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Abstract: Exposure in utero to particulate matter (PM2.5 and PM10) is associated with maladaptive
health outcomes. Although exposure to prenatal PM2.5 and PM10 has cord blood DNA methylation
signatures at birth, signature persistence into childhood and saliva cross-tissue applicability has not
been tested. In the Fragile Families and Child Wellbeing Study, a United States 20-city birth cohort,
average residential PM2.5 and PM10 during the three months prior to birth was estimated using air
quality monitors with inverse distance weighting. Saliva DNA methylation at ages 9 (n = 749) and 15
(n = 793) was measured using the Illumina HumanMethylation 450 k BeadArray. Cumulative DNA
methylation scores for particulate matter were estimated by weighting participant DNA methylation
at each site by independent meta-analysis effect estimates and standardizing the sums. Using a
mixed-effects regression analysis, we tested the associations between cumulative DNA methylation
scores at ages 9 and 15 and PM exposure during pregnancy, adjusted for child sex, age, race/ethnicity,
maternal income-to-needs ratio, nonmartial birth status, and saliva cell-type proportions. Our
study sample was 50.5% male, 56.3% non-Hispanic Black, and 19.8% Hispanic, with a median
income-to-needs ratio of 1.4. Mean exposure levels for PM2.5 were 27.9 µg/m3/day (standard
deviation: 7.0; 23.7% of observations exceeded safety standards) and for PM10 were 15.0 µg/m3/day
(standard deviation: 3.1). An interquartile range increase in PM2.5 exposure (10.73 µg/m3/day) was
associated with a −0.0287 standard deviation lower cumulative DNA methylation score for PM2.5
(95% CI: −0.0732, 0.0158, p = 0.20) across all participants. An interquartile range increase in PM10
exposure (3.20 µg/m3/day) was associated with a −0.1472 standard deviation lower cumulative
DNA methylation score for PM10 (95% CI: −0.3038, 0.0095, p = 0.06) across all participants. The
PM10 findings were driven by the age 15 subset where an interquartile range increase in PM10
exposure was associated with a −0.024 standard deviation lower cumulative DNA methylation score
for PM10 (95% CI: −0.043, −0.005, p = 0.012). Findings were robust to adjustment for PM exposure
at ages 1 and 3. In utero PM10-associated DNA methylation differences were identified at age 15
in saliva. Benchmarking the timing and cell-type generalizability is critical for epigenetic exposure
biomarker assessment.

Keywords: DNA methylation; air pollution; particulate matter; saliva; biomarker

1. Introduction

Air pollution exposure in utero is associated with adverse pregnancy outcomes [1] and
postnatal health problems, such as impaired neurodevelopment [2], increased likelihood of
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autism spectrum disorder [3], and impaired lung function in children [4]. One component
of air pollution is particulate matter (PM), which is classified based on the size of the particle.
Smaller particles with a diameter less than 2.5 µM (PM2.5) contain primary combustion
particles and secondary particles [5]. Larger particles with diameters greater than 2.5 µM
and less than 10 µM (PM10) are generally visible and include black carbon, dust, and
mechanically generated particles [5]. PM2.5 and PM10 are heterogeneous exposures, and
their chemical makeup depends on the exposure source and the distance from the source.
PM2.5 and PM10 differ in the depth of lung penetration [6], though both types of PM
are capable of crossing the placenta [7] and thus directly impact the developing fetus.
Characterizing the molecular consequences of air pollution exposure during the in utero
period is critical to understanding environmentally mediated health disparities that emerge
early in life and predict lifelong outcomes.

In utero exposure to PM2.5 and PM10 has well-documented associations with in-
fant DNA methylation in cord blood [8]. Many of these previous studies quantitatively
measured DNA methylation using the genome-wide Illumina 450 k array [9]. In a meta-
analysis of nine cohort studies, an interquartile range increase in PM2.5 exposure (2 µg/m3)
was associated with 3% lower DNA methylation near the PLXNA4 gene [10]. Similarly,
an interquartile range increase in PM10 exposure (5.6 µg/m3) was associated with 1%
higher DNA methylation near the GNB2L1 gene [10]. The prenatal period is a window
of susceptibility for epigenetic changes such as DNA methylation [11]. Indeed, DNA
methylation at birth has been shown to be an effective biomarker of prenatal environmental
exposures [12]. However, the identification of these DNA methylation signatures of air
pollution in childhood and the blood to saliva cross-tissue applicability has not been tested.

The goal of this study is to investigate air pollution DNA methylation biomarkers in
childhood and the cross-tissue applicability between biomarkers developed in cord blood
to saliva. Specifically, we tested the associations between in utero air pollution exposure
and saliva DNA methylation, measured using the Illumina 450 k array, in the Fragile
Families and Child Wellbeing Study. We hypothesized that in utero air pollution exposure
would be associated with DNA methylation at ages 9 and 15 in the Fragile Families and
Child Wellbeing Study.

