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Abstract: Aiming at the pollution and ecological hazards of the lake sediments of Bosten Lake,
once China’s largest inland lake, the spatial distribution and influencing factors of the potentially-toxic
elements in its surface sediments were studied with the methods of spatial autocorrelation,
two-way cluster analysis, and redundancy analysis. Finally, based on the background value
of potentially-toxic elements extracted from a sediment core, a comprehensive evaluation of the risk
of these potentially-toxic elements was conducted with the potential-ecological-risk index and the
pollution-load index. With data on the grain size, bulk-rock composition, and organic matter content,
this comprehensive analysis suggested that with the enrichment of authigenic carbonate minerals,
the content of potentially-toxic elements exhibited distinctive characteristics representative of arid
regions with lower values than those in humid region. All potentially-toxic elements revealed a
significant spatial autocorrelation, and high-value areas mainly occurred in the middle and southwest.
The content of potentially-toxic elements is related to Al2O3, K2O, Fe2O3, TiO2, MgO, and MnO,
and the storage medium of potentially-toxic elements mainly consists of small particles with a grain
size <16 µm. The pollution load index (PLI) for the whole lake due to the potentially-toxic elements
was 1.31, and the surface area with a PLI higher than 1 and a moderate pollution level accounted for
87.2% of the total lake area. The research conclusions have an important scientific value for future
lake ecological quality assessment and lake environment governance.

Keywords: spatial distribution; ecological risk; potentially-toxic elements; inland water; lake
sediments; China

1. Introduction

Lake sediments are subject to material accumulation in watersheds and reflect the source–sink
process [1]; lake sediments are also an important part of the lake environment and have special
importance for ecological processes [2,3]. Lake sediments possess a high holding capacity for various
pollutants. Most of the pollutants that enter water through various channels are quickly transferred to
sediments, and the pollutants in sediments are again released under the conditions of environmental
change and, therefore, become a secondary pollution source of the overlying water [4,5]. Among the
numerous pollutants [6,7], potentially-toxic elements are some of the most serious pollutants due
to their toxicity, durability, non-degradability, and bioaccumulation properties [8]. Potentially-toxic
elements (PTEs) originate from the input of natural and human activities, and the main pathway of
entering a water body is direct input through surface runoff, atmospheric deposition, and human

Toxics 2020, 8, 77; doi:10.3390/toxics8030077 www.mdpi.com/journal/toxics

http://www.mdpi.com/journal/toxics
http://www.mdpi.com
https://orcid.org/0000-0002-8233-8640
https://orcid.org/0000-0001-8483-1554
https://orcid.org/0000-0002-5524-0496
http://www.mdpi.com/2305-6304/8/3/77?type=check_update&version=1
http://dx.doi.org/10.3390/toxics8030077
http://www.mdpi.com/journal/toxics


Toxics 2020, 8, 77 2 of 17

activities [9,10]. Against the natural background, rivers transport the weathered products of rock
minerals that are the main source of the PTEs in sediments. With the advancement of society, the process
of urban development, agricultural and industrial activities in lake basins, such as urban transportation,
fossil fuel combustion, mining, and metal smelting, and the use of fertilizers and pesticides have largely
resulted in aquatic environmental pollution. PTEs impose a toxic or chronic effect on the organisms in
lakes, especially benthic organisms [11], and accumulate in organisms and cause harm to humans [12].
Therefore, the geochemical characteristics, source analysis, and pollution assessment for PTEs in lake
sediments have an important practical significance.

Lake Bosten was once the largest inland freshwater lake in China, located in Bohu County,
the Xinjiang Uygur Autonomous Region [13]. It not only plays an important role in the ecological
regulation of the lake basin but also directly affects the sustainable development of the economic
and social environments of the region [14]. Large-scale industrial and agricultural development
activities and the rapid increase in the population of the Yanqi Basin, Bosten Lake, have caused
pollution via high-salinity farmland drainage and industrial sewage discharge, and regional pollution
is gradually increasing [15,16]. Researchers have previously conducted fruitful research on the modern
environment of Lake Bosten [17,18] and environmental changes over the historical period have been
reconstructed [19,20]. Current research on the lake surface sediments of Bosten Lake has mainly
focused on organic pollution [21,22], organic carbon [23], bacterial communities [24], chironomids [25],
and PTEs [26,27]. Previous research on potentially-toxic elements has mainly centered on their statistical
characteristics, but there are no studies on their spatial distribution characteristics [26]. In addition to
the spatial distribution of PTEs, research on the relationship among the contents of potentially-toxic
elements and environmental factors (such as the grain size and total organic matter) in the surface
sediments of Bosten Lake is not available.

