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Abstract: Biocides are commonly used as spray- or trigger-type formulations, thus dermal and
respiratory exposure to biocide aerosol is unavoidable. However, little is known about the impact
of aerosolization on the local toxicity of biocides on the skin or the airway. We compared the local
toxicity of biocides after direct or aerosol exposure on reconstructed human skin epidermis and
upper airway models. Three biocides, 1,2-benzisothiazol-3(2H)-one (BIT), 2-phenoxyethanol (PE),
and 2-phenylphenol (OPP), most widely used in the market were selected. When the biocide was
treated in aerosols, toxicity to the skin epidermis and upper airway tissue became significantly
attenuated compared with the direct application as determined by the higher tissue viabilities.
This was further confirmed in histological examination, wherein the tissue damages were less
pronounced. LC-MS/MS and GC/MS analysis revealed that concentrations of biocides decreased
during aerosolization. Importantly, the toxicity of biocides treated in 3 um (median mass aerodynamic
diameter (MMAD)) aerosols was stronger than that of 5 um aerosol, suggesting that the aerosol
particle size may affect biocide toxicity. Collectively, we demonstrated that aerosolization could affect
the local toxicity of biocides on the skin epidermis and the upper airway.

Keywords: biocides; aerosol; 3D reconstructed model; KeraSkin™; reconstructed human epidermis;
SoluAirwayTM ; reconstructed human airway mucosa

1. Introduction

Biocides are being widely used to disinfect skin, decontaminate surfaces, and preserve
products from microbial contamination. However, biocides may cause harmful effects
on human health since they are designed to eliminate living organisms. Human can be
exposed to biocidal products via direct dermal contact or inhalation during the use of spray-
or trigger-type biocides [1]. Especially inhalation exposure to biocides aerosol is considered
to be hazardous, as exemplified by a recent catastrophe associated with inadvertent use of
a carpet decontaminating biocide, polyhexamethylene guanidine (PHMG), for a humidifier
sterilizer [2]. PHMG is highly skin-irritating, but its oral toxicity is low. Unexpectedly, the
use of PHMG as a humidifier disinfectant provoked pulmonary fibrosis, claiming hundreds
of lives in Korea [3,4]. In addition, due to the outbreak of CoViD-19 pandemic, the role
of disinfectants and sanitizers has become critical in the prevention of infection, and the
use of them is on the rise worldwide [5], raising an urgent need to assess their inhalation
toxicity for the safe use.

In this regard, it is a prerequisite to ensure the safety of biocides when there is any
chance of inhalational exposure. However, an animal inhalation test, a gold standard for the
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safety assessment of aerosols, is difficult to conduct due to prohibitive cost, heavy facility,
and resources [6,7]. Furthermore, the animal inhalation test is considered to be unethical.
During the test, unreasonably high dose levels of test chemicals are given through the
breathing air, which may cause a considerable distress on the animals [8] (to date, scientists
have studied and developed the in vitro test method, a sophisticated experiment using
human cells and tissues, replacing animals, and are actually using it for diseases and
products related to human health).

Indeed, many in vitro test methods have been studied to evaluate the inhalation toxic-
ity of chemicals [9-12]. A previous study demonstrated that an in vitro three-dimensional
human airway model (Epi-Airway™) combined with multiple endpoint analysis (histol-
ogy, viability, intracellular glutathione (GSH) levels, and mRNA expression) could provide
a robust model for evaluating various types of respiratory toxicity. The results correlated
very well with known in vivo responses [12]. Another study showed mechanistic similar-
ities between asthmatic models of 3D air-liquid interface (ALI) cultures derived human
bronchial epithelia cells and mouse lung tissue. Only 19% of mouse lung genes with human
orthologues were not expressed in the 3D ALI model. It demonstrated 3D ALI models
based on epithelial cells reduce the gap between traditional 2D in vitro assays and animal
models [11]. However, this study directly exposed the tissues to the test chemicals, which
could not account for the characteristics of inhalation exposure.

