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Abstract: Environmental toxicants have been implicated in neurodegenerative diseases, and
pesticide exposure is a suspected environmental risk factor for Alzheimer’s disease (AD). Several
epidemiological analyses have affirmed a link between pesticides and incidence of sporadic AD.
Meanwhile, in vitro and animal models of AD have shed light on potential neuropathological
mechanisms. In this paper, a perspective on neuropathological mechanisms underlying pesticides’
induction of AD is provided. Proposed mechanisms range from generic oxidative stress induction
in neurons to more AD-specific processes involving amyloid-beta (Aβ) and hyperphosphorylated
tau (p-tau). Mechanisms that are more speculative or indirect in nature, including somatic mutation,
epigenetic modulation, impairment of adult neurogenesis, and microbiota dysbiosis, are also
discussed. Chronic toxicity mechanisms of environmental pesticide exposure crosstalks in complex
ways and could potentially be mutually enhancing, thus making the deciphering of simplistic causal
relationships difficult.
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1. Introduction

Alzheimer’s disease (AD) [1,2] is the most prevalent cause of age-associated dementia
worldwide [3]. Late-onset AD is largely sporadic, with those harboring gene mutations recognized as
causative of the familial form of the disease constituting less than 5% of all patients [1,4]. The brains of
AD patients and animal models typically exhibit two characteristic pathological features. Intraneuronal
neurofibrillary tangles (IFTs) are enriched in the hyperphosphorylated form of a microtubule-binding
protein tau [5], while extracellular amyloid plaques consist of insoluble aggregates of amyloid β (Aβ)
peptides generated via proteolytic processing of the amyloid precursor protein (APP) [6]. Typical
amyloidogenic APP processing occurs by the sequential action of the classicalβ-secretase, theβ-site APP
cleaving enzyme 1 (BACE1) [7], and γ-secretase [8], which generate Aβ peptides, mainly Aβ1-40 and
Aβ1-42. These, particularly the latter, are neurotoxic and aggregation-prone. Alternative β-secretases,
including δ- and η-secretases, adds to the complexity of Aβ products [9]. On the other hand, initial
cleavage by α-secretases such as A Disintegrin and Metalloproteinase 10 (ADAM10) [10] promotes
what was termed non-amyloidogenic processing, which does not produce Aβ1-40 and Aβ1-42 [11].

The pathological features point to disease etiology. As such the amyloid cascade hypothesis [12,13]
postulates that the production of Aβ1-42 (and related peptides) with the subsequent formation of
amyloid plaques as the etiological origin of AD, while the amyloid-β oligomer hypothesis emphasizes
the greater neurotoxicity of soluble Aβ oligomers compared to those within insoluble amyloid
plaques [14]. In vivo, both tau and Aβ contribute to AD pathology [14,15] and the development and
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progress of the pathological features involving these two are highly intertwined [2,16]. Mutations in
APP and the presenilins (PS) (which are the catalytic components of γ-secretase [17,18]) that underlie
familial and early-onset AD [4,19,20] invariably cause an increase in Aβ production. Despite extensive
advances in AD genetics and molecular pathology, definitive triggers or etiological origin for the
late-onset, sporadic, or idiopathic form of AD prevalent in majority of patients has remained largely
elusive. As in other sporadic late-onset neurodegenerative diseases, onset of sporadic AD could be
broadly attributed to gene-environment interactions [21,22]. The Apolipoprotein E4 (APOE4) ε4 allele
is a prevalent genetic risk factor for late-onset AD [23], but environmental factors are more varied and
less well-defined in terms of pathological profile.

