations. However, if a single environmental pollu-
tant analysis is repeated, that is, using multiple comparisons, it is highly likely to cause
false positive errors [35]. Therefore, to assess the combined effect of mixed metal exposure
on three inflammatory indices, three statistical models were employed: WQS regression,
Q-gcomp, and BKMR models. These models were implemented using the R packages
“gWQS”, “Q-gcomp”, and “BKMR”, respectively.

2.4.1. Multiple Linear Regression and Elastic Net Model

Multivariate linear regression models were utilized to examine the correlation between
various metal metabolites and human immune inflammation indices. Both metal and
immune inflammation indices were treated as continuous variables transformed by ln,
with β values and 95% confidence intervals calculated. The multiple linear regression
comprised two models: Model 1 was unadjusted for any covariates, whereas Model 2
was adjusted for gender, age, race, educational level, marital status, annual family income,
alcohol consumption, smoking status, physical activities, and BMI [30]. Additionally,
the elastic net model (ENET), a regularization method combining Ridge regression and
Least absolute shrinkage and selection operator (LASSO) regression [31], was employed to
identify metal metabolites associated with immune inflammation indices. Furthermore, the
corresponding β coefficient was also calculated to quantify the relationship between metal
metabolites and immune inflammation indices.

2.4.2. Weighted Quantile Sum Regression Quantile G-Computation Model

WQS regression was used to estimate the combined effects of mixed metal exposures
on immune inflammation indices. This approach determines the weight of individual
substances in the mixture [36], reducing collinearity and extreme effects of highly correlated
pollutants [37]. Furthermore, WQS regression was constructed using two models: one
that assumes that the components of the WQS index are all positively correlated with
cognitive performance (the positive model), and another that assumes that the components
of the WQS index are all negatively correlated with cognitive performance (the negative
model) [38]. Additionally, Q-gcomp was also employed to estimate the overall association
between metal metabolites and immune inflammation indices. This method combines the
simplicity of WQS with the flexibility of G-calculation for analyzing the effects of exposure
mixtures [39]. However, unlike the WQS model, Q-gcomp allows each substance to have a
positive and negative direction with the immune inflammation indices, and the sum of the
weights in the positive and negative directions was 2.
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2.4.3. Bayesian Kernel Machine Regression

BKMR was employed to examine the combined effect of mixture heavy metal ex-
posures on three inflammatory indices. This model fixes a mixture of heavy metals at
different percentile levels relative to the median and assesses the relative importance of
each heavy metal variable on each inflammatory index. BKMR is a non-parametric Bayesian
variable selection framework that combines Bayesian and statistical learning methods, in-
cluding the ability to visualize exposure—responding to different cross sections of the
surface—to observe nonlinear associations between monometallic variables and inflamma-
tory indices [40,41]. In this study, the model ran for 10,000 iterations using Markov chain
Monte Carlo methods. It was used to estimate the overall health effects of mixtures and
assess potential interactions and nonlinear associations between mixed exposures.

3. Results
3.1. Descriptive Study

Table 1 presents the demographic characteristics of the 4482 surveyed population
including household income and poverty, race, education, marital status, and BMI. Among
the 4482 participants, 2289 (51.1%) were male, and 1989 (44.4%) were non-Hispanic white,
with a weighted age of 48.95 ± 17.90. The mean values of HALP, SIRI, and AISI were
57.19 ± 0.54, 1.24 ± 0.01, and 298.62 ± 3.69, respectively, with inflammatory indices
generally higher in males than females. Table S1 contains NHANES codes that help in
measuring metals. This is carried out to ensure transparency and reproducibility in the
process. Table 2 displays the detection rates and average concentrations of urinary metals
in the body. Notably, the detection rate of Sb metal was 66.35%, and the detection rate of
other metals exceeded 90%, with metals like As, DMA, Cs, Mo, and Hg reaching 100%
detection rates.

Table 1. Characteristics of the study population.

