

Supplementary Material

Effect of Chain Length and Functional Group of Organic Anions on the Retention Ability of Mg,Al-Layered Double Hydroxides for Chlorinated Organic Solvents

Karen Maria Dietmann, Tobias Linke, Raquel Trujillano, and Vicente Rives

Figure S1. Powder X-Ray diffraction pattern of sample MgAl-5COO.

Figure S2. Powder X-Ray diffraction pattern of sample MgAl-7COO. (*) Sodium nitrate impurity.

Figure S3. Powder X-Ray diffraction pattern of sample MgAl-11COO.

Figure S4. Powder X-Ray diffraction pattern of sample MgAl-17COO. (*) Sodium nitrate impurity.

Figure S5. Powder X-Ray diffraction pattern of sample MgAl-8SO3.

Figure S6. Powder X-Ray diffraction pattern of sample MgAl-12SO3. (c) carbonate impurity, (*) Sodium nitrate impurity.

Figure S7. Powder X-Ray diffraction pattern of sample MgAl-18SO3. (*) Sodium nitrate impurity.

Figure S8. Powder X-Ray diffraction pattern of sample MgAl-12SO4.

Figure S9. TG-DTA-MS analysis of the reference sample MgAl-CO3.

Figure S10. TG-DTA-MS analysis of sample MgAl-7COO.

Figure S11. TG-DTA-MS analysis of sample MgAl-11COO.

Figure S12. TG-DTA-MS analysis of sample MgAl-17COO.

Figure S13. TG-DTA-MS analysis of sample MgAl-12SO3.

Figure S14. TG-DTA-MS analysis of sample MgAl-18SO3.

Figure S15. FTIR spectrum of sample MgAl-CO3.

Figure S16. FTIR spectrum of sample MgAl-5COO.

Figure S17. FTIR spectrum of sample MgAl-7COO

Figure S18. FTIR spectrum of sample MgAl-11COO

Figure S19. FTIR spectrum of sample MgAl-17COO

Figure S20. FTIR spectrum of sample MgAl-8SO3.

Figure S21. FTIR spectrum of the sample MgAl-12SO3.

Figure S22. FTIR spectrum of sample MgAl-18SO3

Figure S23. FTIR spectrum of sample MgAl-12SO4.

Figure S24. Particle size distribution of the dried reference sample MgAl-CO3

Figure S25. Particle size distribution of the dried sample MgAl-5COO

Figure S26. Particle size distribution of the dried sample MgAl-7COO

Figure S27. Particle size distribution of the dried sample MgAl-11COO

Figure S28. Particle size distribution of the dried sample MgAl-17COO

volume (%)

particle size (μm) — MgAI-8SO3 — MgAI-8SO3-5us — MgAI-8SO3-10us — MgAI-8SO3-15us

Figure S29. Particle size distribution of the dried sample MgAl-8SO3

Figure S30. Particle size distribution of the dried sample MgAl-12SO3

Figure S31. Particle size distribution of the dried sample MgAl-18SO3

Figure S32. Particle size distribution of the dried sample MgAl-12SO4.

Figure S33. Particle size distribution of the wet sample MgAl-11COO.

Figure S34. Particle size distribution of the wet sample MgAl-17COO.

Figure S35. Particle size distribution of the wet sample MgAl-12SO3.

Figure S36. Particle size distribution of the wet sample MgAl-18SO3.

Figure S37. Particle size distribution of the wet sample MgAl-12SO4.

Figure S38. N_2 adsorption (filled circles)-desorption (empty circles) isotherm of the refence sample MgAl-CO3.

Figure S39. N₂ adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-5COO.

Figure S40. N_2 adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-7COO.

Figure S41. N₂ adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-11COO.

Figure S42. N₂ adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-17COO.

Figure S43. N2 adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-8SO3.

Figure S44. N₂ adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-12SO3.

Figure S45. N₂ adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-18SO3.

Figure S46. N₂ adsorption (filled circles)-desorption (empty circles) isotherm of sample MgAl-12SO4.

Figure S47. Powder X-Ray diffraction pattern of sample E-MgAl-11COO after a batch experiment with 1,1,2-TCA.

Figure S48. Powder X-Ray diffraction pattern of sample E-MgAl-17COO after a batch experiment with 1,1,2-TCA. (*) Sodium nitrate impurity.