2. Methods
2.1. Study Population

The Fragile Families and Child Wellbeing Study is a United States 20-city birth cohort
that recruited children born between 1998 and 2000 [13]. Women were randomly selected
from hospitals at the birth of the target child. Unmarried mothers were oversampled by
a ratio of 3:1, as the original aims of the study were to examine the downstream effects
of families who were disproportionately likely to break up and live in poverty, rather
than more advantaged and historically privileged family structures. Participants were
excluded from enrollment at baseline if they planned to place the child up for adoption, if
the father of the baby was not living at the time of birth, if they did not speak English or
Spanish sufficiently to complete the interview, if the mothers or babies were too ill for the
mother to complete the interview, or if the baby died before the interview could take place.
Assessments continued at ages 1, 3, 5, 9, and 15; an additional follow-up is ongoing. Data
collection included medical records extraction, in-home assessments, biosample collection,
and surveys of the mother, father, primary caregiver, child, and teachers. This cohort has
been extensively used to characterize pathways linking family structure, socioeconomic
resources, and child as well as family outcomes (Waldfogel et al. 2010). Participants
provided written informed consent for the study. The data used in this manuscript were
prepared by the Fragile Families and Childhood Wellbeing Study administrators following
approval of the manuscript proposal. These secondary data analyses were approved by
the University of Michigan Institutional Review Board (IRB, HUM00129826, approved 31
August 2017).
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2.2. Covariates and Exposure Measures

Demographic variables were derived from maternal self-report questionnaire data at
baseline birth and included maternal race/ethnicity (non-Hispanic Black, non-Hispanic
White, Hispanic, Other), household income-to-needs ratio, city of birth (to describe the
sampling strategy), and child sex (male, female).

Air pollution exposure was estimated by the Fragile Families and Child Wellbeing
Study and provided to the manuscript authors, using methods described previously [14].
At the birth interview, mothers reported their current addresses. Addresses were geocoded
and assigned a United States census tract according to the 2000 Decennial Census (for
more information see https://fragilefamilies.princeton.edu/restricted). Air pollution data
were downloaded from the Inter-university Consortium for Political and Social Research
(manifest # 27864) and prepared by the RAND Center for Population Health and Health
Disparities [15]. Ambient air quality measures of particulate matter (PM2.5 and PM10;
µg/m3) were obtained from the US Environmental Protection Agency (EPA) Air Quality
System database (US EPA 2018), spanning 1998 to 2000 (the years within which the children
in the Fragile Families and Child Wellbeing Study were born). Daily PM concentrations
per census tract (based on 2000 Decennial Census definitions) were based on a 24 h mean
of PM monitors within 60 km of the census tract, weighted by the inverse distance from
the tract centroid to the PM monitors (i.e., the nearest PM monitors were assigned a larger
weight in the average PM estimate). Exposure levels were matched to the census tract
where mothers reported living at the birth of the child. The date of the child’s birth was
used to select the three-month exposure date range prior to birth. Average daily PM2.5 and
PM10 exposure concentrations during the three months prior to birth for each participant
were calculated by the Fragile Families and Childhood Wellbeing Study and they were our
primary exposure variables.

In sensitivity analyses, we considered postnatal exposure at ages one and three.
Mothers reported residential addresses at both the age one and age three study visits.
The Fragile Families and Childhood Wellbeing Study repeated the above calculations to
determine average daily PM2.5 and PM10 concentrations for the three months prior to the
age one and age three study visits. At other Fragile Families and Childhood Wellbeing
Study visits, residential history and exposure levels were not available.

2.3. DNA Methylation Measures and Cumulative DNA Methylation Scores

Child saliva samples at the age 9 and 15 home visits were collected in Oragene kits.
Biosamples were not available for prior Fragile Families and Childhood Wellbeing Study
visits. Saliva DNA was extracted manually following DNA Genotek’s purification protocol
using prepIT L2P. DNA was bisulfite-treated and cleaned using the Zymo Research EZ
DNA Methylation Kit. Samples were randomized and plated across slides by demographic
characteristics. Saliva DNA methylation at ages 9 and 15 was measured using the Illumina
HumanMethylation 450 k BeadArray [9], imaged using the Illumina iScan system. All
samples were run in a single batch to minimize technical variability.

DNA methylation image data (IDAT) were processed in R statistical software (version 3.5)
using the minfi package [16]. The IDAT pairs (n = 1811) were read into R and the minfi
preprocessNoob function was used to normalize dye bias and apply background correc-
tion before the beta matrix was derived. Further quality control was applied using the
ewastools [17] package. Samples that were dropped for QC reasons include: >10% of sites
have detection p-value > 0.01 (n = 43), DNA methylation predicted sex discordant with
recorded sex (n = 20), and abnormal sex chromosome intensity (n = 3). CpG sites were
removed if they had detection p-value > 0.01 in 5% of samples (n = 26,830) or were identi-
fied as cross-reactive (n = 27,782) [18]. Relative proportions of immune and epithelial cell
types were estimated from DNA methylation measures using a childhood saliva reference
panel [19].

Our primary cumulative DNA methylation scores were estimated by z-score-
standardizing participant DNA methylation at each site, weighting the values by the

https://fragilefamilies.princeton.edu/restricted
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meta-analysis effect estimates [10] for either PM2.5 (n = 14 sites) or PM10 (n = 6 sites), and
taking the sum across all sites for each participant. Methods for obtaining cumulative DNA
methylation scores are evolving; thus, as sensitivity measures, we calculated two secondary
cumulative DNA methylation scores. First, we used the direct participant DNA methylation
levels (not transformed), weighted by meta-analysis effect estimates, and summed for each
participant. Second, we mean-centered the participant DNA methylation levels, weighted
by the meta-analysis effect estimates, and summed for each participant. All three DNA
methylation scores for each exposure (PM2.5 and PM10) were then z-score-standardized
within our study sample for interpretability.

2.4. Statistical Analyses

All analyses were conducted in R version 4.1.0. The code to complete the analyses is
available (https://github.com/bakulskilab). Distributions of covariates were described
using mean and standard deviation for continuous variables with count and frequency
for categorical variables. Samples with complete data on exposure, DNA methylation,
and demographic information were included in the analysis. The included sample was
compared to the excluded sample using t-tests for continuous variables and Fisher’s exact
test for categorical variables. We described the sample distributions stratified by study visit
(age 9 and age 15). We dichotomized exposures at the median for the study sample and
tested for bivariate differences in covariates by exposure. We similarly dichotomized DNA
methylation scores at the median for the study sample and tested for bivariate differences
in covariates by exposure.