Environmental toxicants have been extensively linked to neurodegenerative disorders [24,25].
Homeostatic dysregulation of metals in brain cells and tissues or the accumulation of toxic metals have
been linked to various neurodegenerative diseases, including AD [26,27]. Lead (Pb) is known to be
neurotoxic and perturbs Aβ generation and clearance [28], and Pb exposure has been implicated in
AD [29], but case-control studies have not nailed down a clear link between tissue Pb accumulation
and AD [30]. Copper (Cu) affects Aβ aggregation kinetics [31] and AD patients have altered Cu
metabolism [32]. Chronic exposure to aluminium (Al) has been shown to increase AD risk [33], but
the notion remains controversial [34]. Organic neurotoxins have also been extensively linked to
neurodegeneration, with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Parkinson’s disease
(PD) [35] and β-N-methylamino-L-alanine (BMAA) in the Amyotrophic Lateral Sclerosis/Parkinsonism
Dementia Complex epidemically prevalent on the island of Guam [36] being perhaps the most
prominent in the popular press.

Pesticides, including insecticides, herbicides, and fungicides, are a large and diverse group of
organic environmental toxicants affecting neuronal health [25,37–41]. In the past 5 years, the link
between pesticide exposure and AD has been considerably strengthened, while basic understanding of
pesticide-associated neuropathology has improved. In this brief review, the links between pesticide
exposure and AD are summarized and discussed. Information on disease etiology, particularly
recently-obtained mechanistic insights from cellular and animal models, is highlighted.

2. Epidemiological Links between Pesticide Exposure and Alzheimer’s Disease

Epidemiological links between pesticide exposure and AD has been fairly strong [25,37,39,41],
particularly for occupational exposure of organophosphates in men [39,41], but not without controversy [42].
Wartime exposure to Agent Orange is strongly associated with many ailments, including neurological
disorders like AD (adjusted odds ratio (aOR): 95%; confidence interval (CI): 1.64, 1.12–2.41) [43]. In terms
of lifetime environmental exposure, cross-sectional and prospective data from the Maastricht Aging
Study found exposure to pesticides to increase the risk of mild cognitive impairment (Cross-sectional,
self-reported aOR, 95% CI: 4.94, 1.53–16.1), usually viewed as prodromal to AD [44]. The Cache County
study (3084 enrollees, 344 with AD) also indicated a significant risk of incident AD from occupational
pesticide (a majority of which to organophosphates and organochlorines) exposure (hazard ratio (HR), 95%
CI: 1.42, 1.06–1.91) [45]. An ecological study using averaged prevalence rates of AD in selected Andalusian
health districts showed that the population living in areas with high pesticide use (17,429 cases, 2185
with AD) had an increased AD risk (OR, 95% CI: 2.1, 1.96–2.25) [46]. In a case-control study with AD
patients and control participants in the USA, levels of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (DDE),a
metabolite of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (DDT), in serum and brain were
elevated in AD patients (79 control and 86 AD cases) and associated with an increased risk for AD (for
the highest tertile of DDE levels, OR, 95% CI: 4.18, 2.54–5.82) [47]. On the other hand, data from the
Canadian Study of Health and Aging [48] showed instead a reduced prevalence of AD (2023 participants,
399 with AD) with elevated plasma pesticide (polychlorinated biphenyls (PCB) and organochlorine (OC))
metabolite levels [49]. A more recent analysis of the cohort (513 subjects, 108 with AD) also affirmed that
there is no association of PCB and OC pesticides with the risk of dementia and AD, although a posteriori
analyses showed that DDE levels are related to a higher cognitive decline in time [50].
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Systematic reviews and meta-analyses of reported epidemiological links have been presented [38,51,52].
A meta-analysis of past reports in 2016 (which included 3 cohort studies and 4 case-control studies) has
concluded that pesticide exposure is positively associated with AD (OR, 95% CI: 1.34, 1.08–1.67) [51].
Another, more recent meta-analysis in 2019 of 19 studies of occupational exposures to multiple agents
on neurodegenerative diseases (13 on AD) has also concluded that occupational exposure to pesticides
increased the risk of AD (weighted relative risk (RR), 95% CI: 1.50, 0.98–2.29) [52]. A recent cohort data not
included in the above meta-analysis came from the Hellenic Longitudinal Investigation of Aging and Diet
study in Greece [53], which indicated an association between self-reported pesticide exposure and cognitive
function [54]. Interestingly, no association between pesticides and PD could be discerned with the same
cohort [55]. On the whole, therefore, results from epidemiological analyses are generally supportive of
pesticide exposure being an important environmental risk for sporadic AD.

