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Abstract: Camellia sinensis (green tea) is used in traditional medicine to treat a wide range of ailments.
In the present study, the insulin-releasing and glucose-lowering effects of the ethanol extract of
Camellia sinensis (EECS), along with molecular mechanism/s of action, were investigated in vitro
and in vivo. The insulin secretion was measured using clonal pancreatic BRIN BD11 β cells, and
mouse islets. In vitro models examined the additional glucose-lowering properties of EECS, and
3T3L1 adipocytes were used to assess glucose uptake and insulin action. Non-toxic doses of EECS
increased insulin secretion in a concentration-dependent manner, and this regulatory effect was
similar to that of glucagon-like peptide 1 (GLP-1). The insulin release was further enhanced when
combined with isobutylmethylxanthine (IBMX), tolbutamide or 30 mM KCl, but was decreased in the
presence of verapamil, diazoxide and Ca2+ chelation. EECS also depolarized the β-cell membrane and
elevated intracellular Ca2+, suggesting the involvement of a KATP-dependent pathway. Furthermore,
EECS increased glucose uptake and insulin action in 3T3-L1 cells and inhibited dipeptidyl peptidase
IV (DPP-IV) enzyme activity, starch digestion and protein glycation in vitro. Oral administration
of EECS improved glucose tolerance and plasma insulin as well as inhibited plasma DPP-IV and
increased active GLP-1 (7–36) levels in high-fat-diet-fed rats. Flavonoids and other phytochemicals
present in EECS could be responsible for these effects. Further research on the mechanism of action
of EECS compounds could lead to the development of cost-effective treatments for type 2 diabetes.

Keywords: hyperglycaemia; glucose; insulin; GLP-1; Camellia sinensis; phytoconstituents

1. Introduction

There has been a significant rise in the demand for herbal medicines in recent years,
especially in developing countries, because of their availability, affordability and relative
lack of adverse effects compared to conventional drugs. Countries within the Southeast
Asian subcontinent have a long history of using plants in traditional medicine to treat a
wide range of ailments. The recent use of medicinal plants for the treatment of diabetes has
gained prominence [1,2].

Diabetes mellitus (DM), a chronic condition involving defective metabolism of car-
bohydrates, lipids and proteins, is one of the most prevalent non-communicable diseases
around the world [3]. The number of diabetes patients is rising at an alarming rate, with
approximately 537 million people currently living with diabetes. This number is expected
to exceed 783 million in the next 25 years. DM can be classified into three types—type 1
diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and gestational diabetes, with
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10% of DM cases being type 1 and 90% of all cases being type 2 [4,5]. T1DM, which is
more prevalent in children and adolescents, is characterized as an autoimmune attack
on pancreatic β cells that results in complete deficiency of insulin [5]. T2DM, which is
defined as inadequate insulin production, impaired insulin signalling or both, primarily
affects individuals over the age of 40 [6]. Insulin resistance, obesity, chronic inflammation,
oxidative stress and hyperglycaemia form the basic pathophysiology of T2DM. In addition
to these, genetic factors and lifestyle choices also contribute to the prevalence of diabetes [6].
Gestational diabetes is typically diagnosed in women who are at high risk of developing
T2DM due to factors such as obesity and physical inactivity [5]. Obesity-associated insulin
resistance is a major contributor to the development of T2DM. The excess accumulation of
fat in adipose tissues produces non-esterified fatty acids and pro-inflammatory cytokines,
which result in insulin resistance and pancreatic β-cell destruction, ultimately leading to
T2DM [7]. Obesity also deteriorates type 2 diabetic complications, including cardiovascular
diseases (CVDs) and chronic kidney disease (CKD) [8,9].

The main treatment for T2DM includes adherence to a specific diet to control body
weight along with synthetic oral drugs. Current therapies for T2DM include different
classes of drugs, such as metformin, sulphonylureas, thiazolidinediones, GLP-1 mimetics,
DPP-IV inhibitors and sodium-glucose cotransporter-2 (SGLT2) inhibitors [10]. Among
these, DPP-IV inhibitors have gained popularity in recent years due to their ability to im-
prove glycaemic control by reducing glucagon release and enhancing insulin secretion [11].
DPP-IV inhibitors work by inactivating the dipeptidyl peptidase IV (DPP-IV) enzyme,
which is responsible for suppressing the activity of incretin hormones, glucose-dependent
insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) by cleaving in the
N terminal and producing GIP (3–42) and GLP-1 (9–36) [12]. Following nutritional con-
sumption, these hormones are produced from the intestine and bind to specific receptors
on pancreatic β cells. This interaction promotes insulin secretion from β cells by activating
the cyclic adenosine monophosphate (cAMP) pathway. Thus, the use of DPP-IV inhibitors
to manage post-prandial hyperglycaemia is a popular approach [13]. However, synthetic
DPP-IV inhibitors and other anti-hyperglycaemic agents are often expensive, have lim-
ited availability in poorer regions and come with various adverse effects. Alternative
approaches to treat T2DM, such as herbal therapy and dietary supplements, have received
increased attention recently, especially in lower-income nations [14].