This research aimed to reveal whether human activities have significantly enhanced the enrichment
of PTEs in lake sediments of underdeveloped areas in China, and to provide an approach to
discussing the factors that influence PTEs through a comprehensive analysis of the grain size,
bulk-rock composition, and organic matter content in lake sediments. Twenty-two points in the surface
layer (0–5 cm) of Bosten Lake were sampled to analyze the content of PTEs, grain size, total organic
carbon (TOC), and bulk-rock composition. The spatial distribution and influencing factors of the
PTEs and their potential ecological risks were revealed with the methods of spatial autocorrelation,
cluster analysis, and redundancy analysis, which will be of scientific value for future lake ecological
quality assessment and lake environment governance.

2. Material and Methods

2.1. Sampling and Analysis

Lake Bosten is the lowest point of the Yanqi Basin, located at the southern slope of the Tianshan
Mountains. Its water area is vast, with an approximate length of 55 km and width of 25 km [28].
Bosten Lake is deep and dish-shaped with a flat bottom and a maximum water depth of approximately
14 m (Figure 1). The lake surface area is 1005 km2 and the water storage capacity is 59 × 108 m3 [29].
The lake water is weakly alkaline and has a high hardness with a water salinity of 1.5 g/L. Lake Bosten
is mainly supplied by water from the Kaidu River. This is the only river discharging water into the lake
year round. The waters of Lake Bosten pass through the Peacock River in the west to Lop Nur, Tarim
Basin. The annual total precipitation in the Bosten Lake basin ranges between 322 mm and 47.3 mm,
and the annual evaporation ranges from 1100 to 1887 mm [30].
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Figure 1. Location map of Bosten Lake (a) and sampling points (b). 
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(0–5 cm) are the main layer of water-sediment interaction, and the layer where biological activities 
are relatively active [31–33]. The sampling protocol was mainly based on the shape of Bosten Lake 
and the spatial interpolation of PTEs. A disturbance-free gravity sampler (Uwitec, Mondsee, Austria) 
was employed to collect 22 samples from the 0–5 cm sediments of the surface layer, evenly covering 
the entire lake area (Figure 1 and Table S1). The 34-cm sediment core (41.92775° N, 86.81797° E) at 
about 7.0 m water depth (Figure 1) was sliced at 1 cm intervals in situ and analysed for the 
geochemical elements (Figure S1). To determine the background value of regional elements, a 
sediment core was retrieved from Bosten Lake (Figure 1 and Table S1). Sediment samples were placed 
in sequentially-marked plastic bags, while the collected surface sediment samples were freeze dried 
in the laboratory. 

Samples (0.125 g) were collected for digestion using HCl-HNO3-HF-HClO4 microwave 
digestion, and certain potentially-toxic elements (Mn and V) were determined by inductively coupled 

Figure 1. Location map of Bosten Lake (a) and sampling points (b).

Because the changes in potentially-toxic elements in modern sediments (0–5 cm) were studied this
reflected the possible impact of modern human activities on lake sediments. Surface sediments (0–5 cm)
are the main layer of water-sediment interaction, and the layer where biological activities are relatively
active [31–33]. The sampling protocol was mainly based on the shape of Bosten Lake and the spatial
interpolation of PTEs. A disturbance-free gravity sampler (Uwitec, Mondsee, Austria) was employed
to collect 22 samples from the 0–5 cm sediments of the surface layer, evenly covering the entire lake area
(Figure 1 and Table S1). The 34-cm sediment core (41.92775◦ N, 86.81797◦ E) at about 7.0 m water depth
(Figure 1) was sliced at 1 cm intervals in situ and analysed for the geochemical elements (Figure S1).
To determine the background value of regional elements, a sediment core was retrieved from Bosten
Lake (Figure 1 and Table S1). Sediment samples were placed in sequentially-marked plastic bags,
while the collected surface sediment samples were freeze dried in the laboratory.