First, we considered analyses that were stratified by the study visit (age 9 or age 15)
with the DNA methylation measure. In parallel models stratified for each DNA methylation
study visit (age 9 or 15) and for each exposure (PM2.5, PM10), we used multivariable
linear regression to test cumulative DNA methylation scores for associations with average
exposure levels in the three months prior to birth, adjusted for child sex, child age at DNA
methylation measure, maternal income-to-needs ratio, maternal marital status, maternal
race/ethnicity, and cell-type proportions. We plotted the residuals of this model versus the
observed exposure levels in the three months prior to birth.

Second, we considered information from both study visits with DNA methylation
measures. Among the subset of participants with observations at both time points, we made
scatter plots of the DNA methylation measures by time point and calculated the Pearson
correlation among the two measures. When jointly considering both DNA methylation
study visits in adjusted analyses, we used mixed-effects regression models, accounting
for within-participant measures with a random intercept in the nlme packge [20]. Mixed-
effects models were also adjusted for child sex, child age at DNA methylation measure,
maternal income-to-needs ratio, maternal marital status, maternal race/ethnicity, and
cell-type proportions. We included participants with observations at either time point in
these models (did not require observations at both time points). We reported the fixed-
effects estimates for an interquartile range increase in the relevant exposure measure, 95%
confidence intervals, and p-values for the association.

2.5. Sensitivity Analyses

To assess the robustness of our findings, we performed several sensitivity analyses.
First, we conducted parallel analyses to those described above on the alternative cumulative
DNA methylation score calculation approaches (untransformed, centered). Second, we
performed analyses consistent with those above that were additionally mutually adjusted
for both exposure types. Third, we performed analyses consistent with those above
that were additionally adjusted for postnatal air pollution exposure at age one. Fourth,
we performed analyses consistent with those above that were additionally adjusted for
postnatal air pollution exposure at age three. Fifth, we tested the specificity of the exposure
cumulative DNA methylation score by testing the association of a NO2 cumulative DNA
methylation score with PM2.5 or PM10 exposure, consistent with the methods described

https://github.com/bakulskilab
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above. Sixth, we tested single DNA methylation sites associated with PM10 in prior
meta-analysis results in cord blood [10]. We tested DNA methylation levels at these sites
(cg00905156, cg06849931, cg15082635, cg18640183, cg20340716, cg24127244) in saliva at age
15 for association with PM10 exposure at birth, adjusted for child sex, child age at DNA
methylation measure, maternal income-to-needs ratio, maternal marital status, maternal
race/ethnicity, and cell-type proportions. We compared the effect estimates from our
findings and prior results [10].

3. Results
3.1. Study Sample Descriptive Statistics

Among 1811 study samples measured for DNA methylation, information on addi-
tional key covariates was available and the DNA methylation data passed quality control
for 1542 observations (Figure 1). Included observations were similar to the excluded ob-
servations, except the included observations were more likely to be from the age 15 study
visit and to be from participants that self-report as non-Hispanic Black (Supplemental
Table S1). The included study sample had 749 participants from the age 9 study visit and
793 participants from the age 15 study visit (Table 1). There were 747 participants with
measures in both study visits in the included sample. Children in the included sample
were 50.5% male, 56.3% non-Hispanic Black, and 19.8% Hispanic, and the mothers had a
median income-to-needs ratio of 2.27 at the birth of their child.

Table 1. Univariate descriptive statistics in the analytic sample of the Fragile Families and Child Wellbeing Study. Partici-
pants are grouped by age at DNA methylation assessment. PM: particulate matter.

Characteristic Overall
n = 1542

Age 9 Visit
n = 749

Age 15 Visit
n = 793 p-Value Number of

Observations

Child Characteristics
Sex 0.836 1542

Female 769 (49.9%) 371 (49.5%) 398 (50.2%)
Male 773 (50.1%) 378 (50.5%) 395 (49.8%)

Race/ethnicity 0.999 1542
Non-Hispanic White 256 (16.6%) 124 (16.6%) 132 (16.6%)
Non-Hispanic Black 868 (56.3%) 420 (56.1%) 448 (56.5%)
Hispanic 306 (19.8%) 150 (20.0%) 156 (19.7%)
Other 44 (2.85%) 21 (2.80%) 23 (2.90%)
Multiracial 68 (4.41%) 34 (4.54%) 34 (4.29%)

Age at DNA methylation measure 12.4 (3.07) 9.30 (0.34) 15.4 (0.49) - 1542
Maternal Characteristics at Birth
Income-to-needs ratio 2.27 (2.49) 2.29 (2.51) 2.25 (2.48) 0.728 1542
Marital status 0.791 1542

Married 365 (23.7%) 180 (24.0%) 185 (23.3%)
Not married 1177 (76.3%) 569 (76.0%) 608 (76.7%)

Race/ethnicity 0.998 1542
Non-Hispanic White 274 (17.8%) 133 (17.8%) 141 (17.8%)
Non-Hispanic Black 902 (58.5%) 437 (58.3%) 465 (58.6%)
Hispanic 312 (20.2%) 153 (20.4%) 159 (20.1%)
Other 54 (3.50%) 26 (3.47%) 28 (3.53%)

City of residence >0.999 1542
Oakland 114 (7.39%) 57 (7.61%) 57 (7.19%)
Baltimore 97 (6.29%) 46 (6.14%) 51 (6.43%)
Detroit 312 (20.2%) 148 (19.8%) 164 (20.7%)
Newark 51 (3.31%) 27 (3.60%) 24 (3.03%)
Philadelphia 120 (7.78%) 59 (7.88%) 61 (7.69%)
Richmond 143 (9.27%) 73 (9.75%) 70 (8.83%)
Corpus Christi 93 (6.03%) 44 (5.87%) 49 (6.18%)
Indianapolis 92 (5.97%) 47 (6.28%) 45 (5.67%)
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Table 1. Cont.

