
medicines

Article

Discovery of Novel eEF2K Inhibitors Using HTS Fingerprint
Generated from Predicted Profiling of
Compound-Protein Interactions

Atsushi Yoshimori 1 , Enzo Kawasaki 2 , Ryuta Murakami 2 and Chisato Kanai 2,*

����������
�������

Citation: Yoshimori, A.; Kawasaki,

E.; Murakami, R.; Kanai, C. Discovery

of Novel eEF2K Inhibitors Using HTS

Fingerprint Generated from Predicted

Profiling of Compound-Protein

Interactions. Medicines 2021, 8, 23.

https://doi.org/10.3390/

medicines8050023

Academic Editor: William Cho

Received: 26 March 2021

Accepted: 18 May 2021

Published: 20 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for Theoretical Medicine, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-0012, Japan;
yoshimori@itmol.com

2 INTAGE Healthcare, Inc., 79, Kankoboko-cho, Shimogyo-ku, Kyoto 600-8009, Japan; kawasaki@intage.com (E.K.);
murakami-r@intage.com (R.M.)

* Correspondence: kanai@intage.com; Tel.: +81-50-3640-0116

Abstract: Background: Eukaryotic elongation factor 2 kinase (eEF2K) regulates the elongation stage
of protein synthesis by phosphorylating eEF2, a process related to various diseases including cancer
and cardiovascular and neurodegenerative diseases. In this study, we describe the identification
of novel eEF2K inhibitors using high-throughput screening fingerprints (HTSFP) generated from
predicted profiling of compound-protein interactions (CPIs). Methods: We utilized computationally
generated HTSFPs referred to as chemical genomics-based fingerprint (CGBFP). Generally, HTSFPs
are generated from multiple biochemical or cell-based assay data. On the other hand, CGBFPs
are generated from computational prediction of CPIs using the Chemical Genomics-Based Virtual
Screening (CGBVS) method. Therefore, CGBFPs do not have missing information mainly caused
by the absence of assay data. Results: Chemogenomics-Based Similarity Profiling (CGBSP) of the
screening library (2.6 million compounds) yielded 27 compounds which were evaluated for in vitro
eEF2K inhibitory activity. Three compounds with interesting results were identified. Compounds
2 (IC50 = 11.05 µM) and 4 (IC50 = 43.54 µM) are thieno[2,3-b]pyridine derivatives that have the
same scaffolds with a known eEF2K inhibitor, while compound 13 (IC50 = 70.13 µM) was a new
thiophene-2-amine-type eEF2K inhibitor. Conclusions: CGBSP supplied an efficient strategy in the
identification of novel eEF2K inhibitors and provided useful scaffolds for optimization.

Keywords: eEF2K—Eukaryotic elongation factor-2 kinase; CGBFP—chemical genomics-based fin-
gerprint; CGBVS—Chemical Genomics-Based Virtual Screening; CGBSP—Chemical Genomics-Based
Similarity Profiling

1. Introduction

Protein synthesis is a key process in living cells, being required for creating proteins
through translation of mRNAs [1]. Eukaryotic elongation factor 2 (eEF2) is an essential
factor for protein synthesis which mediates the movement of ribosomes along mRNAs from
one codon to the next during the elongation stage of translation [2]. The activity of eEF2K
is normally dependent on Ca2+ ions and calmodulin (CaM), which binds the N-terminal of
its catalytic domain [2,3]. eEF2 is phosphorylated by Eukaryotic elongation factor 2 kinase
(eEF2K) on Thr56. When eEF2 is phosphorylated, its affinity for ribosomes decreases [4,5].
Recent studies have revealed that eEF2K is associated with certain diseases including
cancer [6] and cardiovascular [7] and neurodegenerative diseases [8]. eEF2K belongs
to the α-kinase family, which is a small subgroup of atypical protein kinases displaying
little sequence similarity to conventional protein kinases [9]. Unlike conventional protein
kinases, eEF2K was only slightly inhibited by Staurosporine or its derivatives such as
K252a or Goe6976 [10]. This feature makes the design of eEF2K inhibitors difficult, since
it cannot be based on existing kinase inhibitors. Furthermore, the crystal structure of
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eEF2K has not been solved yet. Several eEF2K inhibitors with moderate activity have been
reported [11–16]. A-484954 is a selective inhibitor with an IC50 value of 0.28 µM against
eEF2K in enzymatic assay [12]. Thieno[2,3-b]pyridine analogues were reported as eEF2K
inhibitors with sub-micromolar inhibitory activity [15]. Since no potent eEF2K inhibitor
has been designed so far, new scaffolds are needed for optimization.

