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Abstract: Spilled mineral oils in the marine environment pose a number of challenges to sampling
and analysis. Mineral oils are complex assemblages of hydrocarbons and additives, the composition
of which can vary considerably depending on the source oil and product specifications. Further, the
marine microbial and chemical environment can be harsh and variable over short times and distances,
producing a rigorous source of hydrocarbon degradation of a mineral oil assemblage. Researchers
must ensure that any measurements used to determine the nature and extent of the oil release, the
fate and transport of the mineral oil constituents, and any resultant toxicological effects are derived
using representative data that adhere to the study’s data quality objectives (DQOs). The purpose of
this paper is to provide guidance for crafting obtainable DQOs and provide insights into producing
reliable results that properly underpin researchers’ findings when scrutinized by others.
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1. Introduction

Mineral oils are complex assemblages of hydrocarbons manufactured from crude
petroleum [1]. Mineral oil production involves first distilling crude oils at atmospheric
pressure and then, under high vacuum, generating distillates and residuals that can be
further refined into mineral oils [2,3]. Mineral oils refined from crude oils consist of a mix-
ture of straight and branched-chained paraffinic, naphthenic, and aromatic hydrocarbons
within a boiling point range of 300–600 ◦C [4], with resulting carbon ranges from C15 to
C50 [2]. Mineral oil composition and physical characteristics can vary widely depending
on the source of the oil and product specifications. Further, base stock mineral oils can be
chemically modified into “synthetic” mineral oils [5]. The expansive composition of min-
eral oils allows for a wide variety of uses [6], which include non-lubricating products (e.g.,
agricultural spray oils, insulating oils, coatings, and printing inks), lubricating products
(e.g., crank case oils and transmission fluids), and highly refined medicinal white oils and
“paraffinum perliquidum” [3,7]. Further enhancing the complex composition of mineral
oils is the liberal use of additives (“additive packages”), often organo-metallic compounds,
including corrosion inhibitors, antioxidants, antifoaming agents, detergents, dispersants,
and emulsifiers, which are blended into the mineral oils [8,9]. Plant-based oil spills (e.g.,
canola, soy bean, corn, palm, and neem oil), which occur more often than one may realize,
are not the focus of this paper, but the data quality discussion herein is certainly applicable
to investigations of plant-based oil spills in the marine environment.

Petroleum releases into the ocean are significant, resulting from natural seeps as well as
spills during oil extraction, processing, transportation, and use [10]. Oil spills can either be
accidental or intentional. Accidental spills are most often from tankers transporting crude
oil or petroleum products such as mineral oils or, to a lesser extent, are the result of pipeline
leaks, coastal facility spills, and offshore oil production facilities [11]. The largest sources
of intentional operational discharges include discharges from vessels (e.g., bilge releases,
which may include mineral oils) and water discharges from offshore platforms [10]. The
presence of petroleum lubricants, i.e., mineral oils, in today’s ships have varied purposes,
including engine lubrication, hydraulics control, and the “oiling” of motors and cranes
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that may find their way accidentally, or intentionally, into the waterways [12]. During
the 1990s, the best estimates for the volume of worldwide releases of petroleum annually
into the marine environment were 123,000 tons from accidental sources, 352,000 tons from
intentional discharge sources, and 600,000 tons from natural seeps [10,11]. The percentage
of these releases attributable to mineral oils is unknown. Over the past two decades, oil spill
occurrences have lessened due, in part, to improved prevention programs, technological
advances such as the use of double-hulled tankers [13,14], and the enactment of legislation
such as the Oil Pollution Act of 1990 (33 U.S.C.&2701 et seq. (1990)) [15]. In addition,
there have been recent efforts to promote more environmentally friendly mineral oils for
marine applications [16]. Nonetheless, significant mineral oil spill risks still exist and
cannot be ignored.

The objective of any sampling and analysis program is to determine the representative
physical and chemical characteristics of a sample and, in the case of a mineral oil spill,
to reliably understand the nature, extent, and impact of the spill [17]. The need for
measurements that are reliable, and of known quality is key to any relevant oil spill study
and can be an especially challenging undertaking considering the complex and sometimes
unknown composition of mineral oils and the rigorous degradative forces encountered
in the marine environment [18]. Publications discussing the sampling and analysis of
mineral oils in the marine environment are rather limited, hence the impetus for this
review and guidance. This paper provides guidance for crafting obtainable data quality
objectives (DQOs) as well as insights into producing reliable results that meets the needs of
the investigator(s).