Characteristics N (%) Total Male Female

Age 48.95 ± 17.90 48.93 ± 17.98 48.97 ± 17.80
20–39 years 1596 (35.6%) 826 (36.1%) 770 (35.1%)
40–59 years 1391 (31.0%) 692 (30.2%) 699 (31.9%)
≥60 years 1495 (33.4%) 771 (33.7%) 724 (33.0%)

Race
Mexican American 673 (15.0%) 330 (14.4%) 343 (15.6%)

Other Hispanic 439 (9.8%) 223 (9,7%) 216 (9.9%)
Non-Hispanic White 1989 (44.4%) 1010 (44.1%) 979 (44.6%)
Non-Hispanic Black 865 (19.3%) 463 (20.2%) 402 (18.3%)

Other Race—Including Multi-Racial 516 (11.5%) 263 (11.5%) 253 (11.5%)

Educational level
Less Than 9th Grade 440 (9.8%) 234 (10.2%) 206 (9.4%)

9–11th Grade (Includes 12th grade with
no diploma) 616 (13.7%) 339 (14.8%) 277 (12.6%)

High School Grad/GED or Equivalent 1053 (23.5%) 580 (25.3%) 473 (21.6%)
Some College or AA degree 1359 (30.3%) 632 (27.6%) 727 (33.2%)
College Graduate or above 1014 (22.6%) 504 (22.0%) 510 (23.3%)

Marital Status
Married 2250 (50.2%) 1242 (52.3%) 1008 (46.0%)

Widowed 350 (7.8%) 92 (4.0%) 258 (11.8%)
Divorced 482 (10.8%) 219 (9.6%) 263 (12.0%)
Separated 142 (3.2%) 69 (3.0%) 73 (3.3%)

Never married 860 (19.2%) 458 (20.0%) 402 (18.3%)
Living with partner 398 (8.9%) 209 (9.1%) 189 (8.6%)

Ratio of family income to poverty 2.44 ± 1.60 2.46 ± 1.60 2.41 ± 1.61

Ratio of family income to poverty
<1.3 1486 (33.2%) 735 (32.1%) 751 (34.2%)

1.3–3.5 1718 (38.3%) 897 (39.2%) 821 (37.4%)
>3.5 1278 (28.5%) 657 (28.7%) 621 (28.3%)
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Table 1. Cont.

Characteristics N (%) Total Male Female

Alcohol drinking
No 3381 (75.4%) 1961 (85.7%) 1420 (64.8%)
Yes 1101 (24.6%) 328 (14.3%) 773 (35.2%)

Smoke
No 2046 (45.6%) 1255 (54.8%) 791 (36.1%)
Yes 2436 (54.4%) 1034 (45.2%) 1402 (63.9%)

Physical activities
No 2133 (47.6%) 1134 (49.5%) 999 (45.6%)
Yes 2349 (52.4%) 1155 (50.5%) 1194 (54.4%)

BMI (kg/m2)
<25 kg/m2 1282 (28.6%) 651 (28.4%) 631 (28.8%)

25 to <30 kg/m2 1490 (33.2%) 850 (37.1%) 640 (29.2%)
≥30 kg/m2 1710 (38.2%) 788 (34.4%) 922 (42.0%)

Albumin count (g/dL) 4.24 ± 0.34 4.33 ± 0.33 4.15 ± 0.33
Albumin count (g/dL) 42.43 ± 3.44 43.34 ± 3.31 41.48 ± 3.31

Lymphocyte count (1000/µL) 2.15 ± 0.79 2.08 ± 0.83 2.22 ± 0.74
Monocytes (1000/µL) 0.55 ± 0.19 0.57 ± 0.19 0.53 ± 0.18

Lobulated neutral sphere (1000/µL) 4.31 ± 1.94 4.26 ± 2.10 4.36 ± 1.77
Hemoglobin (g/dL) 14.02 ± 1.52 14.84 ± 1.31 13.18 ± 1.24

Hemoglobin (µmol/L) 140.23 ± 15.21 148.35 ± 13.10 131.75 ± 12.38
Platelets (µmol/L) 237.88 ± 61.57 225.37 ± 55.90 250.94 ± 64.47

HALP score 57.19 ± 36.12 62.54 ± 32.22 51.60 ± 39.03
SIRI index 1.24 ± 0.89 1.32 ± 0.95 1.15 ± 0.82
AISI index 298.62 ± 247.31 302.74 ± 245.83 294.32 ± 248.88

Note: BMI is body mass index.