High-throughput screening fingerprint (HTSFP) was introduced by Petrone et al. [17]
and is getting a lot of attention as a molecular representation that can be used for virtual
screening [18], target identification [19], and hit expansion [20]. In HTSFP, each molecule is
represented by hundreds of biochemical and cell-based HTS assay readouts, where a value
or a bit in their fingerprint is set according to an assay readout [17,21]. PubChem HTS
fingerprints were constructed from 243 bioassays of more than 300,000 compounds [21].
These 243 bioassays, which consist of 111 biochemical and 132 cell-based assays, were
extracted from the PubChem BioAssay database [22]. Virtual screening using the PubChem
HTSFP retrieved structurally diverse hits compared with traditional structural 2D finger-
print. HTSFP is agnostic with regard to chemical structures since it is based on bioassay
data. Therefore, it has a high potential to accomplish scaffold hopping and identify active
compounds [21]. Cheng et al. used 60 bioassays (referred to as NCI-60) taken from 73 NCI
human tumor cell line growth inhibition assays of the PubChem BioAssay database, to
construct bioactivity profiles for 4296 small molecules and predict compound-target associ-
ations [23]. In the process of constructing the bioactivity profiles, compounds with missing
log (GI50) value in one or more of the NCI-60 cell lines were discarded, where GI50 is the
concentration required for the 50% growth inhibition of tumor cells. Cabrera et al. identi-
fied novel nanomolar inhibitors of cellular division that reproduce the phenotype, and their
study showed that HTFSPs are valuable tools for scaffold hopping [24]. Despite this success,
HTSFP has one major limitation. The generation of HTSFP can only be made for previously
tested compounds in HTS assays. Herein, we propose chemical genomics-based finger-
prints (CGBFP) that can be generated from computational prediction of compound-protein
interactions (CPIs) with which we have identified novel eEF2K inhibitors. The CGBFP
of a compound is built on predicted activities against 599 target proteins using Chemical
Genomics Based Virtual Screening (CGBVS) technique [25,26]. Generation of CGBFP can
be made for all compounds because it is, basically, computationally generated HTSFP.

In our exploration of novel eEF2K inhibitors, we performed a technique called Chemi-
cal Genomics-Based Similarity Profiling (CGBSP), which is a technique that utilizes CGBFPs.
This led to the identification of 27 compounds from the Enamine screening library. These
compounds were then evaluated using eEF2K inhibitory activity assays. Among them, we
found three novel eEF2K inhibitors.

2. Materials and Methods
2.1. Compounds

All tested compounds were purchased from Namiki Shoji Co., Ltd. (Tokyo, Japan).

2.2. CGBFP

CGBFPs were generated from the output of predictive models of CGBVS, which
is represented as a vector of length 599, where each component encodes the binding
probability score of the predictive model for a target protein. Details of the 599 target
proteins are shown in Table S1 (Supplementary Data). CGBVS was developed by Yabuuchi
et al. [25] to predict CPIs. In this study, CGBFPs were generated by CGBVS as implemented
in the CzeekS software package [27]. CzeekS has 6 predictive models that correspond
to 1190 target proteins. During the generation of CGBFPs, only target proteins trained
with 100 or more CPI datasets were used, and this led to screening against 599 out of the
available 1190 target proteins.
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2.3. Virtual Screening Using CGBSP

CGBSP was performed by generating CGBFPs of test and reference compounds
followed by calculation of cosine similarity [28]. Twenty eEF2K inhibitors obtained from
ChEMBL [29] (Supplementary Data in Table S2) were used as reference compounds, and
approximately 2.6 million compounds from the Enamine screening library were screened.
1-nearest neighbor (1-NN) similarity search method was applied to screen the database.
1-NN similarity search is a method to select compounds from the database that are most
similar to one of the reference structures [30]. CGBFPs of the reference and the database
compounds were calculated by CzeekS, and cosine similarity was used as the metric of
similarity between the CGBFPs. After virtual screening, the top 40 scoring compounds
were selected as candidate eEF2K inhibitors. Finally, 27 purchasable compounds (see
Supplementary Data in Table S3) among them were evaluated by assay.