To reflect the aerosol exposure occurring in real-life exposure scenarios, several stud-
ies have used an in vitro aerosol exposure system, VITROCELL® (VITROCELL Systems
GmbH, Waldkirch, Germany). VITROCELL® is successfully applied to expose aerosolized
test chemicals on ALI in vitro. This system enables a uniform deposition of aerosols
through monitoring the mass of the deposited aerosol and a constant flow of the condi-
tioned aerosol [10,13]. Additionally, Tollstadius, Bruna Ferreira, et al. evaluated the toxicity
of carbendazim, used in agriculture against fungal plant diseases, on A549 alveolar cells
both in monolayer and an air-liquid interface cell system with VITROCELL® Cloud 12
chamber. They demonstrated that carbendazim induced cell death in a 3D reconstructed
alveolar model, but the toxicity was not observed with the monolayer exposure model [14].
Although the performance of VITROCELL® systems is considered good for the exposures of
aerosols, these systems are expensive, and professional expertise is needed for maintenance
and cleaning [15-17]. Another study investigated the toxicity of aerosolized impregnation
products (IP) in vitro using a simple jet nebulizer and a syringe pump. They examined the
effects of aerosolized IP on a non-viable lung surfactant droplet system in a constrained
drop surfactometry. The sensitivity of this method in predicting acute inhalation toxicity
was good (100% (13/13)), but specificity was low (62.5% (5/8)), reflecting the limitation of
the non-viable test system [18].

Here, to examine the toxicity of biocide aerosols, we employed 3D reconstructed hu-
man skin epidermis, KeraSkin™ [19], and a 3D airway epithelium model, SoluAirway™,
and exposed them to aerosolized biocides using commercially available medical nebulizers
and a custom-made exposure chamber. The applied amount of biocide aerosols could
be controlled by adjusting the exposure time after establishing nebulization time and
deposited mass relationship. Furthermore, effects of aerosol particle sizes could be also
examined by applying nebulizers producing 3 um median mass aerodynamic diameter
(MMAD) or 5 um MMAD. With this system, we successfully evaluated dermal and airway
toxicity of biocide aerosols quickly and inexpensively, which could provide a simple tool
to assess the toxicity of biocide aerosols.

2. Materials and Methods
2.1. Biocidal Substances and Other Chemicals

We selected three substances, 1,2-benzisothiazol-3(2H)-one (BIT), 2-phenoxyethanol
(PE), and 2-phenylphenol (OPP) that showed a concentration-dependent rate of tissue
viability. Three biocides used in this experiment were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Experimental concentrations of biocides were determined in con-
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sideration of solubility and maximum permitted limits in Korea and abroad regulation
(Table 1). MTT ((3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) was
purchased from Sigma-Aldrich (St. Louis, MO, USA) for measuring tissue viabilities.

Table 1. Maximum permitted concentration of three biocides tested.

International Union of Pure Maximum Permitted

Chemical and Applied Chemistry .
(IUPAC) Name Concentration
BIT 1,2-Benzothiazol-3-one 0.05% in EU and USA
PE 2-Phenoxyethanol Cosmetics, 1%
OPP 2-Phenylphenol Cosmetics, 0.15% (as phenol)

BIT: 1,2-benzisothiazol-3(2H)-one; PE: 2-phenoxyethanol; OPP: 2-phenylphenol.

2.2. 3D Reconstructed Human Epidermis Model (KeraSkin™)

A reconstructed human epidermis model (KeraSkin™) and KeraSkin™ culture media
were purchased from Biosolution Co., Ltd. (Seoul, Korea). KeraSkin™ was placed on
a six-well plate filled with 0.9 mL of culture medium provided by the manufacturer per
a well and pre-incubated overnight at 37 °C in a humidified atmosphere conditioned
with 5% CO,. Skin irritation test was conducted according to Organisation for Economic
Co-operation and Development (OECD) test guideline 439 [20]. After pre-incubation,
tissues were treated with 40 uL of biocides dissolved in 1% dimethyl sulfoxide (DMSO) in
phosphate-buffered saline (PBS). After 30 min incubation, tissues were gently rinsed with
warmed PBS and then further incubated for 42 h. PBS including 1% DMSO was used as a
negative control, and the positive control was 5% sodium dodecyl sulfate. Control tissues
followed the same schedule as biocide-treated tissues.