Samples (0.125 g) were collected for digestion using HCl-HNO3-HF-HClO4 microwave digestion,
and certain potentially-toxic elements (Mn and V) were determined by inductively coupled plasma
atomic emission spectroscopy (ICP-AES) (Prodigy, Teledyne Leeman Labs, Hudson NH, USA),
while other elements were measured using inductively coupled plasma mass spectrometry (ICP-MS)
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(7700×, Agilent Technologies, Palo Alto, CA, USA). The error of parallel-sample analysis was <±5%.
The detected limits for Mn, V, Cr, Co, Ni, Cu, Zn, As, Cd, Tl, and Pb were 0.5 mg/kg, 2 mg/kg, 0.1 mg/kg,
0.01 mg/kg, 0.05 mg/kg, 0.02 mg/kg, 0.1 mg/kg, 0.1 mg/kg, 0.01 mg/kg, 0.02 mg/kg, and 0.01 mg/kg,
respectively. With the potassium dichromate volumetric method [34,35], the content of total organic
carbon (TOC) was determined with analysis error of <±5%. The grain size was measured by a
Mastersizer 2000 laser analyzer manufactured by Malvern, UK. Following the grain-size classification
of Udden-Wentworth [36,37], the grain sizes of the sediments analyzed in this article included the
clay grade (<4 µm), fine-silty grade (4–16 µm), silty grade (16–32 µm), coarse-silty grade (32–64 µm),
and sandy grade (>64 µm), and the measurement error was smaller than 5%.

Bulk-rock analyses were performed using X-ray fluorescence spectrometry at ALS Chemex
(Guangzhou, China). The ALS Chemex method ME-XRF26d was applied to measure Al2O3, CaO,
Fe2O3, K2O, MgO, Na2O, P2O5, SiO2, SO3, and TiO2, and the loss-on-ignition at 1000 ◦C (LOI1000) was
gravimetrically determined with the ALS Chemex method OA-GRA05x. The detection limit for the
oxides and loss-on-ignition was 0.01, and the analytical precision was higher than 2% for all the oxides.

2.2. Pollution Evaluation Method

The potential ecological risk index (PERI) not only considered the content of heavy metals from
the perspective of sedimentology, but also linked any ecological or environmental impacts with
the toxicology and employed comparative and equivalence index classification techniques to assess
pollution [38,39]. According to this method, the potential risk coefficient of a single element Er and the
potential ecological risk RI are as follows:

Ci
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n/Bi
0

)
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where Cf is pollution factor of potentially-toxic element i, Cn is measured content for a single
potentially-toxic element, B0 is the background value for potentially-toxic element, and Tr is the toxicity
response factor for the given potentially-toxic element, with the following values: Mn = 1 [40], V = Zn
= Cr = 2, Cu = Co = Ni = Pb = 5, As = 10, Cd = 30 [41], and Tl = 10 [42]. The grading standards for the
ecological risk assessment [43–45] are listed in Table S2.

The pollution load index (PLI) is widely applied in the pollution evaluation in soils and
sediments [46,47].

CFi =
Ci
Coi

(4)

PLIsite =
n
√

CF1 ×CF2 × · · · ×CFn (5)

PLIzone =
m
√

PLI1 × PLI2 × · · · × PLIm (6)

where Ci is the measured content of element I, Coi is the background value of element, CFi is the
pollution coefficient of element i, n is the number of evaluated elements, m is the number of sampling
points in Lake Bosten, PLIsite is the PLI at a certain point, and PLIzone is the PLI for the whole lake.
The specific grading standards are divided into no pollution (PLI < 1) and moderate (1 ≤ PLI < 2),
etc. [46,48].
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2.3. Identification of the Background Values of the Elements

According to the method of Palaeoecological Investigation of Recent Lake Acidification (PIRLA)
proposed by Binford (1990) [49] to calculate the elemental background value of a sedimentary section,
the specific operation is conducted as follows [50]: first, the relatively-stable average value (X) and
standard deviation (SD) of the element content at the bottom of the sediment core are calculated. If the
element content of the next upper layer of the sediment core is lower than X + SD, then this part of the
element content is included in the relatively-stable average value, and the average value (X) and SD
are recalculated. The operation is repeated until the element content of the next part is higher than X +

SD. The relatively-stable average value obtained by this method could be regarded as the background
value of the element.