2.4. In Vitro eEF2K Assay

Off-Chip Mobility Shift Assay (MSA) for the inhibitory activities of the compounds
against eEF2K was conducted by Carna Biosciences, Inc. (Kobe, Japan) using QuickScout
Screening Assist™ Mobility Shift Assay Kit. A (4×) test substance solution was added
to the assay buffer (20 mM HEPES, 0.01% Triton X-100, 1 mM DTT, pH 7.5). A (4×)
substrate/ATP/metal solution was prepared using Kit buffer (20 mM HEPES, 0.01% Triton
X-100, 5 mM DTT, pH 7.5). A (2×) kinase solution was prepared in assay buffer. Five
microliters of 4× test substance solution, 5 µL of prepared substrate/ATP/metal solution,
and 10 µL of kinase solution were mixed in a polypropylene 384-well plate and incubated at
room temperature for 5 h. The reaction was stopped by adding 70 µL of Termination Buffer
(QuickScout Screening Assist MSA; Carna Biosciences). Substrate and phosphorylated
peptides in the reaction solution were separated and quantified by the LabChip™ system
(Perkin Elmer). The kinase activity was evaluated as the product ratio (P/(P+S)) calculated
from the peak height of the substrate peptide (S) and the peak height of the phosphopeptide
(P). The average signal in the control wells containing all reaction components was set
to 0% inhibition, and the average signal in the background wells (without enzymes)
was set to 100% inhibition. Then the percentage of inhibition was calculated from the
average signal of each test well. Inhibitory activity of the 3 inhibitors against 3 other
calmodulin-related kinases (Calcium/calmodulin-dependent protein kinase 4 or CaMK4,
Checkpoint kinase 1 or CHK1, Death-associated protein kinase 1 or DAPK1) were measured
at 30 µM concentration. The IC50 values against eEF2K were determined from the plotted
concentration of test compounds against the inhibition rate by approximating the logistic
curve using the non-linear least squares for four parameters analysis as implemented in
GraphPad Prism version 9.0.2 [31] for Windows.

2.5. Molecular Docking

eEF2K homology model was constructed using the SWISS-MODEL [32] server with
Myosin heavy-chain kinase A crystal structure (PDB: 4ZS4 [33]) as template. AutoDock
Vina [34] as implemented in YASARA [35] was used to predict binding modes of the three
hit compounds. Docking was performed using the macro file dock_run.mcr with default
parameters. The binding configuration of ATP to eEF2K was constructed by superimposing
the crystal structure of ATP and myosin heavy chain kinase A (PDB: 4ZS4) complex on the
eEF2K homology model.

3. Results
3.1. Concept of CGBFP

CGBFPs are, basically, HTSFPs computationally generated from predicted profiling
of CPIs. It consist of binding probability scores obtained from predictive models of CG-
BVS [25,26] (Figure 1). CGBVS is a machine-learning-based method for predicting the
binding probability score of a compound based on the binding patterns obtained from the
interaction information (chemical genomics information) between the protein (biological
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space) and the compound (chemical space). The steps leading to the construction of predic-
tive models are illustrated in Figure 1. CPI datasets were obtained from ChEMBL release 25
(Step 1). Compound descriptors were generated using alvaDesc [36] software, which is the
successor to the widely used DRAGON [37] software. Protein descriptors were calculated
using the PROFEAT 2016 web server [38] (Step 2). Interaction vectors were constructed
by combining compound and protein descriptors (Step 3). Concatenated vectors for CPI
(binding) pairs and noninteracting (non-binding) pairs were used as input into support
vector machine (SVM) (Step 4). Binding probability scores of target proteins were obtained
from the SVM. Scores are values between 0 and 1, and scores greater than or equal to 0.5
are considered positive or indicate potential binding between the test compound and target
protein (Step 5).

Compounds Proteins

Step1: Collection of CPI dataset

Step 2: Descriptor Calculation

(1.2, 5.3, …,3.1)

(5.1, 8.3, …,1.4)

(6.8, 1.3, …,7.7)

(9,8, 2.2, …,8.7)

(3.2, 5.3, …,3.3)

(6.7, 5.1, …,3.0)

Compound
Descriptor

Protein
Descriptor

Step 3: Construction of Interaction Vectors

(1.2, 5.3, …,3.1, 9,8, 2.2, …,8.7)

(5.1, 8.3, …,1.4, 3.2, 5.3, …,3.3)

(6.8, 1.3, …,7.7, 6.7, 5.1, …,3.0)

1 (Bind)

1 (Bind)

0 (Non-bind)

Step 4: Construction of Predictive Model

Support Vector Machine

Training data: 
Interaction Vectors + bind or non-bind data 

Step 5: Prediction

(1.5, 5.0, …,2.5, 9,8, 2.2, …,8.7) 0.82 (Bind)

(1.5, 5.0, …,2.5, 9,8, 2.2, …,8.7)

(1.5, 5.0, …,2.5, 3.2, 5.3, …,3.3)

(1.5, 5.0, …,2.5, 6.7, 5.1, …,3.0)

(1.5, 5.0, …,2.5, 2,8, 2.4, …,8.9)

…….