Camellia sinensis, commonly known as green tea, is a medicinal plant traditionally
used to treat various health conditions, including diabetes, arthritis, bacterial infections and
hyperlipidaemia [15]. C. sinensis has been demonstrated to decrease total and low-density
lipoprotein (LDL) cholesterol as well as triacylglyceride levels, and increase high-density
lipoprotein (HDL) cholesterol, thus lowering the risk of developing CVD [16,17]. Previous
reports also showed that C. sinensis can inhibit DPP-IV enzyme activity and has blood-
glucose-lowering and insulin secretory properties [6,18–20]. Recent studies have reported
that C. sinensis contains phytochemicals such as epicatechin, isoquercitrin, rutin, catechin,
epicatechin gallate, quercetin, kaempferol, epigallocatechin gallate, ellagic acid, myricetin
and gallic acid [6,21–23]. Among these, kaempferol, rutin, isoquercitrin, epicatechin,
quercetin, gallic acid and catechin have been previously observed to have DPP-IV enzyme
inhibitory properties [24–26]. Additionally, previous studies have shown that kaempferol,
rutin, isoquercitrin, epicatechin, quercetin, ellagic acid and epigallocatechin gallate can
lower blood glucose levels, enhance insulin secretion and improve β-cell function [27–33].
However, there is little information available on the mode of action responsible for the
antidiabetic activity of green tea. In this study, in vitro and in vivo methods were used to
evaluate the anti-hyperglycaemic effects of the ethanol extract of C. sinensis (EECS) leaves
and unravel their possible mechanism/s of action.
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2. Materials and Methods
2.1. Collection and Extraction

The leaves of C. sinensis were collected from Jahangirnagar University, Dhaka, Bangladesh,
authenticated by a botanical taxonomist at Bangladesh National Herbarium (Mirpur, Dhaka)
and assigned the accession number 43,207. The leaves were thoroughly rinsed, air-dried and
powdered. The plant material (200 g) was soaked in 1 L of 80% (v/v) ethanol and kept on
a shaker at 900 g for 48–72 h at room temperature. Following filtration using filter paper
(Whatman no. 1), the extract was dried under reduced pressure at <40 ◦C to afford a sticky
residue that was freeze-dried (Savant Speed vac, New York, NY, USA), and then stored at
4 ◦C until further studies [34].

2.2. In Vitro Studies on Insulin Release

Insulin-secreting clonal pancreatic BRIN-BD11 β cells, generated via electrofusion of
primary β cells obtained from rat pancreatic islets (New England Deaconess Hospital) with
immortal RINm5F cells [35,36] and isolated mouse islets [37], were employed to assess
the insulin secretory effects of the ethanol extract of C. sinensis (EECS). Using collagenase
P obtained from Clostridium histolyticum, islets from mice pancreas were extracted, and
cultured in a CO2 incubator at 37 ◦C for 48 h [38]. EECS was incubated in the presence
or absence of known insulin secretagogues at 37 ◦C for 20 and 60 min at various glucose
concentrations (5.6 and 16.7 mM) [30]. Samples for the insulin radioimmunoassay were
aliquoted and stored at −20 ◦C until further analysis [39]. To measure the insulin content
of the islet cells, an acid–ethanol extraction method was implemented [38].

2.3. Membrane Potential and Intracellular Calcium Ions Concentration

The effects of EECS on the membrane potential and intracellular calcium [Ca2+]i in
BRIN-BD11 cells were evaluated using a FLIPR Membrane Potential and Calcium Assay
Kit (Molecular Devices, Sunnyvale, CA, USA) [33]. BRIN-BD11 cells were seeded into
microplates with ninety-six wells and allowed to stand for 18 h in a CO2 incubator at
37 ◦C. A Krebs-Ringer Bicarbonate (KRB) buffer solution (100 µL each well) was added,
and the mixture was incubated at 37 ◦C for 10 min. Depolarizing concentrations of 30 mM
KCl and 10 mM alanine were used as the positive controls. A Flex Station 3 fluorometer
was used to detect the variations in signal intensity caused by EECS [6]. Variations in
signal intensity were detected at excitation, emission and cut-off wavelengths of 530 nm,
565 nm and 550 nm, respectively, for membrane potential and 485 nm, 525 nm and 515 nm,
respectively, for intracellular calcium [35].

2.4. Assay for Cellular Glucose Uptake

The effects of EECS on cellular glucose uptake were investigated using differentiated
3T3L1 cells [40]. The 3T3-L1 cells were obtained from the American Type Culture Collection
(ATCC) (Manassas, VA, USA). Dulbecco’s modified eagle media (DMEM) was made by
adding penicillin (50 U/mL), streptomycin (50 µL/mL) and foetal bovine serum (10% v/v)
to DMEM. The differentiated 3T3-L1 cells were incubated with serum-free DMEM for 2 h
at 37 ◦C, at an atmosphere of 5% CO2. The DMEM medium was discarded after incubation.
The cells were further incubated in Krebs-Ringer Bicarbonate (KRB) buffer for 30 min at
37 ◦C, in 5% CO2 and 95% air. The cells were treated with 50 µL of EECS (200 µg/mL)
at 37 ◦C for 30 min with or without 100 nM insulin, and then 2-[N-(7-nitrobenz-2-oxa-
1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) (50 nM) was added. After allowing
the solution to stand for 5 min, the cells were washed with ice-cold PBS. Coverslips were
placed over the slides, and the corners were securely sealed. Images of the four corners of
the coverslips were captured using a microscope (10× magnification), and the fluorescence
intensity was measured as described previously [41].
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2.5. Insulin Glycation

The effects of EECS on in vitro insulin glycation were assessed as previously de-
scribed [42]. A solution (1 mL) was prepared by mixing D-glucose (246.5 mM), hu-
man insulin (1 mg/mL), sodium phosphate buffer (10 mM, pH 7.4) and NaBH3CN
(0.0853 gm/mL), with or without EECS (50–200 µg/mL). After 24 h of incubation at 37 ◦C,
the reaction was stopped with 30 µL of 0.5 M acetic acid. The glycated and non-glycated
insulin were separated by loading 200 µL of reaction mixture into a (250 × 4.6 mm) Vydac
(C-18) analytical column (The Separations Group, California, USA), and then elution was
performed at a flow rate of 1 mL/min. The mobile phase consisted of two solvents—solvent
A (0.12% (v/v) TFA/H2O) and solvent B (0.1% (v/v) TFA in 70% acetonitrile + 29.9% H2O).
To separate the glycated and non-glycated insulin, a linear gradient of 0–35% (v/v) ace-
tonitrile for 10 min, followed by 35–56% (v/v) acetonitrile for 20 min and finally 56–70%
acetonitrile for 5 min was established. At 214 and 208 nm, elution profiles were detected
using RP-HPLC. The insulin glycation inhibitor aminoguanidine was used as a positive
control [43].