Characteristic Overall
n = 1542

Age 9 Visit
n = 749

Age 15 Visit
n = 793 p-Value Number of

Observations

Milwaukee 81 (5.25%) 38 (5.07%) 43 (5.42%)
New York 30 (1.95%) 14 (1.87%) 16 (2.02%)
San Jose 79 (5.12%) 40 (5.34%) 39 (4.92%)
Boston 18 (1.17%) 9 (1.20%) 9 (1.13%)
Nashville 25 (1.62%) 13 (1.74%) 12 (1.51%)
Chicago 73 (4.73%) 31 (4.14%) 42 (5.30%)
Jacksonville 20 (1.30%) 10 (1.34%) 10 (1.26%)
Toledo 87 (5.64%) 39 (5.21%) 48 (6.05%)
San Antonio 31 (2.01%) 15 (2.00%) 16 (2.02%)
Pittsburgh 41 (2.66%) 21 (2.80%) 20 (2.52%)
Norfolk 35 (2.27%) 18 (2.40%) 17 (2.14%)

Air Pollution Exposure (µg/m3/day)
PM2.5 at birth 27.9 (7.04) 27.8 (7.07) 28.0 (7.02) 0.546 1542

Missing 0
PM10 at birth 15.0 (3.06) 15.0 (3.09) 15.0 (3.03) 0.927 1425

Missing 117 (100%) 59 (100%) 58 (100%) 117
PM2.5 at age 1 25.9 (5.29) 25.8 (5.32) 26.0 (5.27) 0.46 1454

Missing 88 (100%) 39 (100%) 49 (100%) 88
PM10 at age 1 14.6 (3.05) 14.6 (3.06) 14.6 (3.04) 0.892 1452

Missing 90 (100%) 41 (100%) 49 (100%) 90
PM2.5 exposure at age 3 26.7 (7.72) 26.6 (7.77) 26.7 (7.67) 0.812 1405

Missing 137 (100%) 65 (100%) 72 (100%) 137
PM10 exposure at age 3 14.2 (3.28) 14.2 (3.29) 14.3 (3.27) 0.664 1414

Missing 128 (100%) 61 (100%) 67 (100%) 128

DNA Methylation Score
PM2.5 methylation score (raw) −0.05 (0.75) −0.09 (0.71) −0.02 (0.77) 0.058 1542
PM2.5 methylation score (centered) −0.05 (0.75) −0.09 (0.71) −0.02 (0.77) 0.058 1542
PM2.5 methylation score (z-score) −0.07 (0.52) −0.08 (0.51) −0.06 (0.54) 0.538 1542
PM10 methylation score (raw) −0.08 (0.51) −0.15 (0.47) −0.02 (0.55) <0.001 1542
PM10 methylation score (centered) −0.08 (0.51) −0.15 (0.47) −0.02 (0.55) <0.001 1542
PM10 methylation score (z-score) −0.09 (0.22) −0.12 (0.21) −0.06 (0.22) <0.001 1542
NO2 methylation score (raw) −0.02 (0.89) −0.05 (0.87) 0.01 (0.91) 0.188 1542
NO2 methylation score (centered) −0.02 (0.89) −0.05 (0.87) 0.01 (0.91) 0.188 1542
NO2 methylation score (z-score) −0.05 (0.71) −0.05 (0.69) −0.06 (0.73) 0.734 1542

Saliva Cell Composition
Percent immune cells 93.9 (13.6) 95.3 (11.8) 92.5 (14.9) <0.001 1542
Percent epithelial cells 6.15 (13.6) 4.69 (11.8) 7.52 (14.9) <0.001 1542

Site-Specific DNA Methylation
cg00905156 2.48 (1.52) 2.30 (1.40) 2.64 (1.60) <0.001 1542
cg06849931 73.4 (13.5) 74.8 (12.1) 72.0 (14.5) <0.001 1542
cg15082635 1.91 (0.77) 1.74 (0.60) 2.07 (0.88) <0.001 1542
cg18640183 4.82 (1.21) 4.79 (1.21) 4.84 (1.20) 0.380 1542
cg20340716 92.8 (1.37) 92.7 (1.46) 92.9 (1.27) 0.002 1542
cg24127244 2.46 (0.65) 2.34 (0.57) 2.57 (0.71) <0.001 1542

Footer: Bold indicates category of characteristics described.
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PM2.5 concentrations in the three months prior to birth were available for 795 unique
participants and PM10 concentrations were available for 736 participants (Supplemental
Figure S1). In our analytic sample, average PM2.5 levels in the three months prior to
birth ranged from 14.3 to 45.0 µg/m3/day with a mean of 27.9 µg/m3/day (Supplemental
Figure S2A). EPA standards state that 24 h PM2.5 averages should not exceed 35 µg/m3 [21].
During the three months prior to birth, 23.7% of the age 15 analytic sample exceeded this
standard. In our study, levels of PM2.5 measured prior to birth were correlated with levels
of PM2.5 at age 1 (Pearson correlation = 0.54, p-value < 2 × 10−16, Supplemental Figure S3)
and with levels of PM2.5 at age 3 (Pearson correlation = 0.57, p-value < 2 × 10−16). During
the three months prior to birth, average PM10 levels in our sample ranged from 7.5 to
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20.2 µg/m3/day with a mean of 15.0 µg/m3/day (Supplemental Figure S2B). PM10 levels
during the three months prior to birth did not exceed EPA standards of a maximum 24 h
concentration of 150 µg/m3 [21]. In our study, levels of PM10 measured prior to birth were
correlated with levels of PM10 at age 1 (Pearson correlation = 0.71, p-value < 2 × 10−16)
and with levels of PM10 at age 3 (Pearson correlation = 0.69, p-value < 2 × 10−16). Levels
of PM2.5 and PM10 measured in the three months prior to birth were correlated (Pearson
correlation = 0.2, p-value = 7 × 10−8).