0.82 

0.55 

0.12 

0.02 

…….

CGBVS

Support Vector Machine

……. …….

CGBFP

Binding 
probability 
score

Interaction 
Vectors 

Figure 1. Workflow of CGBVS and CGBFP generation. The CGBVS section illustrates construction of
predictive models for compound-protein interactions (CPIs) via Step 1 to Step 5. The CGBFP section
shows the generation of CGBFP using CGBVS predictive models (Support Vector Machine). Values
within the pink box represent CGBFPs.

3.2. Virtual Screening Using CGBSP

As already stated, successful examples of virtual screening using HTSFP have been
reported [18–20] previously. In this study, we performed virtual screening based on CGBFP.

The use of CGBFP has advantages as follows:

1. CGBFPs are computationally generated; therefore, it has no missing information
principally caused by the absence of assay data usually seen with HTSFP.

2. Generation of CGBFPs can be performed for all compounds, in contrast to HTSFP,
which can only be performed for previously tested compounds in HTS assays.

Figure 2 illustrates the workflow of our virtual screening protocol. In our efforts
to identify novel eEF2K inhibitors, we virtually screened the Enamine screening library
comprising approximately 2.6 million compounds. 1-NN similarity search was conducted
based on twenty reference compounds (known eEF2K inhibitors; see Supplementary Data
in Table S2) using CGBFP.

Representative eEF2K inhibitors from the reference compounds are listed in Table 1.
The top 40 scoring compounds from the 1-NN similarity search were initially selected,
from which 27 compounds were further selected and then purchased in order to perform
the biological assays.
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1-Nearest Neighbor Similarity Search 
using CGBSP (20 reference compounds)

Enamine screening library

eEF2K Inhibitory assay

40

3

(2.6 million compounds)

27

purchasable compounds 

Figure 2. Overview of virtual screening using CGBSP.

Table 1. Representative eEF2K inhibitors with the corresponding IC50 values obtained from rele-
vant references.

ChEMBL ID a Structure IC50 (µM) Ref

CHEMBL1094018 0.11 14

CHEMBL1092820 0.17 14

CHEMBL1977874 b 0.28 11

a ChEMBL ID is the compound identification number in the ChEMBL database. b Refers to the eEF2K inhibitor
A-484954.

3.3. Enzyme Inhibition Assays

From the initial testing of 27 compounds for eEF2K inhibitory activities, three com-
pounds (compounds 2, 4, and 13) showed over 25% inhibition (74.1%, 29.4%, and 32.5%,
respectively) of eEF2K at the concentration of 30 µM (Figure 3). Further testing by dose–
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response assays showed compounds 2, 4, and 13 exhibiting good dose-dependent inhibitory
effect with IC50 values of 11.05 ± 0.67, 43.54 ± 2.29, and 70.13 ± 5.57 µM, respectively,
(Figure 4). In particular, compound 2 was shown to be a moderately effective inhibitor
against eEF2K. A-484954 was used as the reference compound, and the calculated IC50
value is 0.386 ± 0.022 µM. This value was found to be in good agreement with previously
reported value of 0.28 µM [12] (Table 1).
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Figure 3. Preliminary measurements of eEF2K inhibitory activities of selected 27 compounds. Black dots
indicate values for duplicate measurements and crossbars indicate mean values for each compound.
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Figure 4. Dose-dependence curve of three hit compounds and A-484954 as control. The com-
pound concentration required for 50% inhibition (IC50) was determined from semi-logarithmic
dose–response plots. Values are mean of 4 replicates.