2.3. 3D Reconstructed Human Airway Mucosa Model (SoluAirway™)

A reconstructed human airway mucosa model, SoluAirway™, and SoluAirway™
culture media were purchased from Biosolution Co., Ltd. (Seoul, Korea), which is a
generic model of EpiAirway™ (MatTek, Ashland, MA, USA). Airway tissue irritation was
evaluated according to a previous study with a minor modification [21]. SoluAirway™
was placed on a six-well plate filled with 0.9 mL of SoluAirway™ culture media per well
and pre-incubated overnight at 37 °C in a humidified atmosphere conditioned with 5% CO,.
Then, stabilized tissues were treated with 100 pL of biocides (1% DMSO in distilled water).
After the aerosol application, tissues were placed on a 24-well plate and incubated for 3 h.
Then, the apical surface of tissues was gently rinsed four times with 0.4 mL of warmed PBS
to remove all chemicals from the surface. Control tissues were treated with distilled water
including 1% DMSO (negative control) or 14.7 mg/mL formaldehyde (positive control)
purchased from Sigma-Aldrich. All solution treated to tissues contained 1% DMSO.

2.4. Aerosol Generation and Application

We used two medical nebulizer models, NE-U150 (a mesh-sonication type) and NE-
C803 (a jet-nebulization type, OMRON healthcare, Kyoto, Japan), to expose KeraSkin™
and SoluAirway™ tissues to aerosolized biocides. NE-U150 sprays aerosol with median
mass aerodynamic diameter (MMAD) of 5 pm and NE-C803 generates with MMAD of 3
pum. The amount of the exposed aerosol depends on the nebulization rate and the type of
materials. In order to apply the designated amount of biocides, the biocides applied on the
tissue were weighed over a 30 s time interval (OHAUS microbalance, Newark, NJ, USA).
In a preliminary test, we confirmed that the density of the biocides solution (in distilled
water, DW) was found to be about 1.0. The applied amounts of all three biocides, BIT, PE,
and OPP, were about 40 mg on average when nebulized for 90 s and 100 mg for 120 s with
NE-U150 (5 um MMAD size aerosol). With NE-C803 (3 um MMAD aerosol), it took ~4 min
to apply 100 mg of biocides. For the aerosol application, the tissues were placed inside the
chamber (10 x 8 x 8 cm acryl box) on a well-tissue tray. Experimental designs of aerosol
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chamber and the time course of the deposited mass are presented in Figure 1. To prevent
the tissue from drying, 200 uL of culture media was pre-filled in the tray. Since the aerosol
exposure was completed within 4 min, this procedure was conducted in the chamber under
a chemical hood.

(a)

o o © © © Exhaust
) o
°© o °© o ©
o (=]
(<)
Supplied air © o 2

L= o1

Biocides Air outlet

3D tissue

. * e LTIl
' \J/ Media —Zfp I_H—L ---- l V

Air Compressor

(b)

120
100
80
60

: =x f0n (M

0s 30s 60s 90s 120s

Deposited mass (mg)

OBIT 500 pg/mL BOPP 0.15% ®PE 1%

Figure 1. Aerosol exposure system and time course in the mass deposition of aerosolized biocides: (a) Schematic repre-
sentation and (b) photo of aerosol application. Aerosol exposure occurs in the middle of the chamber. The tissue inserts
are housed in a tissue tray prefilled with culture media during exposure. (c) The time course in the mass deposition
of aerosolized biocides. Data show mean mass deposited during exposure time (mean =+ SD, n = 4). Biocides at other
concentrations also showed similar trends (data not shown).