2.4. Statistical Methods

Moran’s I was adopted to reveal the spatial relevance relationship among the PTEs in the
neighborhood set at each location [51]. Moran’s I = 0, suggests a random spatial distribution,
at −1 ≤ Moran’s I < 0, there is a negative correlation, while 0 < Moran’s I ≤ 1 suggests a positive
correlation [52,53]. Moran’s I testing was conducted using GeoDa software version 1.14.0 24 [54].
With the software NCSS 12.0 (test version), the two-way dendrogram generated with the method of
two-way cluster analysis [55] was employed to reveal the statistical similarity among the clustering
results of the potentially-toxic elements and sample sites. Redundancy analysis (RDA) was used to
reveal the possible sources of the PTEs and their influencing factors. RDA examines the changes in
PTEs along a specific gradient (whole rock composition and grain size) and is currently the most
widely applied environmental factor analysis tool in the field of environment and ecology [56–59].
RDA was conducted by Canoco 5 [60] with none data transformation and unrestricted permutations
(number of permutations is 499).

3. Results

Statistical characteristics of the latent PTEs, particle sizes, whole-rock composition, and organic
carbon content are shown in Table S3. The statistical characteristics of the PTEs in the surface sediments
are shown in Figure 2. The highest content of the PTEs was that of Mn. The Mn content was between
0.20 and 0.63 g/kg. The lowest average contents of the PTEs were those of Cd and Tl. The Cd content was
between 0.06 and 0.19 mg/kg and the Tl was between ~0.17 and 0.54 mg/kg (Figure 2). The variations
of PTEs in the sediment core are shown in Figure S1. The background values were obtained according
to the above method of identifying the background values of the elements. The background values
for PTEs were extracted with the PIRLA method, and the background values for Mn, V, Zn, Cr, Co,
Ni, Cu, As, Cd, Tl, and Pb were 0.33 g/kg (Mn), 37.49 mg/kg (V), 35.52 mg/kg (Zn), 23.18 mg/kg (Cr),
4.81 mg/kg (Co), 13.32 mg/kg (Ni), 12.14 mg/kg (Cu), 5.70 mg/kg (As), 0.10 mg/kg (Cd), 0.22 mg/kg (Tl),
and 8.19 mg/kg (Pb).
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Figure 2. Statistical characteristics of the potentially-toxic elements (PTEs) in the Bosten Lake surface
sediments. The plots for PTEs in black box and transparent box were used different vertical coordinates.

The grain size compositions for the surface sediments are shown in Figure 3. Following the
grain-size classification of Udden-Wentworth [36,37], the surface sediments of Lake Bosten were
classified into five grain size grades (Figure 3): clay grade (<4 µm), fine-silty grade (4–16 µm),
silty grade (16–32 µm), coarse-silty grade (32–64 µm), and sandy grade (>64 µm). The highest average
content was that of fine silt (4–16 µm). The fine silt content ranged from 19.21–62.07%. The lowest
content was that of sand (>64 µm), with a range of 0.16–19.40%. The TOC ranged from 4.46 to 48.36 g/kg,
with an average value of 32.57 g/kg (Table S3).

The mathematical statistics could not reflect the differences in the spatial distribution among the
various potentially-toxic elements, and it was impossible to determine the geographical connotations,
leading to a lack of relevance for the ecological protection of the lake. The scatter plots of Moran’s I
suggested that there are significant spatial positive correlations for the PTEs in the surface sediments
(Figure 4). A positive Moran’s I implies that as the spatial distribution position (distance) decreases,
the correlation becomes more significant. In the region of Lake Bosten, the positive value of Moran’s
I suggested that the correlation becomes more significant with increasing aggregation of the spatial
distribution position. Through spatial autocorrelation analysis (Figure 4), it was found that spatial
autocorrelation occurs among the potentially-toxic elements, and the spatial distribution map of
these potentially-toxic elements could be established by the inverse distance spatial interpolation
method [61].
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4. Discussion