Compounds 2 and 4 are thieno[2,3-b]pyridine derivatives with the same scaffold with
known eEF2K inhibitors (CHEMBL1094018 and CHEMBL1092820 in Table 1). We have
found that the CGBSP approach could select compounds that have the same scaffolds
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as the reference compounds. On the other hand, compound 13 was identified as a new
thiophene-2-amine type inhibitor of eEF2K. This scaffold is different with known scaffolds
of eEF2K inhibitors (Table 1 and Supplementary Data in Table S2). CGBSP used the
predicted bioactivity-based molecular descriptor named as CGBFP instead of the structural
molecular descriptor such as extended connectivity fingerprints [39]. Therefore, CGBSP
may have an ability to hop in chemical space of known scaffolds and identify active
compounds. This result shows that CGBSP can be similarly used as a tool for scaffold
hopping just like HTSFP.

3.4. Comparison of CGBFP Profiles between Reference and Hit Compound

In this study, we identified three hit compounds using CGBFP, revealing its capability
for virtual screening. Figure 5 shows the CGBFP profiles of the hit and the most similar
reference (nearest neighbor) compounds, respectively. The CGBSP score of compound
2 against CHEMBL1089330 is high (0.98) while also giving a high Morgan fingerprint
similarity score (0.42) (Figure 5a).

CHEMBL1089330

Compound 2

CGBSP similarity = 0.98,    Morgan fingerprints similarity = 0.42

(a)

CHEMBL1090045

Compound 4

CGBSP Similarity = 0.98,    Morgan fingerprints Similarity = 0.45

(b)

Figure 5. Cont.
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CHEMBL1090045

Compound 13

CGBSP Similarity = 0.98,  Morgan fingerprints Similarity = 0.17

(c)

Figure 5. Comparison of CGBFP profiles between hit compound and its most similar (nearest neighbor) compound. The
x-axis is represented by 599 CGBVS target proteins, and the y-axis indicates CGBVS score (binding probability score).
CGBSP score is determined by calculating the cosine similarity between CGBFP of the hit compound and its most similar
compound. Morgan fingerprint similarity is calculated by Tanimoto coefficient [40] between Morgan fingerprints of a
compound and its most similar compound. The Morgan fingerprints were calculated with a radius of r = 2 and 2048 bit
length using RDKit. (a) CHEMBL1089330 vs. Compound 2, (b) CHEMBL1090045 vs. Compound 4. (c) CHEMBL1090045
vs. Compound 13.

Generation of Morgan fingerprints, which is implemented in RDKit as an analogue
of extended connectivity fingerprints [39], is a method of encoding a molecular structure.
Means of Morgan fingerprint similarities of CHEMBL1089330 and CHEMBL1090045 against
Enamine screening library were 0.1351 and 0.1446, respectively, (Figure S1). In the case of
compound 4, the CGBSP score is 0.98 and the Morgan fingerprint similarity score is 0.45
(Figure 5b). Because compounds 2 and 4 have the same scaffolds (thieno[2,3-b]pyridine)
with their reference compound, their Morgan fingerprint similarities are high. On the other
hand, the CGBSP score of compound 13 is high (0.98), in contrast with Morgan fingerprint
similarity score, which is moderate (0.17) (Figure 5c). This result shows that CGBSP enabled
us to find hit compounds among structurally dissimilar molecules.

3.5. Molecular Docking Study

To examine the binding modes of hit compounds against eEF2K, we performed a
molecular docking study using AutoDock Vina [34] as implemented in YASARA [35]
software. The structure of eEF2K was modeled by comparative protein modeling methods
using the SWISS-MODEL server [32]. As shown in Figure 6a, ATP binds to the hinge region
of eEF2K, which includes Glu229, His230, Tyr231 and Ile232 residues. The main chain
amino group of Ile232 makes a hydrogen bond with the N1 of the adenine base and allows
the carbonyl group of His230 and the side-chain of Glu229 to form hydrogen bonds with
N6 of the adenine base. Since the majority of kinase inhibitors interact with a hinge region
in the ATP binding sites of kinases, the interaction with hinge region of eEF2K is important
in investigating the binding modes of hit compounds.

The binding modes of reference and hit compounds with hydrogen bonds with the
hinge region are shown in Figure 6. Both amido groups of the reference compounds
(CHEMBL1089330 and CHEMBL1090045) interact with the carbonyl group of His230 and
amino group of Ile232 (Figure 6b,c). Similarly, the amido group of compound 2 forms
hydrogen bond interactions with the carbonyl group of His230 and amino group of Ile232
(Figure 6d). The same type of interactions occur at the hinge region with compound 4
(Figure 6e). These two hydrogen bonds can be observed in ATP/eEF2K complex model
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(Figure 6a). On the other hand, the amino group of compound 13 forms a hydrogen bond
with the carbonyl group of Ile232 (Figure 6f). This hydrogen bond interaction of compound
13 is unique for binding the hinge region of eEF2K. Although eEF2K inhibitory activity of
compound 13 is not potent enough, the binding mode may have important implications
for the modification of hit compounds obtained in this study.