2.5. Analysis of Biocides in the Aerosol
2.5.1. LC-MS/MS Analysis

The sprayed aerosols were collected, and the concentration of biocides was analyzed
referring to the previous studies [22,23]. BIT and OPP were analyzed by high performance
liquid chromatography (Agilent 1200 series HPLC; Agilent Technologies, Santa Clara, CA,
USA) coupled with triple quadrupole mass spectrometer (EVOQ Qube™; Bruker Daltonics,
Billerica, MA, USA) with C18 column (ZORBAX Eclipse Plus C18; 2.1 mm x 50 mm, 1.8 pum;
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Agilent Technologies, Santa Clara, CA, USA). The column temperature was kept at 40 °C.
The injection volume was 1 pL.

When analyzing the amount of BIT, the mobile phase A was 0.1% formic acid in
deionized water, while mobile phase B was 100% methanol, and mobile phase flow rate
was 0.3 mL/min. The gradient started at 30% of solvent B for 5 min then changed linearly
to 100% of solvent B in 10 min and maintained until 13 min. Then, the gradient set back to
the initial percentage of solvent B (30%) after 15 min of LC run, and it was maintained for
5 min for equilibrium. A heated electrospray ionization (HESI) source was used to obtain
MS spectra, and the ion source parameters were as follows: spray voltage, 4500 V; cone
temperature, 350 °C; cone gas flow, 20 psi; heated probe temperature, 250 °C; probe gas
flow, 45 psi; nebulizer gas flow, 55 psi. Sample introduction and ionization was electrospray
ionization in the positive ion mode. Multiple reaction monitoring (MRM) mode was used
for quantitative analysis of BIT, and the mass transition ion pairs were selected as m/z
152.5 — 109.1 (15.0 V) and 152.0 — 133.8 (22.0 V).

When analyzing OPP, the mobile phase A was 50 mM ammonium acetate in deion-
ized water, while mobile phase B was 100% methanol, and mobile phase flow rate was
0.35 mL/min. The gradient started at 10% of solvent B for 5 min then changed linearly to
100% of solvent B in 10 min and maintained until 15 min. Then, the gradient set back to the
initial percentage of solvent B (10%) after 17 min of LC run, and it was maintained for 6
min for equilibrium. Sample introduction and ionization was electrospray ionization in
the negative ion mode, and the spray voltage was —4000 V. The mass transition ion pairs
were selected as m/z 169.0 — 115.1 (27.0 V) and 169.0 — 141.1 (26.6 V). All other HPLC
and MS/MS conditions were set the same as for BIT analysis.

2.5.2. GC-MS Analysis

PE was analyzed by gas chromatography (7890B; Agilent Technologies, Santa Clara,
CA, USA) coupled with quadrupole mass spectrometer (5977A; Agilent Technologies, Santa
Clara, CA, USA) with capillary column (HP-5ms UI; 30 m x 0.25 mm, 0.25 pm; Agilent
Technologies, Santa Clara, CA, USA). Samples were injected 1 pL in splitless mode, and
injector temperature was 280 °C. The carrier gas was high purity helium with a flow of
1.0 mL/min. The initial column temperature was 60 °C and held 3 min and then ramped
to 300 °C at the rate of 30 °C/min and held 10 min. The ionization was carried out in
the electron impact (EI) mode at 70 eV. The transfer line and the ion source temperatures
were maintained at 280 °C and 250 °C, respectively. Data were obtained in the selected
ion monitoring (SIM). The quantifier ion and the qualifier ion were m/z 94 and m/z 138,
respectively.

2.5.3. Analytical Validation

Analytical methods developed above were validated for linearity, recovery, repro-
ducibility, limit of detection (LOD), and limit of quantitation (LOQ). Standard calibration
solutions for BIT, OPP, and PE prepared from 15.625 to 250 ng/mL were used for the
establishment of calibration curves. R? value was more than 0.9995 for all the analytes,
confirming the linearity. Recovery was from 80 to 110% for three concentrations, 10, 20,
and 40 ng/g samples with SD within 10%, supporting the reproducibility. LOD and LOQ
for BIT and OPP were 7.81 ng/mL and 15.625 ng/mL, respectively. For PE, LOD and LOQ
were 1.95 ng/mL and 3.91 ng/mL.