2.6. In Vitro Dipeptidyl Peptidase-IV Enzyme Activity

The in vitro dipeptidyl peptidase-IV (DPP-IV) enzyme activity was measured using
a fluorometer according to the procedures described previously [44]. Tris-HCl (100 mM)
buffer was made by mixing 0.2 M Tris-HCl and 0.1 M NaCl. The pH of this buffer was
balanced to 8.0 by adding a 100 mM Tris-base as required. The test reagents, DPP-IV
enzyme (8 mU/mL) and Gly-Pro-AMC (200 µM), were dissolved in the buffer and in-
cubated in 96-well black-walled, clear-bottomed microplates (Greiner) with or without
EECS (40–5000 µg/mL). The fluorescence intensity was measured using a Flex Station
3 (Molecular Devices, San Jose, CA, USA) with a 2.5 nm slit width and excitation and
emission wavelengths of 370 nm and 440 nm, respectively. The standard drug sitagliptin
was used as a positive control [34].

2.7. In Vitro Digestion of Starch

This in vitro assay was performed to determine the effects of EECS on starch digestion
using a previously published protocol [45]. Briefly, heat-stable α-amylase from Bacillus
leicheniformis (40 µL of 0.01%) (Sigma-Aldrich, St. Louis, MO, USA) was added to a starch
solution (2 mg/mL; 100 mg in 50 mL water), with or without EECS (62.5–1000 µg/mL) and
incubated at 80 ◦C for 20 min. The diluted solution was then treated with amyloglucosidase
from Rhizopus mold (30 µL of 0.1%) (Sigma-Aldrich, St. Louis, MO, USA) at 60 ◦C for
30 min. The samples were kept at 4 ◦C until analysis and the glucose release was measured
using the liquid glucose oxidase-phenol amino phenazone (GOD/PAP) (Randox GL 2623)
method [42]. The α-glucosidase inhibitor acarbose was used as a positive control.

2.8. In Vitro Glucose Diffusion

The in vitro glucose diffusion and absorption was evaluated using a cellulose ester
dialysis tube (CEDT) (20 cm × 7.5 mm, Spectra/Por®CE layer, MWCO: 2000, Spectrum,
Breda, The Netherlands) containing 2 mL of 0.9% NaCl and 220 mM glucose with or
without EECS (0.2–25 mg/mL) [35]. The ends were sealed tightly, and the CEDT was
placed inside 50 mL Falcon conical tubes (Orange Scientific, Orange, CA, USA) containing
0.9% NaCl (45 mL). Samples were removed from the orbital shaker after 24 h at 37 ◦C for
glucose analysis, as described before [34].

2.9. Animals

Sprague Dawley male rats (Envigo UK, around 200–250 g, 6–8 weeks old) were fed a
high-fat diet (HFF) (20% protein, 45% fat and 35 % carbohydrate: 26.15 KJ/g total energy
percent) (Special Diet Service, Essex, UK) for 6–8 weeks prior to the start of the studies.
Age-matched rats fed a standard rodent diet (10% fat, 30% protein and 60% carbohydrate:
12.99 KJ/g total energy) (Trouw Nutrition, Cheshire, UK) were used as normal controls.
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In total, 108 rats, including normal and high-fat-diet-fed rats, were used in this study.
The animals were housed in an environment under controlled temperature and humidity
(25 ± 0.5 ◦C and 65–70 %). The animal housing was equipped with an automatic 12 h light-
on/off mechanism that maintained a day–night circadian rhythm. The Ulster University’s
Animal Welfare and Ethical Review Board (AWERB) granted approval for experiments
to be conducted on animals in May 2018, and the experiments were carried out under
project/personal license numbers PIL1822 and PPL 2804 issued by the UK Home Office in
May 2016 and February 2017, respectively. All experiments were carried out in compliance
with UK Act 1986 and EU Directive 2010/63EU. All precautions were taken to guarantee
that no animals would be harmed during the study.

2.10. Acute Oral Glucose Tolerance Test

The effects of EECS on oral glucose tolerance were evaluated in high-fat-diet (HFF)-fed
rats. The rats were fasted overnight, and blood samples were collected using tail vein bleed-
ing. Blood samples were taken at specific time intervals prior to (0 min) and after (30, 60,
120 and 180 min) oral administration of glucose (18 mmol/kg body weight) with/without
EECS (250 mg/5 mL/kg). After centrifuging the blood for 5 min at 12,000 rpm at 4◦C, the
plasma was collected and kept at −20 ◦C until the insulin assay was performed. Blood glu-
cose levels were monitored using Ascencia Contour glucose meters (Bayer, Newbury, UK),
and insulin levels were assessed using a dextran–charcoal radioimmunoassay [46].