Table 2. The distribution of the urinary metabolites in the study population.

Metal (µg/L) Detection Rate
N (%)

Mean
Percentiles

P5 P25 P50 P75 P95

As 100.00 4.91 1.55 3.05 5.40 6.42 7.87
DMA 100.00 4.45 1.09 2.53 4.91 5.81 6.72

Ba 99.44 4.16 0.90 3.43 4.41 5.26 6.39
Cd 91.32 3.06 1.31 2.37 3.08 3.77 4.72
Co 99.53 3.66 2.24 3.11 3.70 4.23 5.09
Cs 100.00 4.59 1.15 2.11 5.47 6.14 6.78
Mo 100.00 6.15 3.08 3.90 6.77 8.15 9.19
Pb 97.57 3.43 1.79 2.83 3.47 4.04 5.07
Sb 66.35 1.87 0.47 1.28 1.76 2.37 3.62
Tl 94.91 4.08 1.86 3.18 3.97 4.88 6.42
W 90.12 2.65 1.48 2.20 2.69 3.12 3.71
Hg 100.00 2.12 1.42 2.20 2.20 2.20 2.20

3.2. Correlations between Metal Alone Exposure and Immunoinflammatory Indexes

The correlations between all metals are presented in Figure S1, with R-values ranging
between 0.82 and 0.96, indicating strong correlations between metals. Utilizing ENET, we
predicted the associations between metal metabolites and immunoinflammatory indicators
(Figure 2). Among the 12 metal metabolites, As showed a negative correlation with AISI
and SIRI, while Ba exhibited positive correlations with AISI and HALP. Co demonstrated
positive correlations with AISI and SIRI, while Co and Cd were negatively correlated with
HALP. W showed positive correlations with AISI, SIRI, and HALP.
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Figure 2. The correlation coefficients between heavy metal exposure and inflammatory factors
were estimated by the elastic net regression model. The model was adjusted for gender, age, race,
educational level, marital status, annual family income, alcohol status, smoking status, physical
activity, and BMI. The greater the point deviation from 0, the stronger the correlation between metals
exposure and inflammation. (A) HALP Index, (B) SIRI Index, (C) AISI Index.

Table 3 presents the results of linear regression assessing the association between
metal metabolites and immunoinflammatory indices. After adjusting for covariates, Ba
levels were positively correlated with HALP levels (β: 0.039, 95%CI: 0.025, 0.053), while Cd
levels were negatively correlated with HALP levels (β: −0.029, 95%CI: −0.047, −0.012).
Co levels were positively correlated with AISI (β: 0.084, 95%CI: 0.050,0.119) and SIRI (β:
0.086, 95%CI: 0.055, 0.116) but negatively correlated with HALP (β: −0.069, 95%CI: −0.089,
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−0.048). Additionally, Hg levels showed negative correlations with AISI (β: −0.049, 95%CI:
−0.077, −0.021) and SIRI (β: −0.039, 95%CI: −0.063, −0.014).

Table 3. The relationship between mixture exposure of metal metabolites and immune
inflammation index.

Metal HALP Score SIRI Index AISI Index
β (95%CI) β (95%CI) β (95%CI)

Model 1
As −0.015 (−0.021, 0.015) −0.018 (−0.044, 0.008) −0.035 (−0.064, −0.006) a

DMA 0.009 (−0.017, 0.034) −0.036 (−0.074, 0.001) −0.025 (−0.067, 0.017)
Ba 0.040 (0.026, 0.055) a 0.001 (−0.020, 0.022) 0.012 (−0.012, 0.035)
Cd −0.052 (−0.068, −0.036) a 0.033 (0.010, 0.056) a 0.033 (0.008, 0.059) a