2.6. MTT Assay

Tissue viability was measured by the cellular reduction of MTT (3-(4,5-dimethlthiazol-
2-y1)-2,5-diphenyltetrazolium bromide). MTT was reduced to a dark blue insoluble for-
mazan by mitochondrial reductase, which could be extracted and measured with optical
density at 570 nm. After post-incubation (for KeraSkin™) or treatment (for SoluAirwayTM),
tissues were transferred to 24-well culture plates containing 200 uL of MTT (KeraSkin™;
0.4 mg/mL, SoluAirway™; 1.0 mg/mL) diluted in sterile PBS and incubated for 3 h at
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37 °C and 5% CO;. Following incubation, KeraSkin™ tissues were transferred to a new
6-well plate prefilled with 2 mL of isopropanol. Formazan extraction was performed
at room temperature for 3 h, protected from the light. For SoluAirway™, tissues were
submerged in 2.0 mL isopropanol, in which all tissues were maintained overnight at room
temperature. Following procedures, 200 pL extractant from each tissue was transferred to
a 96-well plate, and optical density (OD) was measured at 570 nm using isopropanol as a
blank with a microplate spectrophotometer at 570 nm (BioTek Instruments, Inc., Winooski,
VT, USA) Viability for each tissue was calculated with the optical density (OD) relative to
negative control according to the following equation: relative viability = [OD tegt tissue =
mean OD negative control] % 100.

2.7. Histological Analysis

For the histological analysis, all samples were trimmed 10 mm width off the hem of
the tissues and fixed in 4% phosphate-buffered formalin (PFA) for 24 h. Fixed samples were
sealed with paraffin films and cut into 5 pm sections using microtome (Leica, RM2235),
followed by hematoxylin-eosin staining. The sections were stained with Gill 3 hematoxylin
(HX87960674) for 7 min 30 s and 0.5% eosin in 95% EtOH. After staining with hematoxylin
and eosin, the stained tissues were washed immediately and sequentially proceeded as
follows: dip in distilled H,O until eosin stops streaking, 50% EtOH and 70% EtOH for
10 times, sequentially. Then, they were incubated in 95% EtOH for 30 s and 100% EtOH for
1 min. The incubated samples were covered with a mounting solution (Thermo Scientific,
6769007) and examined under the light microscope (OLYMPUS, BX43).

2.8. Statistical Analysis

Data are expressed as the mean + SD. Difference from vehicle control was analyzed
using Student t-test. p-values of 0.05 or less were considered significant.

3. Results
3.1. The Local Toxicity of Biocides after Direct or Aerosol Exposure on the Reconstructed Human
Skin Epidermis Model, KeraSkin™

To evaluate the local toxicity of aerosolized biocides on the skin, the reconstructed
human skin epidermis model KeraSkin™ was employed. Biocides were aerosolized
with a medical nebulizer (model NE-U150) to 5 pum MMAD aerosol and applied on the
KeraSkin™ tissue such that the final applied amount would be 40 mg (40 pL in volume.
see Material and Methods for more details). Then, the tissues were incubated for 30 min
and washed thoroughly. The resulting tissues were further incubated for 48 h, and the
tissue viability was measured by MTT assay (Figure 2a). For comparison, 40 mg of biocides
were directly applied on the KeraSkin™ and followed the same procedure. As a result,
the tissue viabilities treated with aerosolized BIT and OPP were generally higher than
direct application. The difference in the local toxicity of biocides was pronounced for
BIT. In contrast, there was only small difference in the viabilities after aerosol from direct
application for PE or PC (5% SDS). The histological examination of the treated tissues also
confirmed the MTT viability data (Figure 2b). The tissues directly exposed to BIT and
OPP showed more severe damages than those to aerosols such as erosion, vacuolation,
spongiosis, and necrosis, suggesting that BIT and OPP may be less toxic to the skin when
applied in aerosol.
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Figure 2. Toxicity of biocides on KeraSkin™ after direct or aerosol application. (a) Tissue viability of
KeraSkin™ tissue measured with ((3-[4, 5-dimethylthiazol-2-y1]-2, 5-diphenyl-tetrazolium bromide)
(MTT) assay at 48 h after the exposure to biocides through direct (grey bars) or aerosol application
(blue bars) for 30 min. Values are mean =+ SD (n = 3). NC; negative control (1% DMSO in PBS), PC;
positive control (5% sodium dodecyl sulfate); BIT; 1,2-Benzothiazol-3-one, PE; 2-Phenoxyethanol,
OPP; 2-Phenylphenol. * p < 0.05 or ** p < 0.01 by Student t-test. (b) Representative histological
photographs of the treated tissues after hematoxylin-eosin (H&E) staining. Scale bar is 50 um. E, V,
and S stand for erosion (detachment of epithelial cells), vacuolation (formation of vacuoles in cytosol),
and spongiosis (intercellular edema), which was indicated on BIT 5000 pg/mL photo.