To calculate cumulative DNA methylation scores for air pollution exposure, we
weighted our DNA methylation data using published individual CpG site regression
effect estimates from cord blood DNA methylation associated with pregnancy air pollution
exposure [10]. We generated separate scores for PM2.5, PM10, and NO2 exposure (using
weights from three separate epigenome-wide association tests) and scores were normally
distributed within the sample (Supplemental Figure S4). We used three methods to calcu-
late the cumulative DNA methylation scores. Within each pollutant the scores from these
three different methods were highly correlated (Pearson correlations ranging from 0.79–1,
Supplemental Figure S5). The cumulative DNA methylation scores across pollutants were
less highly correlated (Pearson correlation ranging from 0.06–0.71). Among participants
with measures at both ages 9 and 15, the cumulative DNA methylation score for PM2.5 was
more highly correlated (r = 0.55) than the cumulative DNA methylation score for PM10
(r = 0.22, Supplemental Figure S6).

3.2. Associations between Exposure and DNA Methylation Scores

In bivariate testing, PM2.5 exposure levels and the cumulative DNA methylation
score for PM2.5 were not associated in the age 9 subset (p = 0.13), nor in the age 15 subset
(p = 0.48). In mixed-effects regression analyses adjusting for age at DNA methylation
sample, child sex, maternal race/ethnicity, maternal income-to-needs ratio, proportion of
epithelial cells, and proportion of immune cells, findings were consistent with the bivariate
results (Table 2). An interquartile range increase in PM2.5 exposure (10.73 µg/m3/day) was
associated with a −0.0287 standard deviation lower cumulative DNA methylation score for
PM2.5 (95% CI: −0.0732, 0.0158, p = 0.20) across all participants. Consistent null findings
were observed with cross-sectional multivariable linear regression analyses in the age 9
and age 15 sample subsets and with all three methods for cumulative DNA methylation
score calculation.

In bivariate testing, PM10 exposure levels and the cumulative DNA methylation
score for PM10 were not associated in the age 9 subset (p = 0.22), nor in the age 15 sub-
set (p = 0.78). In adjusted mixed-effects regression analyses, we observed associations
between PM10 exposure levels and the cumulative DNA methylation score for PM10
(Table 2). An interquartile range increase in PM10 exposure (3.20 µg/m3/day) was as-
sociated with a −0.1472 standard deviation lower cumulative DNA methylation score
for PM10 (95% CI: −0.3038, 0.0095, p = 0.06) across all participants. In all participants,
consistent negative associations between PM10 exposure levels and the PM10 cumulative
DNA methylation score were observed across all three methods for cumulative DNA
methylation score calculation. These findings were driven by the age 15 subset, where
an interquartile range increase in PM10 exposure was associated with −0.024 standard
deviation lower cumulative DNA methylation score for PM10 (95% CI: −0.043, −0.005,
p = 0.012). We visualized the residuals of the age-stratified models versus the observed PM
exposure levels (Supplemental Figure S6).
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Table 2. Adjusted associations between the cumulative DNA methylation score for prenatal particulate matter (PM) exposure and levels of prenatal particulate matter exposure in the
Fragile Families and Child Wellbeing Study. All age models are mixed-effects regression models with random intercepts for participants. Age-stratified models are linear regression
models. Models are adjusted for age at DNA measurement, child sex, maternal race, maternal income-to-needs ratio, proportion of epithelial cells, and proportion of immune cells. Effect
estimates and confidence intervals are provided for an interquartile increase in exposure (PM2.5: 10.73 µg/m3/day; PM10: 3.20 µg/m3/day).

Raw DNA Methylation Centered DNA Methylation Centered and Scaled DNA Methylation

Exposure Age nindiv nobs
Effect

Estimate

Lower
Confidence

Interval

Upper
Confidence

Interval

p-
Value

Effect
Estimate

Lower
Confidence

Interval

Upper
Confidence

Interval

p-
Value

Effect
Estimate

Lower
Confidence

Interval

Upper
Confidence

Interval

p-
Value

PM2.5 All 787 1542 −0.029 −0.073 0.016 0.206 −0.029 −0.073 0.016 0.206 −0.017 −0.051 0.018 0.345
PM2.5 9 749 749 −0.021 −0.070 0.028 0.399 −0.021 −0.070 0.028 0.399 −0.014 −0.054 0.026 0.478
PM2.5 15 793 793 −0.017 −0.065 0.030 0.475 −0.017 −0.065 0.030 0.475 −0.008 −0.047 0.031 0.675
PM10 All 728 1425 −0.147 −0.304 0.010 0.066 −0.147 −0.304 0.010 0.066 −0.133 −0.274 0.008 0.065
PM10 9 690 690 −0.004 −0.023 0.015 0.701 −0.004 −0.023 0.015 0.701 −0.005 −0.021 0.012 0.573
PM10 15 735 735 −0.024 −0.043 −0.005 0.012 −0.024 −0.043 −0.005 0.012 −0.023 −0.039 −0.007 0.005

nindiv represents the sample size of individual participants. nobs represents the number of DNA methylation observations. This number of observations may exceed the sample size of individuals when repeated
measures are used.
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3.3. Sensitivity Analyses