(a)

Glu229

His230

Tyr231

Ile232

(b)

Glu229

His230

Tyr231

Ile232

(d)

Glu229

His230

Tyr231

Ile232

(c)

Glu229

His230

Tyr231

Ile232

(e)

Glu229

His230

Tyr231

Ile232

(f)

Glu229

His230

Tyr231

Ile232

Figure 6. Predicted binding modes of ATP (a), CHEMBL1089330 (b), CHEMBL1090045 (c), compound
2 (d), compound 4 (e) and compound 13 (f) on eEF2K homology model. Carbon, nitrogen, oxygen
and hydrogen are shown in green (ATP, compound 2, compound 4 and compound 13)/gray (eEF2K),
blue, red and white, respectively. Dashed lines indicate hydrogen bond interactions. eEF2K is shown
as ribbon representation.
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4. Discussion

eEF2K belongs to a small subgroup of atypical protein kinases termed α-kinases.
Up to the present, six human α-kinases have been identified. In addition to eEF2K, the
human genome encodes α-kinases 1, α-kinases 2, α-kinase 3, TRPM6 and TRPM7. The α-
kinases found in humans are widely distributed among vertebrates [9]. In contrast to other
human α-kinases, eEF2K can also be found in invertebrates such as the metazoan Trichoplax
adhaerens and in the diatom Thalassiosira pseudonana. According to the phylogenetic tree,
eEF2K appears to be most closely related to the Dictyostelium discoideum MHCKs [9]. Design
of inhibitors for eEF2K is difficult, because eEF2K displays little sequence similarity to
conventional kinases, and so far, no inhibitor with nanomolar potency has yet been found.
In the present work, we proposed the use of the CGBSP technique utilizing computationally
generated HTSFP, which we refer to as CGBFP. CGBSP enabled us to identify three novel
inhibitors of eEF2K. Two of them, compounds 2 and 4, have the same thieno[2,3-b]pyridine
scaffold with known eEF2K inhibitors. Docking study results show that these inhibitors
interact with the carbonyl group of His230 and the amino group of Ile232 on the hinge
region of eEF2K by forming hydrogen bond interactions. The other compound (compound
13) is a new thiophene-2-amine-type eEF2K inhibitor. The results indicate that CGBSP
contributed to bringing about scaffold hopping. Compound 13 interacts with the carbonyl
group of Ile232 on the hinge region, which is a unique binding pattern to eEF2K. These
results can be an indication that inhibitors that can interact with the three sites (carbonyl
group of His230, amino group of Ile232 and carbonyl group of Ile232) may have a potent
inhibitory activity against eEF2K. Selectivity of kinase inhibitor is a major challenge in drug
design. eEF2K is also known as calcium/calmodulin-dependent eukaryotic elongation
factor 2 kinase, which is activated by Ca2+ ions via CaM. To investigate selectivity of the
three inhibitors against other CaM related kinases (CaMK4, CHK1 and DAPK1), inhibitory
assays were performed (Figure S2). Compounds 2 and 13 slightly inhibited the activity of
CaMK4 by 26.5% and 25.5%, respectively, at 30 µM. Compound 4 showed no significant
inhibitory activity (10.8% at 30 µM) against CaMK4. The three inhibitors were observed
to have no significant inhibitory activities (11.5% for compound 2, 5.0% for compound 4
and −0.1% for compound 13 at 30 µM) against CHK1. Compounsd 2 and 4 showed no
significant inhibitory activities (16.1% and 15.9%, respectively, at 30 µM) against DAPK1,
although compound 13 inhibited activity of DAPK1 by 37.5% inhibition at 30 µM. The
results indicate the three inhibitors of eEF2K had some degree of selectivity over the CaM
related kinases. Thus, the three inhibitors are considered to be useful leads for the design of
selective eEF2K inhibitor and may also become useful tools for studying structure-activity
relationship of eEF2K inhibitors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/medicines8050023/s1, Figure S1: Histogram of similarity between Enamine library (2.6 million)
and reference compounds, Figure S2: Inhibitory activity of the 3 inhibitors identified in this study
against calmodulin-related kinases, Table S1: List of target proteins included in the generation of
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