2.11. In Vivo Dipeptidyl Peptidase-IV Enzyme Activity

The effects of EECS on DPP-IV enzyme activity were evaluated in the plasma of ani-
mals using a fluorometric assay [30]. HFF rats were fasted overnight, and blood samples
were obtained at a specific time interval before (0 min) and after (30, 60, 120 and 180) oral ad-
ministration of EECS (250 mg/5 mL/kg), DPP-IV inhibitors sitagliptin (10 µmoL/5 mL/kg)
and vildagliptin (10 µmoL/5 mL/kg) or saline control. Centrifugation was performed to
collect plasma serum. In 96-well microplates, plasma samples (10 µL) were incubated with
40 µL of Tris-HCl (100 mM) buffer (pH 7.4) and 50 µL of Gly-Pro-AMC (200 µM) substrate at
37 ◦C for 30 min. When the DPP-IV enzyme in the blood serum hydrolyzed the fluorogenic
substrate bonds (H-Gly-Pro) that were conjugated to the AMC group (H-Gly-Pro-AMC),
the fluorescent 7-Amino-4-Methyl Coumarin (AMC) was produced. FlexStation 3 was
used to measure the fluorescence changes as stated above in the in vitro DPP-IV enzyme
activity section. Active GLP-1 (7–36) levels were quantified in plasma samples obtained at
30 min using a GLP-1 (Active) ELISA Kit (EGLP-35K, Merck Millipore, Dorset, UK).

2.12. Feeding Test

The effects of EECS on food intake were observed in HFF rats. Rats were starved for
12 h before the experiment was carried out. The food intake was measured at 0, 30, 60, 90,
120, 150 and 180 min before or after oral administration of saline (5 mL/kg), EECS (250 and
500 mg/5 mL/kg) and glibenclamide (100 mg/5 mL/kg), respectively. The standard drug
glibenclamide was used as a positive control.

2.13. Metabolic Studies

Metabolic studies in HFF rats were performed using metabolic cages to measure food
and fluid intake, stools and urine. The rats underwent a 24 h adaption period followed by
a 12 h fasting period. EECS (250 and 500 mg/5 mL/kg) was fed to the treatment groups
while the positive control group was fed glibenclamide (100 mg/5 mL/kg), and the HFF
control group was given saline (5 mL/kg) individually. The food and fluid intake of each
group was measured and the amount of stool and urine excreted out recorded. These four
factors were measured at 1 h intervals over a period of 6 h initially, followed by 2 h intervals
over the next 6 h and then after 24 h.
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2.14. Gut Motility

Gastrointestinal motility was measured using a BaSO4 milk solution (10% BaSO4 w/v in
0.5% Na-CMC), as previously described [47]. Rats were starved for 20 h. One hour before con-
suming the BaSO4 solution, the treatment groups received EECS (250 and 500 mg/5 mL/kg),
bisacodyl (10 mg/5 mL/kg) and loperamide (5 mg/5 mL/kg). The animals were euthanized
15 min after receiving the BaSO4 milk solution, and the whole intestine was isolated. The
distance travelled by BaSO4 was measured and calculated as a percentage of a total length of
the small intestine (from the pylorus to the ileocecal junction).

2.15. Statistical Analysis

Graph Pad prism 5 was used to analyze and interpret the raw data. The unpaired
Student’s t-test (non-parametric, with two-tailed p values) and one-way ANOVA with
Bonferroni post hoc tests were used to analyze the data. All values are expressed as
mean ± SEM with a hypothetical statistical significance limit of p < 0.05.

2.16. Phytochemical Screening

Phytochemical screening of EECS was conducted to demonstrate the presence or
absence of flavonoids, alkaloids, saponins, tannins, glycosides, reducing sugar and steroids,
as described previously [48]. To test for alkaloids, 2 mL of EECS was acidified using
hydrochloric acid (HCl), and 1 mL of Dragendroff’s reagent was added to test for the
appearance of a red colour, suggesting the presence of alkaloids. For tannins, a few drops
of 10% lead acetate were added to 2 mL of EECS, and this caused the formation of a white
sediment, suggesting the presence of tannins. Flavonoid testing was conducted by adding
1.5 mL of methanol to 4 mL of EECS and then heating this mixture; when metal magnesium
and a few drops of HCL were added to this, a pink colour appeared, indicating the presence
of flavonoids. To test for saponins, 1 mL of EECS was added to 9 mL of distilled water, and
this resulted in the formation of a stable foam, indicating the presence of saponins. To test
for steroids, 2 mL of EECS was mixed with 10 mL of chloroform, 1 mL of acetic anhydride
and 2 mL of sulphuric acid to visualize a bluish-green colour, which indicates the presence
of steroids. For glycoside testing, 1 mL of EECS was mixed with a few drops of glacial
acetic acid, ferric chloride and concentrated sulphuric acid to test for the appearance of
a bluish-green colour, indicating the presence of glycosides. To test for reducing sugar,
1 mL of EECS, 1 mL of water and few drops of Fehling’s reagent were mixed together and
heated, and we looked for the appearance of a red-brick colour indicating the presence of
reducing sugars [48].