Co −0.094 (−0.115, 0.073) a 0.054 (0.024, 0.084) a 0.073 (0.040, 0.107) a

Cs 0.028 (−0.001, 0.056) −0.014 (−0.055, 0.028) −0.011 (−0.058, 0.035)
Mo 0.028 (0.009, 0.048) a −0.008 (−0.037, 0.021) −0.019 (−0.051, 0.013)
Pb 0.026 (0.007, 0.046) a 0.028 (0.000, 0.057) a 0.002 (−0.029, 0.034)
Sb 0.013 (−0.005, 0.032) 0.001 (−0.026, 0.028) 0.014 (−0.016, 0.044)
Tl −0.005 (−0.022, 0.011) 0.012 (−0.012, 0.036) 0.010 (−0.016, 0.037)
W 0.019 (0.001, 0.036) a 0.011 (−0.014, 0.037) 0.017 (−0.011, −0.046) a

Hg −0.005 (−0.022, 0.012) −0.051 (−0.076, −0.027) a −0.060 (−0.088, 0.033)

Model 2
As −0.001 (−0.019, 0.017) −0.021 (−0.046, 0.005) −0.032 (−0.062, −0.003) a

DMA 0.011 (−0.014, 0.037) −0.012 (−0.049, 0.025) −0.006 (−0.048, 0.036)
Ba 0.039 (0.025, 0.053) a 0.004 (−0.017, 0.025) 0.010 (−0.013, 0.034)
Cd −0.029 (−0.047, −0.012) a 0.002 (−0.024, 0.028) 0.014 (−0.015, 0.043)
Co −0.069 (−0.089, −0.048) a 0.086 (0.055, 0.116) a 0.084 (0.050, 0.119) a

Cs 0.023 (−0.005, 0.051) −0.015 (−0.056, 0.026) −0.013 (−0.059, 0.034)
Mo 0.016 (−0.004, 0.035) −0.016 (−0.045, 0.012) −0.021 (−0.053, 0.011)
Pb 0.008 (−0.012, 0.028) −0.016 (−0.046, 0.013) −0.010 (−0.043, 0.023)
Sb −0.005 (−0.023, 0.014) 0.004 (−0.023, 0.031) 0.010 (−0.020, 0.040)
Tl −0.005 (−0.021, 0.012) 0.012 (−0.012, 0.036) 0.008 (−0.019, 0.034)
W 0.008 (−0.051, 0.025) 0.019 (−0.006, 0.045) 0.018 (−0.010, 0.047)
Hg 0.013 (−0.003, 0.030) −0.039 (−0.063, −0.014) a −0.049 (−0.077, −0.021) a

a: Significant results are in bold; Model I: Models without covariate adjustment; Model II: Models adjusted by
covariates; the covariates are age, race, educational level, marital status, annual family income, alcohol status,
smoking status, physical activity, and BMI.

3.3. Correlations between Mixture of Metal Exposure and Immunoinflammatory Index

The WQS model was employed to estimate the combined effect of a mixture of metal
exposure on the immunoinflammatory indices. Figure 3 illustrates that after adjusting for
covariates, the Ba levels were positively correlated with HALP and AISI, while the Co
levels were positively correlated with SIRI and negatively correlated with HALP and AISI.
Moreover, the Hg levels were negatively correlated with SIRI, diverging from lthe inear
model and Q-gcomp model results.

The Q-gcomp model (Figure 4) demonstrates statistically significant associations
between urinary mixture of metal exposure and HALP, AISI, and SIRI levels after adjusting
for confounders, aligning with linear model findings. As exhibited negative correlations
with AISI and HALP, Ba remained positively correlated with HALP, and Co was positively
correlated with AISI and SIRI, while it was negatively correlated with HALP. Co contributed
the most to a positive fitting in the Q-gcomp model.