2. Data Quality Primer

Prior to the 1970s, nearly all advances in analytical chemistry were instigated in aca-
demic and research laboratories, with little consideration for mass applications supporting
environmental research. The formation of the US EPA in 1970 provided the platform
for comprehensive environmental regulations at the federal level. At that point, most
environmental test method development activities were driven by regulatory needs, with
both technological and quality control (QC) constraints. During the 1970s, test method
development and commensurate QC measures were slow to evolve. That changed in the
late 1970s with the momentous Love Canal data quality collection activities that highlighted
the problems in producing reliable and usable environmental data [19].

Soon thereafter, in 1980, was the emergence of the Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA, aka Superfund) and the Resource
Conservation and Recovery Act (RCRA). CERCLA was specifically designed to enforce
rigorous document control, chain of custody, quality assurance (QA), and QC procedures
for all aspects of sampling and analysis. In turn, the RCRA program began to develop test
methods for assessing hazardous waste. The RCRA test methods were assembled into a
test method manual known as SW-846. During the 1980s, the SW-846 test methods became
more reliable and defensible. For instance, the opening for the third edition of SW-846 in
1986 states:

It is the goal of the U.S. Environmental Protection Agency’s (EPA’s) QA program
to ensure that all data be scientifically valid, defensible, and of known precision
and accuracy. The data should be of sufficient quality to withstand scientific and
legal challenge relative to the use for which the data are obtained [20].

During the 1980s, regulatory method development advanced, but acquiring quality data
remained a struggle, even though acceptable and defensible data quality was widely recog-
nized as a cornerstone to the validity of decisions made by environmental managers [21].
The measurement process includes all sampling, analysis, and data management efforts,
as shown in Figure 1. There are four simultaneous pathways for conducting a reliable
measurement program that include (1) the technical approach, (2) the QA and QC plans,
(3) the document control system, and (4) the chain of custody system.
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Figure 1. Measurement Plan.

Assessment of errors in a measurement process depends on many levels of details
being considered. First, the proper identification of an analyte being quantitated is essential
and should not be assumed. Measurable elements include any factors whose impact on
the accuracy, precision, and representativeness of a measurement process can be detected,
monitored, and quantified by QC samples. Some measurable factors include:

• Blanks, which provide information on possible contamination during sample and
analysis activities. Elevated blank levels can lead to higher detection limits and
false positives.

• Replicates, which provide information on precision. Data sets with poor replicate
precision may not be able to provide confidence in diagnostic forensic evaluations
where the data must be evaluated against identification criteria.

• Spikes, which evaluate bias. Samples with out-of-range spike recoveries may be biased
low or high relative to the true concentration.

Through the 1990s, regulatory test methods matured and QA/QC practices became
well established, culminating in 2000 with the US EPA promulgating an agency-wide
Quality System [22]. The elements of the Quality System are the underpinnings for any
researcher to ensure their measurements are reliable and usable; this system extends to
marine mineral oil spill investigators. Some aspects of a reliable quality system include the
development of reasoned DQOs for mineral oil spills, a Quality Assurance Project Plan
(QAPP), and supporting standard operating procedures (SOPs) [23,24]. Consideration
must also be given to validating measurements and assessing data quality [14].

The measurement process comprises three phases, those being planning, implemen-
tation, and assessment [25], and depends on numerous levels of detail being evaluated.
Some examples for a marine mineral oil spill are shown in Table 1. The details listed in
Table 1 may not be applicable to every marine oil spill but should be considered prior
to exclusion.
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Table 1. Considerations in Planning a Mineral Oil Spill Measurement Program.