3. Pesticides and the Induction of Alzheimer’s Disease Markers in Cell Culture and Animal Models

Pesticides presented at high concentrations would cause acute cytotoxicity and neurotoxicity [39,40].
However, for late-onset sporadic AD, what would be of disease relevance is likely chronic, low-dose
environmental/occupational exposure. In principle, pesticides could promote the onset or enhance
the progression of AD via the modulation of the two major etiopathological factors—Aβ and tau.
For example, the pesticide Rotenone, which inhibits the mitochondrial electron transport chain
(ETC) triggers hyperphosphorylation of tau and Aβ aggregation in cultured rat neurons [56] and
taupathy in rats [57]. Administration of the pyrethroid pesticide Deltamethrin, or the carbamate
pesticide Carbofuran, into rats likewise triggered tau hyperphosphorylation, with activation of
glycogen synthase kinase-3β (GSK-3β) and inhibition of protein phosphatase-2A (PP2A) [58]. Another
pyrethroid pesticide, cypermethrin, also stimulated GSK-3β-dependent increase in Aβ and phosphor
(p)-tau in rats [59]. In the same light, the organophosphate pesticide chlorpyrifos, which inhibit
acetylcholinesterase [60], upregulates Aβ and tau in SN56 basal forebrain cholinergic neurons [61]
and in mice [62], as well as p-tau via activation of GSK-3β [61]. DDT also increases Aβ levels in H4
glioma cells with a APPSwe transgene via elevation of APP and BACE1, while decreasing the levels of
Aβ-clearing ATP-binding cassette transporter A1 (ABCA1) and inhibiting the activity of Aβ-degrading
insulin-degrading enzyme (IDE) [63]. Aβ production has also been shown to be elevated by triazine
herbicides [64] and pyrazole insecticides in various cell lines [65].

While many reports have demonstrated pesticide-elicited neurotoxicity and AD-like pathology in
terms of Aβ and p-tau, there are limitations to these models and caveats in the interpretations of findings.
In several cases where experimental observations were made with relatively high doses, acute toxicity
responses rather than chronic effects associated with environmentally relevant residual concentrations
may have prevailed. In this regard, a recent report using residual amounts of fungicides in an AD
transgenic mouse model is worth noting. Lafon et al. [66] exposed J20 mice (harboring mutant hAPPSw/Ind)
to a cocktail of 3 fungicides, Cyprodinil, Mepanipyrim, and Pyrimethanil, at a residual dose of 0.1 µg/L
in drinking water for 9 months. This resulted in enhanced Aβ aggregation, gliosis, and neuronal loss.
In the later months, the fungicides also increased vascular amyloid aggregates in a manner reminiscent
of cerebral amyloid angiopathy [67,68]. The fungicides exacerbated amyloid aggregation, gliosis, and
neuronal demise. Interestingly, the fungicides appear to bind to amyloid plaques and able to promote
fibril formation by Aβ1-42 in vitro. Furthermore, residual fungicide elevated BACE1 protein levels while
reducing that of the Aβ-degrading enzyme Neprylisin [69], although the respective transcripts did not
change significantly. In another report [70] which investigated the effect of Chlorpyrifos administration
into TgF344-AD transgenic rats (harboring APPSwe and PS1∆E9), dosing was based on a human-derived
occupational exposure paradigm established from a cohort of Egyptian agricultural workers [71–73].
The authors observed enhancement of cognitive impairment and behavioral deficits that is prominent
only in male and not female rats, which is consistent with Chlorpyrifos’ acceleration of neurodegeneration
in males. The authors did not find significant changes in amyloid and tau pathology. Instead, a persistent
pathological change observed is an increase in microglia numbers and activation [70].
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Taken as a whole and despite the variance in methods, models and pesticides used, both in vitro
and animal-based studies have implicated a range of cellular and molecular mechanisms that could
initiate or enhance AD pathology. These mechanisms shall be further discussed in the following sections.