3. Results
3.1. EECS and Insulin Release from BRIN BD11 Cells

Figure 1A,B illustrate the effects of EECS on insulin release from BRIN-BD11 cells in
a concentration (1.6–5000 µg/mL)-dependent manner. At 5.6 mM glucose, the basal rate
of insulin release from BRIN-BD11 cells was 1.16 ± 0.10 ng/106 cells/20 min. Using ala-
nine (10 mM) as a positive control, the rate increased to 6.65 ± 0.29 ng/106 cells/20 min
(Figure 1A; p < 0.001). At 5.6 mM glucose, EECS stimulated insulin release from 1.62 ± 0.18
to 6.09 ± 0.34 ng/106 cells/20 min (Figure 1A; p < 0.05–0.001) in a dose-dependent manner
(1.6–5000 µg/mL). The basal insulin rate at 16.7 mM glucose was 2.04 ± 0.14 ng/106 cells/20 min
and with the positive control, KCl (30 mM), the rate was increased to 8.50± 0.42 ng/106 cells/20 min
(Figure 1B; p < 0.001). At 16.7 mM glucose, EECS induced insulin release from 2.80 ± 0.41 to
7.02 ± 0.44 ng/106 cells/20 min (Figure 1B; p < 0.05–0.001) at 8–5000 µg/mL. No significant effect of
EECS on lactate dehydrogenase release was found at concentrations ranging from 1.6 to 200µg/mL.
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At 16.7 mM glucose, the basal rate of insulin release from isolated mouse islets was 7.15 ± 
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20.12 ± 1.24 ng/106 cells/20 min (Figure 1C; p < 0.05–0.001) in a concentration-dependent 

Figure 1. Effects of EECS on insulin secretion from (A,B) clonal pancreatic BRIN-BD11 β cells
and (C) islets of Langerhans, (D) glycation of protein (E), secretion of insulin with known stimu-
lators/inhibitors and (F) plus/minus extracellular calcium from BRIN-BD11 cells. Values n = 4–8
for insulin secretion and glycation of protein are mean ± SEM. *, **, *** p < 0.05–0.001 compared to
control. φ, φφ, φφφ p < 0.05–0.001 compared to 5.6 mM glucose with EECS. ∆, ∆∆, ∆∆∆ p < 0.05–0.001
compared to respective incubation without EECS. EECS, ethanol extract of C. sinensis.

3.2. EECS and Insulin Release from Isolated Mouse Islets

Figure 1C shows the effects of EECS on insulin release from the isolated mouse
islets. At 16.7 mM glucose, the basal rate of insulin release from isolated mouse islets
was 7.15 ± 0.78 ng/106 cells/20 min (Figure 1C). EECS stimulated insulin release from
10.85 ± 0.88 to 20.12 ± 1.24 ng/106 cells/20 min (Figure 1C; p < 0.05–0.001) in a concentration-
dependent manner (50–200 µg/mL). The positive controls alanine (10 mM) and GLP-1 (10−6

and 10−8 M) showed a significant (p < 0.001) increase in insulin release from 12.85 ± 0.70
to 27.35 ± 1.55 (Figure 1C). However, in comparison to alanine, the insulin release caused
by GLP-1 was more potent (p < 0.001).
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3.3. EECS and Known Modulators/Inhibitors of Insulin Release

EECS significantly enhanced insulin release in the presence of insulin modulators, including
glucose (p < 0.001), isobutylmethylxanthine (IBMX; p < 0.001) and tolbutamide (p < 0.001)
(Figure 1E). In the presence of a depolarizing concentration of KCl, EECS also induced a
substantial increase in insulin release (p < 0.001; Figure 1E). Diazoxide, verapamil and Ca2+-free
conditions attenuated, but did not completely abolish, this effect (p < 0.01; Figure 1E,F).

3.4. EECS and Cell Membrane Depolarization and [Ca2+]i Concentration

The effects of EECS on membrane potential and intracellular calcium concentrations
([ Ca2+]i) were evaluated using BRIN-BD11 cells (Figure 2A,B). At a concentration of
200 µg/mL, EECS significantly depolarized the cell membrane (p < 0.001; Figure 2A) and
increased intracellular calcium ion concentration (p < 0.001; Figure 2B). The positive controls
KCl (30 mM) and alanine (10 mM) showed a greater response on the membrane potential
(p < 0.001; Figure 2A) and intracellular calcium (p < 0.001; Figure 2B), respectively.
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Figure 2. Effects of EECS on (A) membrane potential and (B) intracellular calcium in clonal pancreatic
BRIN BD11 β cells and (C–G) glucose uptake, (H) starch digestion and (I) glucose diffusion in vitro.
Changes in fluorescence intensity in differentiated 3T3L1 adipocyte incubated with EECS (E) minus
or (F) plus 100 nM insulin. Magnification of 10x was used to capture the images. Values n = 6 for
membrane potential and intracellular calcium, n = 4 for uptake of glucose, digestion of starch and
diffusion of glucose are mean ± SEM. *, **, *** p < 0.05–0.001 compared to control.

3.5. EECS and Insulin Glycation

The effects of EECS on insulin glycation are depicted in Figure 1D. EECS inhibited insulin
glycation by 16–53% (p < 0.05–0.001; Figure 1D) at 50–200 µg/mL, whereas the positive control
aminoguanidine (44 mM) suppressed insulin glycation by 82% (p < 0.001; Figure 1D).
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3.6. EECS and Glucose Uptake

The uptake of glucose in 3T3L1 adipocyte cells was assessed using fluorescent 2-NBDG
(2-(N-(7-Nitrobenz-2-oxazol-4-yl) Amino)-2-Deoxyglucose). The microscopic fluorescence
intensity of 2-NBDG uptake is shown in Figure 2C–F. In differentiated 3T3L1 adipocyte
cells, EECS (200 µg/mL) improved glucose uptake with/without 100 nM insulin (p < 0.05;
p < 0.001; Figure 2G). Glucose uptake was also considerably enhanced by 100 nM insulin
alone (p < 0.01; Figure 2G).

3.7. EECS and Starch Digestion

EECS decreased starch digestion by 12–54% (p < 0.05–0.001; Figure 2H) in a dose-
dependent manner (125–1000 µg/mL). The positive control acarbose (1000 µg/mL) inhib-
ited starch digestion by 79% (data not shown).