To assess the robustness of our findings, we performed several sensitivity analyses. In
all sensitivity analyses, we again observed that prenatal PM2.5 exposure was not associated
with the PM2.5 cumulative DNA methylation score. However, we continued to observe that
prenatal PM10 exposure was associated with the PM10 cumulative DNA methylation score,
particularly in the age 15 sample. First, we repeated the regression analyses with additional
adjustment for air pollution levels at age 1 (Supplemental Table S2). The association
between prenatal PM10 exposure and age 15 PM10 cumulative DNA methylation score
was robust to adjustment for postnatal exposure at age 1 (−0.0302, 95% CI: −0.0556,
−0.0047, p = 0.020). Second, we repeated the multivariable linear regression analyses
with additional adjustment for air pollution levels at age 3 (Supplemental Table S3). The
association between prenatal PM10 exposure with the age 15 PM10 cumulative DNA
methylation score was robust to adjustment for postnatal exposure at age 3 (−0.0343,
95% CI: −0.0604, −0.0082, p = 0.010). Third, we repeated the regression analyses with
additional adjustment for prenatal air pollution levels of the other type of particulate matter
(Supplemental Table S4). The association between prenatal PM10 exposure with the age 15
PM10 cumulative DNA methylation score was robust to adjustment for prenatal PM2.5
exposure (−0.0231, 95% CI: −0.0424, −0.0038, p = 0.019). Fourth, we tested for adjusted
associations between prenatal PM2.5 or prenatal PM10 exposure levels with cumulative
DNA methylation scores for NO2 (Supplemental Table S5). Prenatal PM10 exposure was
associated with the age 15 NO2 cumulative DNA methylation score (0.1271, 95% CI: 0.0520,
0.2022, p = 0.0009).

We next attempted to replicate six individual CpG sites previously associated with
air pollution exposure in a cord blood meta-analysis at genome-wide significance levels.
We observed that DNA methylation at two of these sites in saliva at age 15 was associated
with PM10 at birth (Table 3). Specifically, at cg18640183 (associated with the P4HA2 gene)
an IQR unit increase in PM10 exposure at birth was associated with 0.119 lower percent
DNA methylation (p = 0.027). At cg20340716 (associated with the USP43 gene) an IQR
unit increase in PM10 exposure at birth was associated with 0.135 higher percent DNA
methylation (p = 0.015).

Table 3. Adjusted associations between single DNA methylation sites and levels of prenatal particulate matter (10 µM)
exposure in the three months prior to birth in the Fragile Families and Child Wellbeing Study. Multivariable linear
regression models have been adjusted for age at DNA measurement, child sex, maternal race, maternal income-to-needs
ratio, proportion of epithelial cells, and proportion of immune cells. The sites were measured on the Illumina 450 k array,
and the proportions of cells were estimated from the array (n = 735). Effect estimates and confidence intervals are for an
interquartile range increase in exposure (3.20 µg/m3/day). Published cord blood DNA methylation is selected based on
prior evidence of association with air pollution [10]. Multivariable linear regression models have been adjusted for age at
DNA measurement, child sex, maternal race, maternal income-to-needs ratio, proportion of epithelial cells, and proportion
of immune cells (n = 735). Effect estimates and confidence intervals are for an interquartile range increase in exposure
(3.20 µg/m3/day). Published cord blood DNA methylation is from [10].

Saliva DNA Methylation Age 15 in the
Fragile Families and Child Wellbeing

Study

Published Cord Blood
DNA Methylation

DNA
Methylation

Site

Nearest
Gene Chr Position Effect

Estimate

Lower
Confidence

Interval

Upper
Confidence

Interval

p-
Value

Effect
Estimate p-Value

cg00905156 FAM13A 4 89744363 −0.048 −0.191 0.094 0.506 0.001 3.55 × 10−7

cg06849931 NOTCH4 6 32165893 0.160 −0.228 0.547 0.420 −0.001 1.72 × 10−6

cg15082635 GNB2L1;
SNORD96A 5 180670110 −0.009 −0.085 0.068 0.821 0.001 8.29 × 10−8

cg18640183 P4HA2 5 131563610 −0.119 −0.224 −0.014 0.027 0.001 1.80 × 10−6

cg20340716 USP43 17 9559558 0.135 0.026 0.244 0.015 −0.002 1.50 × 10−7

cg24127244 SRPRB 3 133524572 −0.015 −0.076 0.046 0.627 0.001 7.33 × 10−7

Chr represents the chromosome number.
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4. Discussion

In the nationwide, population-based Fragile Families and Child Wellbeing Study
birth cohort, we observed that prenatal PM10 exposure was associated with saliva DNA
methylation measured at age 15. Previous meta-analyses documented that prenatal air
pollution exposure was associated with cord blood DNA methylation at birth [10]. We used
effect estimates from these associations to weight measures of saliva DNA methylation
at ages 9 and 15 to create cumulative DNA methylation scores for prenatal air pollution
exposure. Using these cumulative DNA methylation scores, as well as candidate DNA
methylation sites, we observed that average PM10 exposure during the three months prior
to birth was associated with DNA methylation differences at age 15 in saliva. Benchmarking
the postnatal detection and cell-type generalizability of epigenetic exposure biomarker
assessment is critical for its application to epidemiologic applications.