4. Potential Neuropathological Mechanisms of Pesticides

Neurotoxic and neuropathological mechanisms underlying pesticide exposure may include the
more generic detrimental processes of oxidative stress [74] and neuroinflammation [75]. On the
other hand, specific Aβ- and tau-related pathways and events could also be induced or involved.
These processes are heavily intertwined with Aβ production and tau phosphorylation processes in the
aging brain (see Figure 1A).
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Figure 1. A schematic and generalized illustration of pesticide-induced Alzheimer’s disease (AD)
neuropathology. (A) Pesticide inhibition of mitochondrial electron transport chain (ETC) components
and activation of NADPH oxidases (NOXs) produce mitochondrial and neuron damaging reactive
oxygen species (ROS). Damaged mitochondria and ROS could trigger neuroinflammation (not shown
here for simplicity). Pesticide activation of glycogen synthase kinase-3β (GSK-3β) promotes β-site
APP cleaving enzyme 1 (BACE1) expression and Aβ production while reducing Aβ clearance, and
phosphorylates tau to promote intracellular fibrillary tangle (IFT) formation). Some pesticides may
also promote Aβ fibril formation. Pesticides could inhibit Wnt signaling which is impaired in AD, and
which reactivation improves AD disease phenotype. Pesticides and/or ROS could also cause DNA
mutations and affect the expression of AD-related genes via epigenetic mechanisms. (B) Pesticides
could inhibit hippocampal adult neurogenesis and affect AD pathology via gut microbiota dysbiosis.
See text for more details.

4.1. Induction of Oxidative Stress and Neuroinflammation

Pesticides such as Rotenone are mitotoxic and inhibit the mitochondrial ETC [76]. DDT and DDE
likewise impair the ETC and oxidative phosphorylation (OXPHOS) [77]. There are two important
consequences to this inhibition. The first is a reduction in the product of OXPHOS, ATP. This could
considerably impair the energy metabolism of cells and tissues. Altered energy metabolism has been
documented in farmers exposed to pesticides [78]. Brain neurons are particularly notable in terms
of energy demand [79], and impairment in ATP production via oxidative phosphorylation may lead
to a metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, a metabolic
reprogramming phenomenon known as aerobic glycolysis [80,81], which is prominent in the AD
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brain and other neurodegenerative diseases with mitochondrial impairment. This apparent survival
mechanism results in lactate production, which in an APP/PS1 AD mouse model worsened cognitive
performance [82]. Aβ could trigger such a metabolic switch in neurons and microglia, and for the latter
it eventually leads to microglia dysfunction [83]. Interestingly, occupational-like organophosphate
exposure causes microglia dysregulation [70]. In the aging brain with elevated Aβ production and
accumulation, chronic low dose pesticide exposure could thus synergistically promote the impairment
of both neurons and glia.

The second is an increase in reactive oxygen species (ROS), particularly superoxide, by the
dysfunctional ETC, thus producing oxidative stress. Oxidative stress is an important pathological
mechanism exerted by many environmental toxicants, including a large number of pesticides, such
as paraquat, OCs, and organophosphates [74,84]. This is particularly so when some pesticides
(eg., paraquat, DDE and Chlorpyrifos) could also induce the Nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases [85–87], which acute release of ROS could cause neuronal death and
degeneration [88]. Damaged and ROS-generating mitochondria trigger an inflammatory response
initiated by the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome,
particularly in microglia [89–92]. The resulting production of the pro-inflammatory cytokine IL-1β
impairs neuronal health and function. AD is known as a disease of chronic systemic inflammation,
which is a result of contributions from many factors [93] that would include pesticides.