3.2. Comparison of Local Toxicity of Biocides after Direct or Aerosol Exposure on the Reconstructed
Human Upper Airway Model, SoluAirway™

To evaluate the local toxicity of aerosolized biocides on the airway, the reconstructed
human upper airway model SoluAirway™ was employed. As was similar with the skin
epidermis experiment, BIT and OPP were less toxic to SoluAirway™ when applied in
aerosol (Figure 3a). Of note, this pattern was pronounced, and even PE aerosol, which
showed similar degree of toxicity with direct application in the skin epidermis, showed
reduced toxicity in SoluAirway ™. In the histological examination, it could be confirmed
that aerosolized biocides resulted in less severe damages on SoluAirway™ than directly
applied biocides (Figure 3b).
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Figure 3. Toxicity of biocides on SoluAirway™

120

100

(NI

3
S

Tissue Viability (%)
- (=
o o

[
S

-

50 ug/ml 500 pgm]. 5000 pgml  0.03% 0.15% 0.30% 0.10%
BIT OPP PE
(b) @ Direct m Aerosol
Direct Aerosol
S X Lo QLR S
AR -"'»7 C " X -‘"17' '?"'”‘ o c‘:':i"" T o n'f'"“? %Jg‘h.j'ﬁ
e - e
e e 2 e
NC PC NC PC
(S < [\ VL
s O TS Aee N | i SRt TR ;‘ ,,-
% ""c Joea N bttt ! Lty W el i "-"l' ‘\' "' J
20pm 20pm 20pm 20pm 20pm 20um
BIT 50 pg/mL 500 pg/mL 5000 pg/mL BIT 50 pg/mL 500 pug/mL 5000 pg/mL
1 1 He He Hg
pvine A e v e I - - l,:.f, 7
RS 10y PO g SRR W
2m 2m am 2m 2om
OPP0.03% 0.15% 0.3% OPP0.03% 0.15% 0.3%
=
' e Sl SRy ey Iy

WNIRe T e,
AR \WTY

.

20um

PE0.1% 1% 2% PE0.1%

Sy )
20pm

AP: o . -
s Yogn 20

1% 2%

after direct or aerosol application: (a) Tissue viability of SoluAirwayTM

tissue measured with MTT assay after the exposure to biocides through direct (grey bars) or aerosol application (blue bars)
for 3 h. Values are mean £ SD (n > 2) or %difference (n = 2). NC; negative control (phosphate-buffered saline, PBS), PC;
positive control (14.7 mg/mL formaldehyde) by Student t-test. (b) Representative histological photographs of the treated

tissues after H&E staining. Scale bar is 20 um. Cell debris below the transmembrane shall be ignored since they were

generated during tissue section.

3.3. Concentrations of Biocides after Aerosolization

We speculated that, during the aerosolization, biocides may be degraded, resulting in
decreased concentrations of biocides in the aerosol, which may account for the reduced tox-
icity of aerosolized biocides (Table 2). The aerosolized biocides were collected and analyzed
for the concentrations of biocides. As a result, it was confirmed that the concentrations of
all three biocides decreased after the aerosolization at all concentrations. These patterns
became more pronounced as the concentrations of biocides were higher, indicating that
significant amounts of biocides were lost during aerosolization.