Objectives Project Details Sampling Analytical Validation and
Assessment

Need for program History Representativeness Subsampling Data quality objectives

Regulations Waste generation Health and safety Analytes Documentation of
quality

Thresholds or
standards Waste handling Logistics Preparatory method Documentation of

activities
Protection of human

health Contaminants Sampling approach Analytical method Completeness/
representativeness

Environment
protection Fate and transport Sampling locations and

depths Aquatic toxicity testing Bias and precision

Liability Sources of
contamination Number of samples Matrix/interferences Audits

Data quality objectives Areas to study QA samples Detection limits Performance
evaluation samples

Company/agency
directives Exposure pathways Sample volume Holding/turnaround

times Chain of custody

Public relations Use of dispersants Compositing Contamination Usability assessment
End-of-use data Containers/equipment QC samples

Decontamination Reagents/supplies
Reporting requirements

The underpinnings of reliable and usable data will differ from investigation to in-
vestigation depending on the study requirements as defined by its DQOs. Guidance for
developing DQOs has been developed by both the US EPA [26] and the American Society
for Testing and Materials (ASTM) [27]. DQOs are often misinterpreted with acceptable
levels of analytical bias and precision. However, analytical uncertainty is only one aspect
of a measurement. DQOs should also consider the uncertainty in health-based standards,
forensic tolerances, sample collection, and exposure pathways since each contributes to the
overall uncertainty of a decision [28]. Of particular note, many investigators realize that a
sample that does not accurately represent study conditions or the population of interest
contributes the majority of uncertainty in the data resulting from that sample, which may
be as much as 90% [29]. DQOs should include statements about the level of uncertainty
that an investigator is willing to accept in the results the study produces.

With this in mind, this paper will now focus on the measurement process being
considered for any mineral oil spill investigation, specifically sampling and analysis.

3. Marine Mineral Oil Spill Sampling

The objective of a marine mineral oil spill sampling program is to address questions
about the marine environment being sampled, for which these questions should be clearly
established prior to sample collection. For instance, the researcher may be trying to identify
specific contaminants or ratios of contaminants to determine the source, composition,
or age of the released mineral oil. Alternatively, a researcher may attempt to define
the concentration of the mineral oil or mineral oil constituent within a decision unit
to determine the total mass of material discharged or to locate a source by evaluating
concentration gradients [19]. To meet these objectives, investigators should consider
sampling strategies and sample handling requirements as part of their effort to satisfy the
study’s DQOs.

Trying to achieve DQOs for studies conducted in the harsh marine environment (in
which mineral oils are subject to, e.g., photolytic reactions, volatilization, biodegradation)
can be particularly daunting [30]. Confoundingly, the frequent need for an immediate
response to a spill can hamper the planning process. Sampling programs should be crafted
to consider, in part, marine background conditions, potential contaminant sources, and
inadvertent sample contamination. Background conditions are key to understanding orig-
inal conditions and can be established using previous long-term monitoring programs,
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provided they are available in the region and are of adequate data quality. Determining
background conditions usually results in additional sampling from unimpacted areas
with similar characteristics as the impacted areas or, if the trajectory of an oil spill can be
predicted, from pre-impacted areas. In establishing background conditions, anthropogenic
and natural sources of the investigation’s contaminants need to be determined. Rigorous
methods of sample handling may be needed to eliminate as much cross-contamination
and sampling-derived contamination as possible, particularly if the contaminant levels are
expected to be low. I have witnessed a number of oil spill investigations where contami-
nated sampling blanks have precluded the use of the associated results. Contamination
from sample collection, processing, preservation, and shipment should be considered,
eliminated when possible, and documented when avoidance is not possible.

Contamination introduced during sample collection and processing is cumulative
and can be substantially greater than contamination introduced elsewhere in the sample
handling and analysis process [18]. Methods for contamination control [31] can include:

• Sample collection techniques, for example:

# proceeding toward a sample location from down current
# progressing from least contaminated areas to most contaminated areas
# circumventing boat exhaust and discharges, which may include mineral oils
# wearing appropriate gloves

• Equipment selection
• Pre-cleaning sampling equipment
• Using contaminant-free and appropriate sample containers
• Decontamination methods for sampling equipment

QC samples are integral to any sample collection investigation and are key in eval-
uating potential sources of contamination and assessing the reliability of the measured
results. The United States Geological Survey (USGS) explains that the goal of collecting
QC samples “is to identify, quantify, and document bias and variability in data that result
from the collection, processing, shipping and handling of samples” [32]. Further, US EPA
states that:

To ensure that the analytical samples are representative of site conditions, QA
measures must be associated with each sampling and analysis event. The sam-
pling plan must specify these QA measures, which include, but not limited to,
sample collection, laboratory standard operating procedures (SOPs), sample con-
tainer preparation, equipment decontamination, field blanks, replicate samples,
performance evaluation samples, sample preservation and handling, and chain
of custody requirements [33].