4.2. Enhancement of Aβ and tau Expression, Modification and Clearance

A range of pesticides may act in a manner that is termed by Cam and colleagues as environmental
“Alzheimerogens’ [65], namely by elevating the levels of Aβ [59,61–66]. The authors screened a
large compound library using a cell-based assay for enhanced production of the longer Aβ peptides
(Aβ42/Aβ43), and identified 9 pyrazole insecticides. These were found to induce, in a β- and
γ-secretase-dependent manner, an increase in extracellular Aβ42 in various cell lines and neurons
differentiated from induced pluripotent stem cells (iPSCs) derived from healthy and familial AD (FAD)
patients. Pesticide induction of Aβ usually occurs as a consequence of increases in the expression or
activity of BACE1 and γ-secretase [59,63,65,66], often in combination with a reduction in Aβ clearance
due to a suppression of the levels of Aβ-degrading enzymes such as IDE or neprylisin [62,63,66].
These pesticides would often also induce an increase in the levels of tau and p-tau [57–59,61,94].

What is the underlying mechanism(s) for the elevation of Aβ and p-tau by pesticides? An important
central regulator of these pathological processes appears to be GSK-3β, which is one of two GSK isoforms
(GSK-3α and GSK-3β) that is widely expressed, up-regulated in the aging brain [95], and is a critical
pathological factor in AD [96,97]. GSK-3β is constitutively active with Tyr216 autophosphorylated,
but could be inhibited by phosphorylation at Ser9 via AKT kinase, and as such could in turn be
reactivated by protein phosphatase 2A (PP2A) dephosphorylation of Ser9 [98]. GSK-3β regulates
BACE1 expression in a nuclear factor κB (NFκB)-dependent manner. In the 20E2 line expressing
human Swedish mutant APP, GSK inhibition by its inhibitor AR-A 014418 reduced Aβ production,
and this is due to GSK-3β’s (but not GSK-3α) regulation of the BACE1 gene promoter via the activation
of NFκB [99] GSK-3β also modulates the localization of PS1 [100], which is one of its substrates.
Importantly, GSK-3β is also a major tau kinase [98,101,102]. Rotenone activates GSK-3β by enhancing
its phosphorylation at Tyr216 while inhibiting phosphorylation at Ser9 [103], and Rotenone-induced
cytotoxicity could be attributed to microtubule destabilization caused by reduction in the binding
capacity of p-tau [104]. While the mechanistic aspects of how pesticides of different classes activate
GSK-3β have not been thoroughly investigated, it is clear that increased GSK-3β activity likely underlies
the Aβ and p-tau pathology exerted by most pesticides. Another interesting point to note is that
Aβ and p-tau pathology are interconnected, and one such connection occurs in the form of Aβ42’s
stimulation of tau hyperphosphorylation through its interaction with GSK-3α [105].

A further potential connection with regards to the above is pesticides’ potential suppression of the
Wnt/β-catenin signaling pathway [106–108]. Paraquat exposure altered the levels of the Wnt pathway
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genes in mouse neural progenitor cells [106], rotenone impaired Wnt signaling in a Drosophila PD
model [107] and Deltamethrin also reduced Wnt signaling pathway genes in zebrafish’s development
of swim bladder [108]. Wnt signaling is known to be impaired in AD [109–111], and activation of the
Wnt/β-catenin signaling pathway represses BACE-1 expression [112]. Activation of Wnt signaling has
been shown to rescue memory loss and improves synaptic dysfunction in APP/PS1 AD transgenic
mice [113,114]. In the well-known canonical Wnt signaling pathway, Wnt’s binding to its receptor
Frizzled and the downstream processes leading to the stabilization of β-catenin involves the inhibition
of GSK-3β [115]. It is conceivable that some pesticides could also inhibit Wnt signaling through
their action on the Wnt receptor Frizzled like the anti-helminthic drug Niclosamide [116], but this is
yet unclear.

4.3. Promotion of Amyloidogenesis

Beyond Aβ production, pesticides could also potentially promote aspects of amyloidogenesis,
such as Aβ oligomerization and fibril formation, as well as amyloid plaque formation. Evidence
in this regard are scarce, but this possibility has been recently demonstrated by Lafon et al. [66], in
which the fungicide cocktail of cyprodinil, mepanipyrim, and pyrimethanil associate with amyloid
plaques and appears to promote Aβ fibril formation in vitro, as described in more detail in Section 3
above. Rotenone exposure (as low as 0.5 nM) of neuron cultures from rat hippocampus, substantia
nigra and locus coeruleus resulted in the formation of protein aggregates of α-Synuclein and Aβ [56].
Aβ peptides are known to trigger aggregation of α-Synuclein [117], and there is a possibility that
heterotypic amyloid co-aggregates could be formed via a α-Synuclein seeding mechanism [118].
Whether such co-aggregations could actually be triggered by any pesticide in cultured neurons or in
animal brain remain to be demonstrated.