The BKMR model reveals significant positive correlations between overall urinary met-
als and HALP, AISI, and SIRI levels, when all urine metals were above the 30th percentile
(Figures 5, 6 and S2). We further analyzed the effect of a single metal variable on the three
scores. The correlation trend between individual metal variables and inflammatory indices
was observed using a univariate expose–response function curve. In the urine metal model,
Ba, Co, As, and Hg were identified as the most influential, with Ba significantly increasing
HALP levels, Co significantly increasing AISI and SIRI levels while significantly decreasing
HALP levels, and As and Hg significantly reducing AISI and SIRI levels. Additionally, Co
exhibited associations with immunoinflammatory indices when other metals were fixed at
the median, indicating that As and Co exposure increased SIRI and AISI.
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Figure 3. The WQS model was used to analyze the weights assigned to the effects of metals on
inflammatory factors. The model was adjusted for gender, age, race, educational level, marital status,
annual family income, alcohol status, smoking status, physical activity, and BMI. (A,C,E) are the
weights of each metal in the positive WQS model, respectively, (A) HALP Index, (C) SIRI Index,
(E) AISI Index. (B,D,F) are the weights of each metal in the negative WQS model, respectively,
(B) HALP Index, (D) SIRI Index, (F) AISI Index.
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Figure 5. In the BKMR model, when the concentrations of all other metals were fixed at the median
level, the exposure–response relationship function between a single metal and each inflammation
index. (A) HALP; (B) SIRI; (C) AISI. The joint association of mixture exposure of metals in the BKMR
model. (D) HALP; (E) SIRI; (F) AISI. The model was adjusted for gender, age, race, educational level,
marital status, annual family income, alcohol status, smoking status, physical activity, and BMI.
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Figure 6. Estimated differences in inflammation index from 25th to 75th percentiles for each metal
when all other metals were fixed at 25th (red line), 50th (green line), or 75th percentile (blue line).
The point represents the estimated value, and the horizontal line represents the 95% confidence
interval (CI). (A) HALP Index, (B) SIRI Index, (C) AISI Index. The model was adjusted for age, race,
educational level, marital status, annual family income, alcohol status, smoking status, physical
activity, and BMI.

3.4. Subgroup Analysis of Urinary Metal and Inflammatory Index

To validate the stability of the results, subgroup analyses explored the effect of metal
content in the body on immunoinflammatory indices in different genders. Tables S2 and S3
show the detection rates and average metal concentrations in urine for different genders,
respectively, and Figure S3 shows the correlation between all metals for different genders,
all in general agreement with the overall results. After stratification by gender, the male
multiple regression model shows that As was negatively correlated with AISI, Ba was
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positively correlated with HALP, and Cd was positively correlated with SIRI (Table S4).
Conversely, in the female multiple regression model, Cd was negatively correlated with
SIRI, Co was positively correlated with SIRI and AISI while negatively correlated with
HALP, and Hg was negatively correlated with AISI (Table S5). Overall, Ba was significantly
associated with HALP only in men, while Cd exhibited differing behaviors in SIRI by
gender, with men positively correlated and women negatively correlated (i.e., Cd was
not associated with SIRI in the general population). Cd was only significantly associated
with HALP in women, and Pb was only significantly associated with SIRI in women.
Additionally, the elastic network model results grouped by sex generally aligned with the
overall grouping results (Figure 7).
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were estimated by the elastic net regression model in different genders. The model was adjusted
for age, race, educational level, marital status, annual family income, alcohol status, smoking status,
physical activity, and BMI. The greater the point deviation from 0, the stronger the correlation between
metals exposure and inflammation. (A–C) are the estimated coefficients of the association between
various metals and inflammation by elastic net regression models in the male population, respectively,
(A) HALP Index, (B) SIRI Index, (C) AISI Index. (D–F) are the estimated coefficients of the association
between various metals and inflammation by elastic net regression models in the female population,
(D) HALP Index, (E) SIRI Index, (F) AISI Index.