3.4. Effects of Aerosol Particle Sizes on the Local Toxicity of Biocides on SoluAirway™

Particle size is considered as a key determinant of aerosol toxicity. Decrease in particle
size promotes the aerosol dispersion during the first seconds of inhalation. Additionally, the
smaller aerosol particles can penetrate deeper into smaller airways of human respiratory
tract and can subsequently be deposited more efficiently than bigger ones [24]. However, it
is not known whether the aerosol size itself can affect the local toxicity of biocides. Using

SoluAirway™

, we examined the effects of aerosol particle size on the local toxicity of

biocides. Soluairway™ was exposed to aerosols of BIT and PE, which showed the largest
and the smallest differences in toxicity between direct and aerosol applications, respectively,
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at two different MMADs, 3 um or 5 um, and the tissue viability was determined. Of note,
the local toxicity of aerosolized biocides BIT and PE with MMAD 3 pm was stronger than
that of 5 um (Figure 4). These patterns became more evident at higher concentrations,
indicating that the aerosol size itself may affect the toxicity of biocides as well as the
dispersion characteristics.

Table 2. Analysis of biocides in the deposited aerosols (5 pm and 3 um median mass aerodynamic
diameter (MMADs)) with LC/MSMS and GC/MS.

After Nebulization
Biocides Indicated Conc.
5 um 3 pm
BIT 50 pg/mL 37.34 +19.85 44.70 £ 6.00
(1,2-Benzisothiazol- 500 pg/mL 394.39 4+ 47.71 457.8 + 86.73
3(2H)-one) 5000 pug/mL 1144.11 £ 134.31 857.0 &+ 69.18
OPP 0.03% 0.006 + 0.004 0.021 + 0.017
(2-phenylphenol) 0.15% 0.027 £ 0.01 0.103 £ 0.013
0.3% 0.048 + 0.019 0.099 + 0.009
PE 0.1% 0.04 + 0.002 0.028 £ 0.012
(2-phenoxyethanol) 1% 0.49 + 0.059 0.251 £ 0.099
2% 1.21 £ 0.259 0.523 +0.172
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Figure 4. Toxicity of BIT and PE on SoluAirway™ after the application of 3 um or 5 um aerosol: (a)
Tissue viability of SoluAirway™ tissue measured with MTT assay after the exposure to aerosols of
BIT and PE with 5 um MMAD (blue) or 3 pm MMAD (light blue) for 3 h. Values are mean + SD
(n>2)or %difference (n=2). ** p <0.01 by Student ¢-test (b) Representative histological photographs
of the treated tissues after H&E staining. Scale bar is 20 pm.
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4. Discussion

Here, we examined the impact of aerosolization on the local toxicity of biocides on
the reconstructed human skin epidermis and the airway tissue models. Reconstructed
human tissue models provide more physiologically relevant conditions than conventional
2D cell experiments [25]. Using 3D reconstructed tissue models, we evaluated the local
toxicity of three biocides, BIT, PE, and OPP, widely used in commercial products on the
skin and the airway. Compared to direct exposure, aerosol exposure of biocides resulted
in weaker toxicity on skin epidermis and airway tissue models in general even though
the same mass dose of biocides was applied on the tissues. We demonstrated that, during
aerosolization, the concentrations of biocides in aerosols may decrease, which accounts
for the weaker toxicity of aerosolized biocides. Of note, we found that aerosols with
smaller particle sizes (MMAD) were more toxic to the airway tissue model than those with
greater MMADs, demonstrating that aerosol particle size may be an important factor for
the toxicity of biocides.