4.1. The Possible Influencing Factors for the PTEs in Bosten Lake Sediments

The content of PTEs in the surface sediments of Bosten Lake reflects the distinctive characteristics
of lake sediments in arid regions, similar to Lake Balkhash in Kazakhstan [62], and Lakes Chaiwopu [63],
Ebinur [64], and Sayram [65] in Xinjiang, China. However, compared to humid lakes, such as Lakes
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Taihu [66], Chaohu [67], and Erhai [68], the LOI1000 levels of the Bosten Lake sediments are higher
and the contents of Al2O3, Fe2O3, and other potentially-toxic elements are lower. Bosten Lake is
located in the arid area of central Asia. On the one hand, the bedrock of the lake watershed contains
many carbonates and evaporative salts, and the saturation index of aragonite and calcite of its surface
water body indicates supersaturation [16]. On the other hand, regional evaporation is beneficial to the
enrichment of authigenic carbonate minerals, leading to the dilution of potentially-toxic elements in
the lake sediments.

The two-way clustering dendrogram revealed the relative similarity as reflected by the
standardized Euclidean distance between the sampling sites and potentially-toxic elements.
As indicated by the similarities among the sampling sites, the sampling sites could be clearly
divided into two categories with a threshold of 10—clusters A and B (Figures 5 and 6, respectively).
The sampling points located in cluster A were mainly distributed in the middle of the lake and presented
a continuous distribution (Figure 6) and were characterized by a low content of the potentially-toxic
elements (Figure 5). The sampling points located in cluster B were mostly distributed in the east and
west of the lake (Figure 6) and were characterized by a high content of PTEs (Figure 5). Similar to the
sampling horizons, the two-way clustering dendrogram is an effective tool to reveal the similarity
relationship among the potentially-toxic elements. The potentially-toxic elements can be divided
into two groups with threshold of 0.3—clusters I and II. Cluster I includes V, Cr, Zn, As, Pb, and Tl,
and cluster II includes Co, Ni, Cu, Cd, and Mn. These two types of potentially-toxic elements may
have differences in their material sources.

On the one hand, the accuracy of the spatial distribution map is related to the spatial interpolation
method, but the more important reason should be the sampling density. The spatial distribution
map of potentially-toxic elements can only show a general trend of potentially-toxic elements in the
sediments of Lake Bosten. The spatial distribution map (Figure 6) clearly shows that the low-value
areas of the potentially-toxic elements are primarily distributed on the northwest and southeast sides
of the lake area. High-value areas occur in the middle and southwest of the lake area, with the highest
content observed on the southwest side. This may be related to the hydrodynamic conditions of the
lake. The southwest side hosts the main entrance and exit of the lake, while the east side occurs at the
end of the lake water cycle with a calm water deposition environment.

The material composition, structure, and organic matter content in the sediments affect the
content and distribution of the potentially-toxic elements. The bulk-rock composition reflects the
material composition characteristics of the sediments, while the particle size reflects their structural
characteristics. To determine the factors that influence the element content among the environmental
variables, the RDA method was considered to compare the correlations among the potentially-toxic
elements, bulk-rock composition, total organic carbon (TOC), and components of different grain
sizes (Figure 7). Existing research has indicated that a high organic matter content may increase the
adsorption of pollutants in the water environment [69]; however, in Lake Bosten, the relationship with
the organic carbon is obviously different. The content of the PTEs is related to Al2O3, K2O, Fe2O3, TiO2,
MgO, and MnO. This implies that the PTEs in the Bosten Lake sediments mainly comprise silicate and
Fe–Mn minerals. Moreover, this also indicates that the content of the PTEs is weakly influenced by
the organic matter. In addition, the PTEs, clay grade (<4 µm), and fine-silty grade (4–16 µm) showed
significant correlations, and the silty grade (16–32 µm), coarse-silty grade (32–64 µm), and sandy grade
(>64 µm) were positively related to the first axis, which revealed that the storage medium of the PTEs
mainly consists of small particles with a grain size <16 µm.
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As the water outflow of Lake Bosten is controlled by a man-made pumping station (Figure 1), 
the circulation of the lake is not smooth. Most of the pollutants in the watershed will be deposited 
into the sink of Lake Bosten. Through the research in this paper, it was indeed found that there is an 

Figure 7. Redundancy analysis of the correlation among the potentially-toxic elements, bulk-rock
composition, total organic carbon (TOC), and components of the different grain sizes. For the left-hand
diagram, the two axes account for 99.95% of total eigenvalues (axis 1: 99.38% and axis 2: 0.57%)
with permutation test results (pseudo-F = 134, P = 0.002). For the right-hand diagram, the two axes
account for 99.98% of total eigenvalues (axis 1: 98.86% and axis 2: 1.12%) with permutation test results
(pseudo-F = 2.9, p = 0.052).