Subgroup analyses of WQS and Q-gcomp models for a mixture of metals yielded
results consistent with overall findings (Figures S4–S10). Notably, Cd showed a greater
association with SIRI and AISI in men, with AISI exhibiting a more significant positive



Toxics 2024, 12, 316 14 of 20

association in men. Among women, Sb emerged as the more influential metal, positively
correlated with AISI. Additionally, associations between Pb, Sb, and inflammation markers
were more pronounced in women than in men, with women’s HALP scores proving more
sensitive to metal exposure. When other metals were fixed at the median, we found that
the association between Co and HALP, AISI, and SIRI in the female population remained
consistent in the general population. Interestingly, Hg, Pb, Mo, and Ba exposure in women
demonstrated heightened sensitivity to immunoinflammatory indicators compared to men.

4. Discussion

This study employed various statistical methods to investigate the relationship be-
tween metal exposure and immunoinflammatory indices in the adult population of the
United States. Recognizing that real-life exposure often involves a simultaneous mixture
of multiple pollutants, and traditional analytical strategies may not accurately reflect pop-
ulation exposure or overall health effects, a diverse array of statistical approaches was
utilized [42,43]. The findings indicate an association between metal exposure and the
immunoinflammatory indices, with potential variations across gender populations, notably
with women exhibiting greater sensitivity to the effects of metal exposure on inflammatory
indicators than men.

Heavy metals rank among the top 10 priority pollutants contributing to global disease
burden and mortality [44]. Prior studies report that exposure to heavy metals, especially Pb
and As, is very common in the general population of the United States, aligning with the
current study’s results [45,46]. In 2017, the Global Burden of Disease report highlighted that
heavy metal exposure contributed to 1.06 million deaths and 24.4 million years of healthy
life loss [47]. Heavy metal exposure is particularly associated with cardiovascular disease
chronic kidney disease, and other diseases [30,31]. Furthermore, immunoinflammatory
response, a post-disease injury response, is of great significance for the identification
of early diseases. Accumulating evidence suggests that heavy metal exposure disrupts
immune homeostasis and exacerbates inflammation [48]. Inflammation is the body’s
protective response to adverse environmental factors, wherein the normal physiological
activities of tissues and organs are maintained by eliminating damage-inducing factors,
clearing denaturetic and necrotic cells, and initiating repair functions. However, long-term
immunoinflammatory activation of the body also contributes to the development of various
diseases, including coronary heart disease, pelvic inflammatory disease, cardiovascular
disease, and diabetes [13,49].

In this study, both individual and combined metal exposures were correlated with
immunoinflammatory markers, with As, Hg, Ba, Cd, and Co playing a major role. Interest-
ingly, As and Hg exhibited significant negative correlations with immune-inflammatory
markers. Similarly, Xiaoya et al. [48] reported that Hg was negatively correlated with SII,
and mixture analysis revealed Hg as the main substance in the mixture, with negative
correlations with SII. Additionally, Tuntinarawat et al. [50] observed that As was found
to have a high negative weight on the immune-inflammatory profile, consistent with the
results of the present study. Ba has been demonstrated to be associated with oxidative
stress and inflammation [51], and a study examining the effect of exposure of mothers to
an individual metal and a mixture of metals via the level of inflammation in umbilical cord
blood serum reported a positive correlation with interferon-gamma (IFN-γ) and IL-6 [52],
along with a similar increase in immune-inflammatory markers in the zygotes. Collectively,
the present and prior results demonstrate that Ba induces the dysregulation of the organism
through an immune inflammatory response. Moreover, Ba is strongly associated with
HALP scores, with Ba accounting for a higher positive weight [53]. Furthermore, the
relationship between Ba and HALP was found to be more pronounced in males in the
present study, after stratification by gender.