As such, the study design will define the specific number and types of QC samples
needed to meet the DQOs, which should be detailed in the QAPP [34]. QC samples
typically collected as part of a well-conceived sampling program include [18]:

• Field, trip, equipment, and decontamination blanks
• Field replicates and duplicates
• Matrix spikes and matrix spike duplicates
• Background samples
• Source materials (mineral oils) potentially spilled, if available

Unlike standard sampling methods that are often available for chemical analysis,
standard methods for collecting samples in marine matrices do not exist. When using
non-standard sampling methods for marine mineral oil spill research, understanding
and applying methodologies used and accepted by other researchers can be key to im-
plementing a reliable sampling program [30]. Accepted practices for sampling mineral
oils [35], sediments [36], water column [37], and ecological samples [38,39] have been
discussed elsewhere.
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4. Mineral Oil Analytical Chemistry

The characterization of mineral oils is hindered by its complex assemblage of hydro-
carbons and unique additives, of which composition can vary widely depending on the
source oil and product specifications. Additives may comprise 10–20% of the mineral oil
product [40], which is typically not a consideration when devising a sampling and analysis
program for crude oil and refined petroleum spills. As such, additives may prove to be
useful as a forensic tool in differentiating mineral oil sources. The testing approach and
target analytes will be driven by the DQOs. Broadly, mineral oil spill investigations fall
into three categories: (i) the initial spill incident investigation, to better understand the
direction of the spill and the amount of material spilled; (ii) the fate and transport of the
mineral oil constituents, with forensic implications as to the who, what, how, when, and
where of the mineral oil spill; (iii) a toxicological assessment focused on possible human
and ecological damages.

Initial marine oil spill incident assessments are often implemented quickly since spills
usually occur unannounced and time is of the essence to address the spill once it has
occurred. Within the first few days following a spill incident, significant coordination is
needed with sampling and analysis activities, which are focused on supporting response
decision making. The International Association of Oil and Gas Producers have recently de-
veloped guidelines for oil spill incident management and recommendations for emergency
response personnel, which may provide valuable insights when developing DQOs [41].
Nonetheless, in accordance with defined DQOs, an appropriate QA program supported
by rigorous QC analyses undergirds the production of reliable data and is critical for
decision making, even under time-sensitive circumstances [18,42]. Quite often, the types
of analyses needed for an initial spill assessment do not require the rigor expected in a
sensitive forensic evaluation or toxicological assessment, yet can still be prone to serious
errors hampering reliable decision making. For instance, total petroleum hydrocarbon
(TPH) measurements can introduce a significantly high bias if plant and algal debris is not
adequately considered as a contributor to the TPH results [43]. Particulate coal and wood
charcoal can also bias TPH results, particularly in sediment samples.

Fate, source, and transport forensic investigations require rigorous QA/QC programs
based on well-crafted DQOs. For example, many forensic studies focus on unique ratios of
specific analytes. Known precision and accuracy with tight tolerances are key to producing
reliable diagnostic ratios [44]. The minimum laboratory QC measures needed include:

1. Instrument blanks
2. Calibration blanks
3. Method blanks
4. Laboratory control samples (LCSs) (spikes into blank water)
5. Matrix spikes (spikes into site samples)
6. Laboratory replicates

Blanks are indicative of potential contamination issues, replicates provide information
about measurement precision, and spikes are a measure of method bias [18]. It is highly
recommended, if possible, to analyze performance evaluation samples and reference
materials as a measure of method accuracy [18]. A more detailed description of these types
of QC measures and their implementation are provided elsewhere [44].