A recent systematic review of prenatal air pollution and infant DNA methylation
identified 21 studies focusing on particulate matter [8]. Most of these studies examined
candidate genes or global DNA methylation. There have been two prior particulate
matter epigenome-wide association studies identified, including one in blood [10] and
one in placenta [22]. The particulate matter epigenome-wide association study conducted
in blood [10] was done by the PACE consortium and included 1949 participants in the
PM10 discovery analysis and 1551 participants in the PM2.5 discovery analysis. This
meta-analysis was conducted using cohort data from five European countries (Spain,
Netherlands, Belgium, Italy, Greece) and four US cohorts (recruiting from cities nationwide),
likely reflecting a wide range of exposure sources. The PACE consortium air pollution
findings replicated in an independent cord blood sample and postnatal blood showed
persistence of the findings until ages 15 and 16. This study provided the weights for the
cumulative DNA methylation scores in our current analysis and identified the candidate
DNA methylation sites associated with PM10 exposure for sensitivity analyses in our
current study.

In our nationwide study reflecting a wide range of exposures, among age 15 partici-
pants, we observed that an interquartile range increase in PM10 exposure (3.20 µg/m3/day)
was associated with a −0.024 standard deviation lower cumulative DNA methylation score
for PM10 (p = 0.012). The observed direction of the effect was the opposite of our initial hy-
pothesis (higher exposure would be associated with higher cumulative DNA methylation
score). However, the weights used to build our cumulative DNA methylation were from
the prior PACE consortium analysis in blood and we measured DNA methylation in saliva,
and prior research has shown cross-tissue differences in magnitude and direction of effects
for other traits [23]. Similar to the cord blood paper, our saliva samples are estimated to
contain a large proportion of immune cells (though likely different proportions or types of
immune cells), but our saliva samples also contain DNA from large epithelial keratinocytes
from the hard palate [19], and cell-type heterogeneity is a strong predictor of DNA methy-
lation [24]. Among six individual DNA methylation sites that were previously associated
with PM10 exposure in cord blood [10], we observed an association in our study at two
of those sites (from the P4HA2 and USP43 genes). In addition, in our study we observed
an association between PM10 exposure during the three months before birth and DNA
methylation measured at age 15, but we did not observe a similar association with DNA
methylation measured at age 9. This was also a surprising result as we expected that DNA
methylation measures nearer to the time of exposure would have stronger associations.
The age 9 study sample had 45 fewer participants than the age 15 study sample, but this
alone was unlikely to impact the magnitude of the association. Instead, we hypothesize
that there may be greater age-related differences in DNA methylation or DNA methylation
measurement error in the sites that contributed to the cumulative DNA methylation score
for PM10 exposure. Indeed, among the subset of participants with measurements at both
time points, we observed a lower correlation in the cumulative DNA methylation scores
for PM10 exposure between ages 9 and 15 (r = 0.22) than for the cumulative DNA methy-
lation scores for PM2.5 exposure (r = 0.55), and similar lower correlations were observed
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for the candidate sites associated with PM10 exposure (cg18640183 r = 0.35; cg20340716
r = 0.27). Of note, the PM2.5 DNA methylation score was based on a larger number of DNA
methylation sites (n = 14) than the PM10 DNA methylation score (n = 6), given the findings
from the original meta-analysis, which suggests that scores based on a larger number of
DNA methylation sites may be more stable. These findings require replication in addi-
tional study populations to determine the reliability of the measures and reproducibility of
the associations. We observed associations between prenatal PM10 exposure and saliva
DNA methylation at age 15; however, the direction of association was opposite that of
prior associations in cord blood at birth and the findings were not consistent with the age
9 sample.

For several additional environmental exposures, epigenetic biomarkers in peripheral
tissues (such as blood and saliva) have been shown to be specific and reproducible [25].
The most well-characterized environmental epigenetic biomarker is for cigarette smoke
exposure. DNA methylation sites associated with prenatal cigarette smoke exposure have
been documented in cord blood meta-analyses [26]. These associations are persistent to age
5 [27] and adolescence [28]. There is also evidence that folate or prenatal vitamin exposure
during pregnancy has reproducible DNA methylation associations in cord blood [29,30],
though the persistence of these associations postnatally has not yet been tested. In this
study, we examined PM, which has a broad exposure and particles can contain multiple
types of toxicants that can vary geographically [31]. Our findings may also not be specific
to PM10 exposure, as in sensitivity analyses we observed that higher PM10 exposure in
the three months prior to birth was associated with a higher cumulative DNA methylation
score for NO2. We were surprised that we did not observe an association between PM2.5
and cumulative DNA methylation scores for PM2.5 in this study. Variability in PM compo-
nents across studies and within our US nationwide study may be part of why we did not
observe an association between PM2.5 exposure and cumulative DNA methylation score
for PM2.5. The associations between PM2.5 and DNA methylation may be non-persistent
or based on acute exposures. Future studies can examine the dose, duration, and composi-
tion of PM’s impact on DNA methylation. In other studies, DNA methylation has been
associated with children’s health, such as asthma [32], body mass index [33], and attention
deficit hyperactivity disorder [34]. Future research in the Fragile Families and Childhood
Wellbeing Study may test similar associations between DNA methylation and health out-
comes. Prior work demonstrates smoking and folate/prenatal vitamin exposures have
reproducible DNA methylation signatures. Additionally, this paper shows air pollution
signatures are detectable in saliva, an accessible tissue for epidemiologic research.