4.2. Potential Ecological Risks of the PTEs

The spatial distribution map of the PERI and PLI due to the PTEs in the lake sediments of Lake
Bosten revealed, on the one hand, spatial differences of the pollution for PTEs, and on the other hand,
it reflects future targeted lake ecological protection by the government and the public. Based on the
grading standards of the ecological risk assessment index (Table S2), a PERI lower than 150 indicates a
low ecological risk, while a PERI above 150 indicates a moderate ecological hazard. Figure 8 shows
that the ecological risk caused by the potentially-toxic elements in Bosten Lake is low, and only one
of the 22 sampling sites (site 21) exhibited a PERI higher than 150. Based on the PLI, among the
22 sampling points, three points have a PLIsite value lower than 1, indicating no pollution. The PLIsite

value of 18 points is between 1 and 2, reflecting moderate pollution, and only one sample point has a
value higher than 2, indicating heavy pollution. Combined with the spatial distribution map of PLIsite,
the area with a PLIsite value higher than 1 accounts for 87.2% of the total lake area. By calculating the
overall pollution index of Lake Bosten, it is found that the PLIzone value of the Lake Bosten sediments
due to the potentially-toxic elements is 1.31, which indicates that the Lake Bosten sediments are
moderately polluted as a whole. In general, the pollution of PTEs in the Bosten Lake sediments is low,
but due to the trace toxicity and long-term accumulation properties of these potentially-toxic elements,
the lake pollution problem still requires attention. It must be mentioned that two different methods
for evaluation resulted in some differences of the pollution risk, which were mainly related to the
evaluation criteria and thresholds. Although the methods we used were widely used in the study
of the health risk assessment of potential toxic elements in sediments from China [42,70] and other
countries [71,72]. The evaluation method does have the problems of the practicality of evaluation
criteria in the study area. At present, studies on the toxicological effects of Bosten Lake sediments have
not been carried out, so it is not possible to propose evaluation methods and standards applicable to
this research area for Bosten Lake.
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As the water outflow of Lake Bosten is controlled by a man-made pumping station (Figure 1),
the circulation of the lake is not smooth. Most of the pollutants in the watershed will be deposited
into the sink of Lake Bosten. Through the research in this paper, it was indeed found that there is an
enrichment of potential toxic elements in the surface sediments. Therefore, to control the enrichment of
PTEs in the lake, the most fundamental thing is to reduce the emission of pollution sources including
industrial, agricultural, and domestic sewage discharge. This should be a high priority for the
government and the public in order to avoid serious pollution problems in the future.

5. Conclusions

In this paper, the influence of human activities on the enrichment of PTEs in lake sediments
of underdeveloped areas in China was revealed, and an approach to carrying out research on the
influence factors of PTEs with the data of the grain size, bulk-rock composition, and organic matter
content in lake sediments was provided. The following conclusions were obtained:

(1) The enrichment of authigenic carbonate minerals leads to the dilution of the PTEs in the lake
sediments of arid regions. All PTEs (Mn, V, Cr, Co, Ni, Cu, Zn, As, Cd, Tl, and Pb) exhibit significant
spatial autocorrelation. The low-value areas for PTEs are primarily distributed on the northwest
and southeast sides of the lake area. The high-value areas occur in the middle and southwest of the
lake area.

(2) Use of data including whole rock, and grain size of lake sediments is an effective way to study
the influencing factors of potential toxic elements. The content of the PTEs is related to Al2O3, K2O,
Fe2O3, TiO2, MgO, and MnO, suggesting that the PTEs primarily comprise silicate and Fe–Mn minerals
in the Bosten Lake sediments, and the storage medium of these potentially-toxic elements mainly
consists of small particles with a grain size <16 µm.

(3) The enrichment of PTEs in modern lake sediments under the background of enhanced human
activities was revealed in this paper. The PERI suggests that the ecological risk in Bosten Lake is low,
and the PLI shows the surface area with PLI higher than 1 and a moderate pollution level accounts for
87.2% of the total lake area. The overall PLI of Lake Bosten due to the potentially-toxic elements is 1.31,
suggesting a moderate pollution level.
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