5. Speculative Neuropathological Mechanisms of Pesticides

The section above has outlined neurotoxic and neuropathological mechanisms of pesticides that
have been clearly demonstrated in various experimental models, and for which there are empirical
support. In this section, pesticide-associated AD etiological mechanisms that are more speculative and
indirect in nature shall be highlighted (see Figure 1A,B).

5.1. DNA Damage and Somatic Mutations

Pesticides such as OCs are known to be genotoxic and induce DNA damage [119,120], either via
oxidative damage [121] or direct interaction [122] with DNA. Pesticide genotoxicity is usually considered
in the context of their oncogenic potential [123,124], particularly during episodes of acute exposure
with mutational damage to dividing cells, such as neural stem cells (NSCs) and neural progenitor
cells (NPCs). However, chronic low dose exposure may also result in non-lethal mutations that
occur cumulatively in terminally differentiated, non-dividing neurons. These mutations could impair
neuronal health and function in largely undefined ways. Interestingly, somatic mutations or variants
in brain neurons with low allele frequency has been associated with aging and neurodegenerative
diseases [125–127]. This somatic mosaicism has, in particular, been demonstrated in AD brains.
APP variants have been shown to occur in human neurons mosaically as thousands of intronless
variant ‘genomic cDNAs’ [128]. Loss of function mutation in the Peptidyl-prolyl cis-trans isomerase
NIMA-interacting 1 (PIN1) [129], which is important for AD etiology, as well as signaling pathway
genes that contribute to hyperphosphorylation of tau, have also been identified in AD brains [130].
It is therefore conceivable that low frequency mutations or variance generated by chronic genotoxicity
of pesticides could contribute to the etiology of sporadic AD.

5.2. Epigenetic Mechanisms

Beyond changes to DNA sequences, pesticides could affect gene expression epigenetically [131,132].
There is evidence that pesticide exposure is linked to alterations in DNA methylation [133–135].
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Of particular relevance in this regard would be genes that encode proteins affecting AD etiology, such
as that encoding Paraoxonase-1 (PON1) [136,137]. Pesticides are also known to affect the expression of
micro(mi)RNAs [138–140]. In particular, Paraquat’s modulate miRNAs affecting components of Wnt
signaling [138] would be of direct relevance to AD [110,113].

5.3. Effect on Adult Neurogenesis

Pesticide exposure has been extensively linked to developmental defects [141], and is known to
affect neural stem cells and neural progenitor cells in the pre- and postnatal periods [142,143]. While
early life exposure to pesticides affect both neurons and glia, and impairs learning and memory [144],
pesticides could also potentially impact on the arguably more AD-relevant process of adult neurogenesis,
particularly at the hippocampal neurogenic sites [145]. Adult neurogenesis at the subventricular zone
(SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus (DG) in the hippocampus
has been demonstrated extensively in rodent animal models, and is functionally linked to memory
encoding as well as behavioral modification [145,146]. In this regard, neonatal exposure to permethrin
pesticide in mouse has been shown to cause lifelong fear and spatial learning deficits and alters
hippocampal morphology of synapses [147]. Repeated pyrethroid exposure of adult mouse also causes
hippocampal endoplasmic reticulum (ER) stress and learning deficits [148].