3.8. EECS and In Vitro Glucose Diffusion

The effects of EECS on glucose diffusion following a 24 h incubation with glucose
are shown in Figure 2I. EECS (0.2–25 mg/mL) significantly decreased glucose diffu-
sion/absorption by 7–27% (p < 0.05–0.001; Figure 2I) in a concentration-dependent manner.

3.9. EECS and In Vitro Dipeptidyl Peptidase-IV Enzyme Activity

The effects of EECS on in vitro DPP-IV enzyme activity are illustrated in Figure 3A.
In the presence of the DPP-IV enzyme, EECS (40–5000 µg/mL) showed a significant
(p < 0.05–0.001) decrease (16–72%) in AMC liberation from Gly-Pro-AMC (Figure 3A). The
DPP-IV inhibitor sitagliptin significantly (p < 0.001) attenuated (98%) AMC liberation from
Gly-Pro-AMC (data not shown).
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Figure 3. Effects of EECS on (A) DPP-IV enzyme in vitro, (B) glucose tolerance, (C) plasma insulin,
(D) DPP-IV and (E) active GLP-1 (7–36) in high-fat-diet-fed rats. In vivo parameters were evaluated
before and after oral administration of glucose alone (18 mmol/kg body weight, control) or with
EECS (250 mg/5 mL/kg body weight), sitagliptin and vidagliptin (both at 10 µmol/5 mL/kg, body
weight). Plasma active GLP-1 (7–36) levels were measured 30 min following treatment. Values n = 4 for
in vitro DPP-IV enzyme activity and n = 6 for in vivo parameters are mean ± SEM. *, **, *** p < 0.05–0.001
compared to control and ∆, ∆∆, ∆∆∆ p < 0.05–0.001 compared to high-fat-diet-fed control rats.



Medicines 2022, 9, 56 10 of 17

3.10. EECS and Oral Glucose Tolerance and Plasma Insulin Levels

Oral gavage of EECS (250 mg/5 mL/kg) in combination with glucose (18 mmoL/5 mL/kg
body weight) significantly improved oral glucose tolerance at 30 and 60 min in HFF rats
(p < 0.05; Figure 3B) compared to the control. EECS (250 mg/5 mL/kg) also significantly
ameliorated plasma insulin levels at 30 min in HFF rats (p < 0.05; Figure 3C).

3.11. EECS and Plasma DPP-IV Enzyme Activity and Active GLP-1 (7–36) Levels

Oral gavage of EECS (250 mg/ 5 mL/kg, body weight) significantly decreased plasma
DPP-IV enzyme activity at 30 and 60 min (p < 0.05–0.01; Figure 3D) compared to HFF rats.
Interestingly, there was a consistent reduction in plasma DPP-IV enzyme activity in the
presence of sitagliptin (10 µmoL/5 mL/kg) and vidagliptin (10 µmoL/5 mL/kg) in a time-
dependent manner (p < 0.001; Figure 3D). Oral administration of EECS (250 mg/5 mL/kg
body weight) elevated plasma active GLP-1 (7–36) levels in the circulation by 32% (p < 0.01;
Figure 3E), and this was increased to 82–90% (p < 0.001; Figure 3E) with sitagliptin
(10 µmoL/5 mL/kg) and vidagliptin (10 µmoL/5 mL/kg), respectively.

3.12. EECS and Feeding Test

EECS, at 500 mg/5 mL/kg, consistently reduced the food intake at most of the time points
(p < 0.05; p < 0.001; Figure 4A), whereas at 250 mg/5 mL/kg, it significantly decreased the
food intake only at 30 and 60 min (p < 0.001; Figure 4A). The sulfonylurea glibenclamide also
substantially decreased the food intake in a time-dependent manner (p < 0.01–0.001; Figure 4A).

Medicines 2022, 9, x FOR PEER REVIEW 10 of 17 
 

 

weight). Plasma active GLP-1 (7–36) levels were measured 30 min following treatment. Values n = 
4 for in vitro DPP-IV enzyme activity and n = 6 for in vivo parameters are mean ± SEM.*, **, *** p < 
0.05–0.001 compared to control and Δ, ΔΔ, ΔΔΔ p < 0.05–0.001 compared to high-fat-diet-fed control rats. 

3.10. EECS and Oral Glucose Tolerance and Plasma Insulin Levels  
Oral gavage of EECS (250 mg/5 mL/kg) in combination with glucose (18 mmoL/5 

mL/kg body weight) significantly improved oral glucose tolerance at 30 and 60 min in 
HFF rats (p < 0.05; Figure 3B) compared to the control. EECS (250 mg/5 mL/kg) also sig-
nificantly ameliorated plasma insulin levels at 30 min in HFF rats (p < 0.05; Figure 3C).  

3.11. EECS and Plasma DPP-IV Enzyme Activity and Active GLP-1 (7–36) Levels 
Oral gavage of EECS (250 mg/ 5 mL/kg, body weight) significantly decreased plasma 

DPP-IV enzyme activity at 30 and 60 min (p < 0.05–0.01; Figure 3D) compared to HFF rats. 
Interestingly, there was a consistent reduction in plasma DPP-IV enzyme activity in the 
presence of sitagliptin (10 μmoL/5 mL/kg) and vidagliptin (10 μmoL/5 mL/kg) in a time-
dependent manner (p < 0.001; Figure 3D). Oral administration of EECS (250 mg/5 mL/kg 
body weight) elevated plasma active GLP-1 (7–36) levels in the circulation by 32% (p < 
0.01; Figure 3E), and this was increased to 82–90% (p < 0.001; Figure 3E) with sitagliptin 
(10 μmoL/5 mL/kg) and vidagliptin (10 μmoL/5 mL/kg), respectively.  