A study found a strong correlation between Cd and Co exposure and HALP scores,
and the immunoinflammatory spectrum showed that Cd and Co had a higher negative
weight, consistent with this study’s results [53]. One study showed that after adjusting for
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confounding factors, men had lower levels of metal in their urine than women, highlighting
the significant disparity based on gender [54,55]. Moreover, the association between
metal exposure and immunoinflammatory markers varied among the gender groups.
Additionally, there was a significant negative correlation between Cd and Co exposure and
HALP inflammation indicators in women. The mechanism pathway of the metal’s influence
on immune inflammation is complex. For instance, Cd, as an industrial and growth
toxin, induces oxidative stress by generating free radicals and weakening antioxidant
capacity, thus leading to cell necrosis and intracellular inflammatory chemical release
along with activating the inflammatory response [7,56]. Co has been reported to induce
the inflammatory activation of HaCaT cells, involving the activation of inflammatory
bodies and the production of pro-inflammatory cytokines in a dose-dependent manner [57].
Moreover, exposure to cobalt-containing pigments can lead to long-term dysfunction of
macrophage function, and in severe cases, long-term inflammation [58]. However, in the
present study, Cd was significantly negatively associated with Co exposure. Therefore, we
speculate that the changes in Cd and Co concentrations may exert varying effects on the
immune inflammatory system, warranting further exploration.

Consistent with previous results, our study did not find an association between Pb
exposure and immunoinflammatory indicators, whether it was blood lead or mixture
exposure [59]. We speculate that gender differences may play a role in mediating the
immunoinflammatory response to metal exposure, possibly due to women’s heightened
sensitivity to metal exposure [60]. Several mechanisms can explain this phenomenon.
Firstly, exposure to various metals can cause an imbalance in sex hormones in children [61],
which, in turn, affects the balance of immune inflammatory response processes [62]. Ac-
cordingly, differences in sex hormone levels between genders affect the association between
metals and inflammation. Secondly, differences in gene expression between men and
women, determined by genetic polymorphism, lead to differences in body sensitivity to
metals [63]. Finally, differences in diet and behavior between men and women also affect
their exposure to external risk factors [64].

This study has several advantages. Firstly, metals have been demonstrated to induce
immunoinflammatory responses. However, there exist only a few studies on the relation-
ship between exposure to heavy metals and immunoinflammatory indicators. To bridge
this knowledge gap, this study explored the relationship between multiple metal exposures
(both individually and in combination) and immunoinflammatory indicators. Secondly,
novel indicators, such as HALP, SIRI, and AISI, were adopted in the selection of immunoin-
flammatory indicators, which are considered to be more reliable than traditional indicators
and can better reflect the immune inflammatory processes [65]. Thirdly, a multi-model
analysis of the correlation between mixture heavy metal exposure and immunoinflamma-
tory indices improved the credibility of the results. However, limitations also need to be
acknowledged. First, as NHANES survey data were exclusively used, the inferred causal
relationship is weak, necessitating further exploration using prospective studies. Second,
this study only analyzed the urinary metal content in the body and did not analyze the
relationship between blood metal and immune-inflammatory factors. Third, despite efforts
to account for many confounding risk factors, residual confounders may exist, highlighting
the need for large-scale randomized controlled trials to validate our findings.