Cumulative DNA methylation scores are an emerging area of DNA methylation
research. They are an approach within which to apply prior epigenome-wide discovery
results to an independent cohort and aggregate epigenome-wide information into a single
value. Previous research has documented cumulative DNA methylation score utility as a
marker for smoking exposure, which was able to predict prenatal cigarette smoke exposure
30 years later in blood with an area under the curve of 0.72 (95% confidence interval: 0.69,
0.76) in the ALSPAC cohort [35]. Cumulative DNA methylation scores are analogous to
polygenic scores, which are widely used in genetic epidemiology [36]. Early findings
suggest that cumulative DNA methylation scores for some traits may explain a proportion
of the variance comparable to polygenic scores. For example, when predicting body mass
index in the Lothian Birth Cohorts, the cumulative DNA methylation score explained 7%
of the variance, the polygenic score predicted 8%, and the model containing both predicted
14% [37]. This suggests that the DNA methylation and genetic components for that trait
may be independent. Further testing of cumulative DNA methylation scores for additional
exposures and traits will be needed to assess the generalizability of these findings.

There are several strengths and limitations of this study. First, the Fragile Families and
Child Wellbeing Study is a well-characterized, large, diverse birth cohort with prospective
DNA methylation sample collection at two time points. Much of epigenetic epidemiology
is cross-sectional and focused on non-Hispanic White participants [38]. Particulate matter
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exposure levels were quantitated based on residential history, which is standard in the
field [39]. Participants may spend considerable time away from home; thus, there is likely
measurement error in the exposure estimates, which has been shown to bias estimates
towards the null [40]. In addition, US residents are estimated to spend 87% of time in-
doors [41], and while outdoor PM influences indoor PM exposure levels, buildings can vary
in their ability to mitigate outdoor-to-indoor infiltration [42], which would also introduce
measurement error in the exposure estimates. Our air pollution exposure estimates were
based on outdoor PM levels averaged during the three months prior to birth, which may
be confounded with season of birth, an important limitation of our study. Our sensitiv-
ity analyses adjusted for air pollution exposure at ages one and three. Unfortunately,
exposure measures at the later Fragile Families and Childhood Wellbeing Study visits,
including those concurrent with the DNA methylation measures, were not available, thus
our DNA methylation analyses were not able to be adjusted for concurrent exposure. The
meta-analysis used for our cumulative DNA methylation score weights averaged exposure
estimates over the entire pregnancy, which is a larger window of exposure than our study
was able to capture. Future studies may separate out DNA methylation signatures specific
to trimesters or months of pregnancy to investigate windows of susceptibility. In our study,
DNA methylation was measured on a reproducible genome-wide array using methods
consistent with prior research. Our cumulative DNA methylation scores were calculated
using effect estimates from a large consortium [10] and, importantly, our study sample
was independent from the sample that generated the weights [43]. We performed multiple
essential sensitivity analyses, including using three methods for cumulative DNA methyla-
tion score development, adjustment for postnatal exposure, and adjustment for alternate air
pollution exposures. Together, these study design and analytic design elements contribute
to rigorous research.

Particulate matter air pollution exposure is associated with global mortality [44] and
adverse pregnancy outcomes [1]. In particular, exposure during the in utero period has
lasting health effects [2]. Examining the DNA methylation consequences of in utero air
pollution is useful to develop biomarkers of air pollution exposure, as well as to document
potential molecular intermediates of health effects. Prior research documented in utero air
pollution exposure was associated with cord blood DNA methylation. We newly showed
that air-pollution-associated DNA methylation differences are detectable at age 15 and
that they are detectable in saliva. This study demonstrates postnatal detection and the
cross-tissue utility of DNA methylation as a biomarker of air pollution exposure, with
important implications for future epidemiology studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics9100262/s1. Table S1: Descriptive statistics of the included and excluded study samples
from the Fragile Families and Child Wellbeing Study, Table S2: Adjusted associations between DNA
methylation score for prenatal particulate matter exposure and levels of prenatal particulate matter
exposure in the Fragile Families and Child Wellbeing Study, Table S3: Adjusted associations between
DNA methylation score for prenatal particulate matter exposure and levels of prenatal particulate
matter exposure in the Fragile Families and Child Wellbeing Study, Table S4: Adjusted associations
between DNA methylation score for prenatal particulate matter exposure and levels of prenatal
particulate matter exposure in the Fragile Families and Child Wellbeing Study, Table S5: Adjusted
associations between DNA methylation score for prenatal nitrogen dioxide exposure and levels of
prenatal particulate matter exposure in the Fragile Families and Child Wellbeing Study, Figure S1:
Analytic samples by age and particulate matter type in the Fragile Families and Child Wellbeing
Study, Figure S2: Distribution of particulate matter exposure levels during the three months prior to
birth in the Fragile Families and Child Wellbeing Study, Figure S3: Pearson correlations among air
pollution levels (PM2.5, PM10) measured at birth, age 1, and age 3 in the Fragile Families and Child
Wellbeing Study, Figure S4: Distribution of air pollution cumulative DNA methylation scores in the
Fragile Families and Child Wellbeing Study, Figure S5: Pearson correlations among air pollution
cumulative DNA methylation scores in the Fragile Families and Child Wellbeing Study, Figure S6:
Among Fragile Families and Child Wellbeing Study participants with saliva DNA methylation

https://www.mdpi.com/article/10.3390/toxics9100262/s1
https://www.mdpi.com/article/10.3390/toxics9100262/s1


Toxics 2021, 9, 262 14 of 16

measures at both age 9 and age 15, scatter plots of the observed DNA methylation measures at each
time point, Figure S7: Adjusted associations between particulate matter exposure and cumulative
DNA methylation score for particulate matter.
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