3.12. EECS and Feeding Test 
EECS, at 500 mg/5 mL/kg, consistently reduced the food intake at most of the time 

points (p < 0.05; p < 0.001; Figure 4A), whereas at 250 mg/5 mL/kg, it significantly de-
creased the food intake only at 30 and 60 min (p < 0.001; Figure 4A). The sulfonylurea 
glibenclamide also substantially decreased the food intake in a time-dependent manner 
(p < 0.01–0.001; Figure 4A). 

 
Figure 4. Effects of EECS on (A) food intake during feeding test and (B) food intake, (C) fluid intake, 
(D) stool and (E) urine output after 24 h of metabolic study. (F) BaSO4 traversed. Values n = 6 for 

Figure 4. Effects of EECS on (A) food intake during feeding test and (B) food intake, (C) fluid intake,
(D) stool and (E) urine output after 24 h of metabolic study. (F) BaSO4 traversed. Values n = 6
for feeding test and metabolic parameters are mean ± SEM. *, **, *** p < 0.05–0.001 compared to
high-fat-diet-fed control rats.
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3.13. EECS and Metabolic Parameters

EECS (250 and 500 mg/5 mL/kg, b.w.) decreased food consumption at night (between
6 and 8 pm) and after 24 h (p < 0.01; Figure 4B) compared to HFF rats alone. EECS (250 and
500 mg/5 mL/kg, b.w.) also reduced fluid intake at night (between 6 pm and 8 pm) and after
24 h (p < 0.05; Figure 4C) compared to HFF rats alone. EECS also attenuated stool and urine
output at night (between 6 and 8 pm) and after 24 h (p < 0.05; Figure 4D,E), which was consistent
with food and fluid intake. The positive control, glibenclamide, improved these parameters
in comparison to HFF rats alone (Figure 4B–E). Glibenclamide also significantly improved the
frequency of stool and urine output at night (between 6 and 8 pm; p < 0.01; Figure 4D,E).

3.14. EECS and Gastrointestinal Motility

EECS (500 mg/5 mL/kg) significantly improved gastrointestinal motility (p < 0.05;
Figure 4F). However, at 250 mg/5 mL/kg, it showed no significant improvement in gut
motility (Figure 4F). The antidiarrheal drug loperamide (5 mg/5 mL/kg) decreased gut
motility ((p < 0.01; Figure 4F), while the stimulant laxative bisacodyl (10 mg/5 mL/kg)
increased gut motility (p < 0.05; Figure 4F).

3.15. EECS and Phytochemical Screening

To establish the presence of possible antidiabetic phytochemicals, further investigation was
carried out. EECS was found to contain alkaloids, flavonoids, saponins and tannins (Table 1).

Table 1. Phytochemical screening of ethanol extract of C. sinensis.

Group Test Observation

Alkaloids +
Tannins +

Saponins +
Steroids -

Glycoside -
Flavonoids +

Reducing Sugar -
(+) = present, (-) = absent.

4. Discussion

Diabetes is one of the most widespread and devastating metabolic illnesses in the
world, affecting millions of people [49]. Although T2DM can be managed using oral
anti-hyperglycaemic agents, it often requires the use of synthetic insulin in the long term.
Many oral antidiabetic drugs, such as sulfonylureas, biguanides, glinides, glycosidase and
DPP-4 inhibitors, have adverse side-effects and/or are expensive. Moreover, the long-term
use of insulin increases insulin receptor sensitivity and causes insulin resistance [35,50].
Natural products have become an important source of safer and more economical anti-
hyperglycaemic drugs. Medicinal plants and their constituents (e.g., flavonoids) have
been reported previously to exhibit antidiabetic properties, including insulin-releasing
and glucose-lowering activities, inhibiting α-amylase and α-glucosidase and protecting
and improving the function clonal pancreatic β cells [51,52]. The regular consumption of
dietary fibres from plants has also been reported to reduce the incidence of diabetes [53].

Camellia sinensis has been reported to possess remarkable pharmacological activities
in traditional medicine against various ailments including diabetes [54]. It was recently
reported to have antidiabetic properties, and previous studies have demonstrated that
C. sinensis lowers blood glucose levels, improves glucose tolerance and prevents hyperlip-
idaemia by reducing total cholesterol and LDL levels in diabetic animal models [55–57].
However, the exact mechanism of action of Camellia sinensis remains elusive. Our results
reveal that EECS enhanced insulin secretion in a concentration-dependent manner from
BRIN-BD11 cells and isolated mouse islets in response to glucose stimulation. Specific se-
cretory pathways were targeted using insulin-releasing/inhibiting modulators to develop a
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better understanding of the mechanism of action of a non-toxic dose of EECS on β cells [58].
In the presence of the KATP channel opener diazoxide, the insulin-releasing activity of
EECS was reduced, suggesting that C. sinensis might act via KATP, a channel-dependent
pathway [59]. The voltage-dependent calcium channel blocker verapamil also reduced
the insulin release mediated by EECS. These findings suggest that the mode of action of
EECS involves the closing of KATP channels and the opening of L-type Ca2+ channels [60].
EECS also increased insulin release in the presence of the depolarizing concentration of
KCl (30 mM) and the KATP channel blocker tolbutamide. These results support the ability
of EECS to potentiate insulin secretion via other pathways, such as a direct effect on exocy-
tosis, the phosphatidylinositol (PI3) or the adenylate cyclase/cAMP pathways [61]. The
cAMP phosphodiesterase inhibitor IBMX also potentiated the insulin secretion induced by
EECS, indicating a modulation of intracellular cAMP production [41]. Thus, EECS may be
involved in the increase in cAMP levels in lung muscle tissue and the relaxation of smooth
muscles in the airway passage [62].