Of particular relevance here is that adult neurogenesis is linked to AD [149,150], and impaired
adult neurogenesis could be an early event in AD [151]. Conceivably, neuronal vulnerability to AD
etiology may be exacerbated by earlier defects in the progenitor cells, while adult neurogenesis could
be a compensatory response to neuronal loss to the disease condition. A recent comparative analysis
of human dentate gyrus samples indicated that while hippocampal neurogenesis is prominent in
normal adults, this is drastically reduced in AD patient brains [152]. Impairment of adult neurogenesis
specifically exacerbates AD neuropathology in APPswe/PS1∆E9 AD trangenic mice [150]. In this
connection, Paraquat has been specifically shown to inhibit hippocampal neurogenesis in adult
mice, as intraperitoneal administration of the compound for 3 weeks inhibited neural progenitor
cell proliferation, altered developmental fate of newly generated cells in the hippocampus and
impaired hippocampus-dependent learning and memory [153]. Perinatal exposure of the herbicide
glufosinate-ammonium (GLA) to pregnant mothers inhibits SVG neurogenesis in newborn mice
and altered the neuro-glial differentiation of cultured mouse primary neural stem cells [154,155].
Given the above connections between pesticides, adult neurogenesis and AD, it could be reasonably
deduced that pesticide disruption or inhibition of adult neurogenesis may initiate or otherwise promote
AD pathology.

5.4. Dysfunction of the Brain-Gut Axis

Brain health is influenced by the health of the gut, or more specifically the gut microbiome [156].
The two-way communication between gut microbiota and the brain through the enteric nervous system,
the vagus nerve, and the immune system, involving tryptophan metabolism and microbial products,
constitutes what is often termed the microbiota-gut-brain axis [157]. The gut microbiota modulate
neuroinflammation, and would therefore have role in AD [158,159]. Gut microbiota dysbiosis is
known to occur in AD [160], and its induction could aggravate disease progression in AD models [161].
Evidence for this notion is provided by, for example, a recent report using an AD-like pathology
with amyloid and neurofibrillary tangles (ADLPAPT) transgenic mouse model of AD [162], whereby
transplantation of fecal microbiota from wild-type mice into ADLPAPT mice ameliorated plaque and
NFT formation, reduced glial activation, and alleviated cognitive impairment [163]. A number of
reports have now indicated that a wide range of pesticides, such as the fungicide propamocarb [164],
glyphosate herbicides [165], carbamate insecticide Aldicarb [166], and Chlorpyrifos [167,168] are all
known to alter gut microbiota and cause varying degrees of dysbiosis. Exposure of propamocarb
to mice at 3–300 mg/L through drinking water for a duration of 28 days changed the microbiota in
the cecal and fecal contents at phylum or genus levels [164]. Sub-chronic and chronic exposure of
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mice to glyphosphates increased anxiety and depression-like behaviors and altered the gut microbiota
composition, decreasing the Corynebacterium, Firmicutes, Bacteroidetes and Lactobacillus in particular [165].
Analysis of low dose Chlorpyrifos exposure at the late postnatal pre-weaning stage of rats indicated
changes in neurotransmission parameters and induction of gut microbiota dysbiosis at both genus
and species levels [167]. Given these connections, it is thus conceivable that pesticide-induced gut
microbiota dysbiosis could play at least an indirect role in AD pathogenesis.

6. Epilogue

In the paragraphs above, recent works on the connection between pesticide exposure and AD were
highlighted and discussed. Epidemiological studies are increasingly affirming an association between
environmental and occupational pesticide exposure and AD. Laboratory experiments have also better
defined the potential neurotoxic and neuropathological mechanisms induced by pesticides that might
be AD-initiating or -promoting. The more classical and generic mechanisms would include chronic
oxidative stress, neuroinflammation, and Aβ/p-tau neuropathology, which impact negatively on aging
neurons. Beyond these, there are more speculative or indirect mechanisms, which include somatic
mutation, epigenetic modulations, adult neurogenesis impairment, and gut microbiota dysbiosis. It is
clear that these mechanisms crosstalk extensively with the classically-perceived mechanisms, and the
neuropathology of AD is a tangled web of factors, pathways and consequences that often mutually
reinforce and synergize. The speculative/indirect mechanisms further attest to the common notion that
sporadic AD is etiologically complex. However, from the perspective of a group of environmental
risk factor like pesticides, key components of the entangled web of neuropathological mechanisms in
AD that may be therapeutically relevant and useful could also be effectively highlighted, and thus
potentially exploited.
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