Here, we found that the direct exposure of biocides inflicted stronger toxicity on
skin and airway, providing an important implication for animal intra-tracheal instillation
tests. Animal intra-tracheal instillation study has been widely used to investigate the
respiratory toxicity of chemicals instead of the standard animal inhalation test [26]. In
contrast to the standard animal inhalation test, which needs nose-only or whole body
exposure systems, intra-tracheal instillation needs only a device to accurately deliver
the designated dosage of test chemicals directly to the lung, saving a lot of cost and
time to examine the inhalational toxicity of test chemicals [27]. However, intra-tracheal
intubation often over-predicts the toxicity of test chemicals compared to the standard
animal inhalation test [28]. The discrepancy between inhalation test and intra-tracheal
test was explained by the acuteness of the dosing and the deeper deposition of the test
chemicals in intra-tracheal dosing [29]. Adding to this explanation, we could show that
aerosolization of test chemicals may lower the active ingredient concentration, resulting in
reduced toxicity. To correctly evaluate the toxicity of aerosolized biocides, the disposition
of biocides during aerosolization must be taken into consideration. In this context, the
intra-tracheal instillation may not be appropriate for the study of test chemicals that can
become lost during the aerosolization [30], or, at least, the disposition of biocides during
aerosolization must be analyzed and taken into consideration for the dosage adjustment.

Recently, an airway tissue model was employed to assess the risk of aerosolized
pesticides [31]. In this study, the dose-toxicity curve was established using an airway tissue
model after the direct application of the pesticide. The computational fluid dynamics (CFD)
model was used to estimate the deposition of aerosolized pesticide to the respiratory tract
for the calculation of the safety margin [32,33]. According to our results, direct exposure
may over-estimate the toxicity of biocides. Establishment of a dose—toxicity curve with the
aerosolized pesticide would provide more accurate estimation of the risk of aerosolized
chemicals. Namely, application of the deposited mass of the biocides” aerosol estimated
with the CFD model on the airway model would present a more realistic exposure scenario.

We demonstrated that aerosol particle size may affect the toxicity of biocides. It is
well-known that aerosols with smaller particle sizes are more toxic to the lung [34]. In a
study using cadmium chloride (CdCl;) as a model for toxic aerosol particles, rats exposed
to 33 nm particles showed the highest level of respiratory toxicity, followed by animals
exposed to 637 nm particles and by those exposed to 1495 nm particles [35]. The higher
toxicity of aerosols with smaller particle sizes has been explained by the greater deposition
in the lower respiratory tract and larger retention in the lung due to the aerodynamic of
particulate matters [36]. Furthermore, we demonstrated that, even though the deposited
mass amount of aerosolized biocides on the airway tissues was the same, the toxicity
of aerosols with smaller sizes was significantly stronger, suggesting that there may be
factors other than macroscopic aerodynamics. The reason behind the differences in toxicity
between 3 pm aerosol and 5 pm aerosol may stem from the differences in the concentrations
of biocides in the aerosols or the contact of biocide aerosols on the tissues. We found that
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BIT aerosols with 3 um size were with higher BIT concentrations than those with 5 um size,
but the contents of PE in 3 um aerosols were lower than 5 um, suggesting that other factors
such as tissue contact may have contributed, although further studies are necessary to
confirm it. Additionally, it would be important to identify the disposition and the behavior
of the biocides during aerosolization, which shall be addressed by more sophisticated
assays such as a radiotracer study.

Here, we demonstrated that, with respect to potency of toxicity, BIT was the strongest,
followed by OPP and PE. BIT is used as a preservative with a maximum concentration
of 0.05% in the EU, the US, and Canada [37]. OPP (0.15%) and PE (1%) are allowed to
be used as preservatives in limited concentrations in cosmetics in South Korea and other
countries [38]. Since there is only limited information on the animal toxicity of these
biocides, it is difficult to compare the toxicity of these biocides. However, the order of
toxic potency of BIT, OPP, and PE observed in our study exactly matches the order of their
permitted concentrations, supporting that our experimental models may reflect the biocide
toxicity relatively well, although further studies are necessary.

In summary, using human epidermis and airway tissue models along with a simple
aerosol exposure system, we demonstrated that aerosol exposure of biocides may induce
weaker toxicity on the skin or the airway compared to direct exposure, which appears to
be attributable to decreased concentrations of biocides in aerosols. We also found that the
biocide aerosols with smaller particle sizes were per se more toxic to the airway tissue
model than those with greater particle sizes. We believe that our in vitro test system may
be useful for the toxicity evaluation of various forms of aerosolized test chemicals with
respect to time, cost, and animal welfare.
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