Post-prandial glucose is controlled by insulin via glucose transporter 4 (GLUT4)
translocation in skeletal muscle and adipose tissue [63]. Inadequate or defective signalling
reduces GLUT4 translocation and leads to the development of insulin resistance [64]. In
this study, we investigated the effect of EECS on glucose uptake in differentiated 3T3L1
adipocyte cells. EECS enhanced glucose uptake in the presence and absence of insulin.
Previous studies have revealed that phytochemicals such as kaempferol, quercetin and
gallic acid could activate the AMP-activated protein kinase (AMPK) pathway and enhance
GLUT4 translocation [65,66]. The fact that C. sinensis is known to contain flavonoids, such
as rutin, isoquercitrin and catechin, may explain how it can activate signalling pathways to
enhance glucose transport in adipocytes with or without insulin [6,67,68].

The increased glycation of insulin has a vital role in the pathogenesis of numerous
disease, such as diabetes, leading to the formation of advanced glycation end products
(AGEs). AGEs accumulate in cells, resulting in impaired cell signalling, and increasing the
severity of diabetes complications [69]. EECS was found to decrease insulin glycation in a
dose-dependent manner. Phytochemicals isolated from C. sinensis, such as epigallocatechin
gallate, isoquercitrin and rutin [6,70], have previously been observed to have anti-glycating
properties [71–73]. Our results suggest that C. sinensis possesses potent anti-glycating
activity. This is possibly due to the presence of polyphenolic compounds.

Numerous factors are involved in the pathophysiology of diabetes, including starch
digestion by α-amylase and α-glucosidase and glucose absorption and diffusion in the
gastrointestinal tract [73]. EECS significantly decreased starch digestion in a concentration-
dependent manner. We hypothesize that rutin and isoquercitrin, known to be present
in C. sinensis, might be responsible for such activity [74]. Previous studies showed that
these flavonoids are effective against α-amylase and delay starch digestion [75]. EECS also
demonstrated significant concentration-dependent inhibition of glucose absorption and
diffusion, which is consistent with previous studies on a hot water extract of C. sinensis [6].

Obesity, a major risk factor of T2DM, is characterized by the presence of non-esterified
fatty acids (NEFAs) released from adipose tissue that contribute to insulin resistance and
β-cell dysfunction, causing T2DM [76]. In our study, EECS ameliorated oral glucose
tolerance and plasma insulin levels in HFF obese rats. This is consistent with previous
results showing that C. sinensis improves oral glucose tolerance, plasma insulin and β-cell
function in HFF rats [6,77] and streptozotocin (STZ)-induced diabetic rats [48].

Our further in vivo studies using HFF rats showed that EECS reduced plasma DPP-IV
enzyme activity, which is consistent with our in vitro results. EECS also enhanced active
GLP-1 (7–36) levels in the circulation. GLP-1, an incretin hormone secreted by the intestine
after a meal, plays a crucial role in maintaining post-prandial glucose homeostasis [78].
Thus, GLP-1 mimetics and DPP-IV inhibitors are important targets in T2DM drug discovery
research. Interestingly, previous studies have revealed that flavonoids found in C. sinensis,
such as rutin and isoquercitrin, have DPP-IV enzyme inhibitory activity [74,79,80].
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Feeding test and metabolic studies were performed to observe the effects of EECS on
different parameters, including food and fluid intake, as well as stool and urine output.
EECS was found to reduce all of the four abovementioned parameters, specifically at night
between 6 pm and 8 pm. Rats are most active at night and diabetic rats usually have
the highest blood glucose levels at the night phase of their circadian rhythm [81]. The
blood-glucose-lowering activity of EECS may be due to a reduction in food intake during
that time period.

Phytochemical screening of EECS showed the presence of phytoconstituents including
flavonoids, alkaloids, tannins and saponins. Recent reports also showed that C. sinen-
sis consists of flavonoids such as rutin and isoquercitrin [67,68,82] and alkaloids [83],
as well as tannins and saponins [84]. Flavonoids have previously been found to inhibit
in vitro α-glucosidase activity, as well improve glucose tolerance, enhance insulin release
and protect pancreatic β cells from oxidative stress damage in HFF- and STZ-induced
diabetic rats [6,85–87]. In addition, alkaloids and saponins are known to regulate glucose
homeostasis via the AMPK pathway; along with this, tannins have been observed to in-
crease glucose uptake via the phosphatidylinositol (PI3) pathway [88–90]. The presence of
these phytochemicals may have contributed to the insulin-releasing and glucose-lowering
effects of EECS. Further investigations, particularly long-term animal studies, are required
to fully understand the role of EECS in T2DM.

5. Conclusions

Our results suggest that EECS may increase the insulin secretion ability of clonal
pancreatic β cells. EECS impeded glucose diffusion and absorption, insulin glycation
and DPP-IV enzyme activity in vitro. In our in vivo studies, EECS improved glucose
tolerance and plasma insulin levels, and decreased plasma DPP-IV enzymatic activity
while elevating active GLP-1 levels in the circulation, showing that EECS may be in-
volved in the augmentation of the GLP-1 and GIP half-life. The presence of flavonoids in
C. sinensis, such as rutin and isoquercitrin, may be responsible for the insulin-releasing
and glucose-lowering effects observed for EECS. Our findings validate, to a certain extent,
the traditional use of Camellia sinensis as a dietary supplement for T2DM. Further studies,
including the purification and identification of active compounds from EECS, may help
researchers to discover new drug templates for the management of T2DM.
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