Since crude oils are the fundamental building blocks for mineral oil products, most
forensic characterization studies focus on base oil composition using chemical fingerprint-
ing techniques. Further, because of the extensive degradative forces present in the marine
environments, such as evaporation, dissolution, “water-washing,” biodegradation, and
photo-oxidation, most fingerprinting approaches hone in on resilient polynuclear aro-
matic hydrocarbons (PAHs) and biomarker compounds [44–48]. The types of PAHs and
biomarkers, as well as their ratios and fingerprint patterns, are often considered during
the development of DQOs prior to initiating an analytical testing program. The types of
biomarker compounds considered in mineral oils typically include tricyclic terpanes (e.g.,
abietane), steranes (e.g., cholestane), and pentacyclic terpanes (e.g., hopane) [48]. Finger-
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printing nearly always involves chromatographic methods, often in combination, such as
gas chromatography (GC) with a flame ionization detector (FID), GC with a mass spectrom-
eter (GC/MS), or liquid chromatography with tandem mass spectrometers (LC/MS/MS).
Mass spectrometry (MS) methods are often performed in selective ion monitoring (SIM)
mode to enhance sensitivity and selectivity. In certain instances, the use of isotopic methods
may also be beneficial, such as with a GC isotope ratio mass spectrometer (GC/IRMS)
operated in a manner that the isotopic composition of individual compounds in a mix-
ture can be discerned [49]. Recent research using two dimensional gas chromatography
(GC × GC) coupled with either an FID or MS has shown promise in further elucidating
the composition of complex hydrocarbon mixtures such as that contained in the base oils
of mineral oils [50].

As mentioned previously, the collection of background samples and source oil samples
are key to any successful marine mineral oil spill investigation, particularly for a forensic
sampling and analysis program, and should be integral to the development of DQOs for
the investigation. Obtaining and analyzing mineral source oils can be fruitful for providing
useful fingerprint information for forensic identification [46]. For example, different mineral
oil products can have various additives that are unique to their formulation or have
differing concentrations of specific contaminants.

Toxicological assessments take a different tack than those of a forensic investigation but
still rely on sensitive, reliable data defined in the DQOs. The four most prominent exposure
pathways to be considered are (i) dermal exposure to biota, (ii) ingestion, (iii) partitioning
of dissolved hydrocarbons into the tissues of aquatic biota, and (iv) inhalation of volatile
hydrocarbons [51]. Most petroleum-based oil spills, such as mineral oil spills, focus on
the potential toxicological effects of BTEX (benzene, toluene, ethyl benzene, and xylenes),
PAHs, and alkylated PAHs. These are analyte-specific measurements that need to be
representative and reliable to properly determine whether and how a mineral oil spill
has affected the environment. Further, a mineral oil spill assessment must also consider
the possible presence of additives, typically organo-metallic compounds, when crafting a
sampling and analysis program. Since the use of additives could result in a higher metal
content, metal analyses may be warranted (e.g., molybdenum, magnesium, zinc). Using
Safety Data Sheet (SDS) information is encouraged by the United Nations International
Maritimes Organization’s (IMO) International Maritime Code [52]. When available, and
if the alleged identity of the mineral oil spilled is known, a review of the SDS should be
useful in the development of the DQOs that target analytes specific to a particular mineral
oil product. Due to the complex chemistries of mineral oils, another important issue to
consider is whether to conduct bioassay studies to better understand the effects from
exposure of the target mineral oil and its degradates on biota [53–55]. Saltwater fishes,
invertebrates, and plants are typically tested. As a result of the diversity of marine biota,
hundreds of species have undergone saltwater toxicity testing, yet few tests are considered
standard [54]. These standard tests measure either acute toxicity (lethal or immobilization
effects that occur over a short period of time) or chronic toxicity (sublethal effects, such
as inhibition of fertilization, growth, and reproduction that occur over a longer period
of time). Another consideration in constructing a reliable sampling and analysis plan is
the unintended harm that oil spill dispersants may cause to the marine ecosystem [56,57].
Dispersants in a mineral oil spill are applied to reduce the hazards of surface oil in both
nearshore and offshore habitats. Dispersants increase the amount of oil in the water column
as dissolved oil constituents and small droplets. Fish and other species may potentially
be exposed through ingestion and/or dermal absorption. The application of dispersants
warrants careful consideration when developing DQOs.

5. Conclusions

Understanding the ramifications of a marine mineral oil spill can be complex. Rep-
resentative data of known quality and integrity is key to making scientifically sound
decisions that can be defended when scrutinized by others. Marine mineral oil investiga-
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tors should proactively design sampling and analysis studies with clearly defined DQOs
and ensure that the study is performed according to the plan and that its implementation
is properly recorded.
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