5. Conclusions

Our study highlights the association between metals and immunoinflammatory mark-
ers, underscoring the potential exacerbation of inflammatory responses with a mixture
of metal exposure, with gender emerging as a potential influencing factor. Importantly,
the adoption of novel immunoinflammatory indicators proved to be more reliable and
sensitive in predicting various diseases compared to traditional markers. By elucidating
the relationship between metals and immunoinflammatory indicators, our findings offer
insights into early detection strategies for metal-induced immune inflammatory responses
or diseases, thus providing novel avenues for inflammation prevention efforts.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12050316/s1, Table S1. NHANES codes for urine metal
measurements; Table S2. The distribution of the urinary metabolites in the study population (Male);
Table S3. The distribution of the urinary metabolites in the study population (Female); Table S4. The
relationship between mixed exposure of metal metabolites and immune inflammation index (Male);
Table S5. The relationship between mixed exposure of metal metabolites and immune inflammation
index (Female); Figure S1. Pearson correlation between the logarithmic concentrations of 12 metals
(N = 4482), NHANES, USA, 2009–2018; Figure S2. In Bayesian kernel regression, the relationship
between each metal and inflammation index. This figure is a bivariate exposure response function of
metal exposure and inflammation index when a metal is fixed in different (25th, 50th, 75th) percentiles
and other metals are fixed at the 50th percentile, the average difference between the other metal
and the inflammation index as a bivariate exposure response function. (A) HALP Index, (B) SIRI
Index, (C) AISI Index. The model was adjusted for gender, age, race, educational level, marital
status, annual family income, alcohol status, smoking status, physical activity, and BMI; Figure S3.
Pearson correlation between the logarithmic concentrations of 12 metals for different sexes, (A) Male,
(B) Female; Figure S4. The weights of each metal in the WQS model regression index in the male
population. The model was adjusted for age, race, educational level, marital status, annual family
income, alcohol status, smoking status, physical activity, and BMI. (A–C) are the weights of each
metal in the positive WQS model, respectively, (A) HALP Index, (B) SIRI Index, (C) AISI Index.
(D–F) are the weights of each metal in the negative WQS model, (D) HALP Index, (E) SIRI Index,
(F) AISI Index; Figure S5. The weights of each metal in the WQS model regression index in the female
population. The model was adjusted for age, race, educational level, marital status, annual family
income, alcohol status, smoking status, physical activity, and BMI. (A,C,D) are the weights of each
metal in the positive WQS model, respectively, (A) HALP Index, (C) SIRI Index, (D) AISI Index. (B) is
the weights of each metal in the negative WQS model, (B) HALP Index; Figure S6. The weight of
each metal in the Q-gcomp model index in the male and female groups. (A–C) are the directions
and magnitude of the assigned weights for each log-transformed metal in relation to inflammation
in male population in quantile g-computation. (A) HALP Index, (B) SIRI Index, (C) AISI Index.
(D–F) are the directions and magnitude of the assigned weights for each log-transformed metal in
relation to inflammation in female population in quantile g-computation. (D) HALP Index, (E) SIRI
Index, (F) AISI Index. The model was adjusted for age, race, educational level, marital status, annual
family income, alcohol status, smoking status, physical activity, and BMI; Figure S7. In the BKMR
model, when the concentrations of all other metals were fixed at the median level, the exposure–
response relationship function between a single metal and each inflammation index. (A–C) are the
relationships in male population, (A) HALP Index, (B) SIRI Index, (C) AISI Index. (D–F) are the
relationships in female population, (D) HALP Index, (E) SIRI Index, (F) AISI Index. The model
was adjusted for age, race, educational level, marital status, annual family income, alcohol status,
smoking status, physical activity, and BMI; Figure S8. The joint association of mixed exposure of
metal in the BKMR model. (A–C) are the relationships in male population, (A) HALP Index, (B) SIRI
Index, (C) AISI Index. (D–F) are the relationships in female population, (D) HALP Index, (E) SIRI
Index, (F) AISI Index. The model was adjusted for age, race, educational level, marital status, annual
family income, alcohol status, smoking status, physical activity, and BMI; Figure S9. This figure
describes the estimated difference in inflammation index for each metal from the 25th to the 75th
percentile when all other metals are fixed at the 25th (red line), 50th (green line), or 75th percentile
(blue line). The point represents the estimated value, and the horizontal line represents the 95%
confidence interval (CI). (A–C) are the relationships in male population, (A) HALP Index, (B) SIRI
Index, (C) AISI Index. (D–F) are the relationships in female population, (D) HALP Index, (E) SIRI
Index, (F) AISI Index. The model was adjusted for age, race, educational level, marital status, annual
family income, alcohol status, smoking status, physical activity, and BMI; Figure S10. This figure
is a bivariate exposure response function of metal exposure and inflammation index when a metal
is fixed in different (25th, 50th, 75th) percentiles and other metals are fixed at the 50th percentile,
the average difference between the other metal and the inflammation index as a bivariate exposure
response function. (A–C) are the relationships in male population, (A) HALP Index, (B) SIRI Index,
(C) AISI Index. (D–F) are the relationships in female population, (D) HALP Index, (E) SIRI Index,
(F) AISI Index. The model was adjusted for age, race, educational level, marital status, annual family
income, alcohol status, smoking status, physical activity, and BMI.
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