Figure S49. Powder X-Ray diffraction pattern of sample E-MgAl-18SO3 after a batch experiment with 1,1,2-TCA. (*) Sodium nitrate impurity

Figure S50. Powder X-Ray diffraction pattern of the reference sample E-MgAl-12SO4 after a batch experiment with 1,1,2-TCA.

Figure S51. TG-DTA-MS analysis of sample E-MgAl-11COO after a batch experiment with 1,1,2-TCA.

Figure S52. TG-DTA-MS analysis of sample E-MgAl-18SO3 after a batch experiment with 1,1,2-TCA.

Figure S53. TG-DTA-MS analysis of sample E-MgAl-12SO4 after a batch experiment with 1,1,2-TCA.

Figure S54. FTIR spectrum of sample E-MgAl-11COO after a batch experiment with 1,1,2-TCA.

Figure S55. FTIR spectrum of sample E-MgAl-17COO after a batch experiment with 1,1,2-TCA.

60

40

20

transmittance (%)

0-4000 3500 3000 2500 2000 1500 1000 500 wavenumber (cm⁻¹)

Figure S56. FTIR spectrum of sample E-MgAl-18SO3 after a batch experiment with 1,1,2-TCA.

Figure S57. FTIR spectrum of sample E-MgAl-12SO4 after a batch experiment with 1,1,2-TCA.

Figure S58. FTIR spectrum of 1,1,2-TCA.

chemicals	chemical	producer	nurity	denotation in
	formula	producer	punty	paper
sodium hydroxide, pellets	NaOH	Panreac	98 %	
Aluminium oxide	A12O3	Fluka	99.99 %	
Aluminium Nitrate 9- hydrate pure	Al(NO3)3•9H2O	PanReac AppliChem ITW Reactants	min. 98 %	
Magnesium Nitrate 6-	Mg(NO ₃)2•6H ₂ O	PanReac AppliChem	min. 98 %	
inyurate, for analysis		ITW Reactants		
sodium hydrogen carbonate	NaHCO ₃	Panreac	min. 99%	
sodium hexanoate	$C_6H_{11}NaO_2$	TCI Chemicals	min. 99.0 %	5COO
sodium caprylate	$C_8H_{15}NaO_2$	Glentham Life Sciences	99.3 %	7COO
Sodium Laurate	$C_{12}H_{23}NaO_2$	TCI Chemicals	min. 97 %	11COO
Sodium stearate	C18H35NaO2	Alfa Aesar	-	17COO
1-Octanesulfonic acid sodium salt	C8H17NaO2S	Sigma Aldrich	~ 98 %	8SO3
1-dodecane-sulfonic acid sodium salt	C12H25NaO3S	Molekula	99.7 %	12SO3
Sodium 1- Octadecanesulfonate	C18H37NaO3S	TCI Chemicals	min. 99 %	18SO3
sodium dodecyl sulfate pure, pharma grade	$C_{12}H_{25}NaO_4S$	PanReac AppliChem	96.1 %	12SO4
Ferre, Franzis Brane		ITW Reactants		
Chloroform stabilized	CHCl ₃	PanReac AppliChem	99.5 %	TCM
with ethanol (0,5%), for analysis		ITW Reactants		
Trichloroethylene,	C ₂ HCl ₃	Scharlab	99.5 %	TCE
reagent grade, stabilized with ethanol (0.49%)				
1,1,2-Trichloroethane	C2H3Cl3	Acros Organics	98 %	1,1,2-TCA

Supplementary Table S1. List of the chemicals used within this study

product	producer	product ID	description
Amber storage	Sigma Aldrich	23230-U	volume 120 mL, O.D. × H 49 mm × 114 mm,
bottles	0		thread 22-400, PTFE/silicone septum, black
			phenolic hole cap, pre-assembled
Septa	Sigma Aldrich	27237-U	transparent PTFE/silicone, 20 mm diam. × 0.1
			inch thickness × 10 mil PTFE, temperature
			limit 250 °C
Clear Boston Round	Thermo Fisher	S329-0250	250ml clear bottles, recommended for EPA
Bottles			Volatile Organic Analysis (VOA) Methods,
			cap with molded-in PTFE-faced silicon septa;
			certified
Membrane filtering	Advantec®	25CS020AN	$0.2 \ \mu m$ pore size, membrane filters, cellulose
Paper	Toyo Roshi		acetate
	Kaisha Ltd.		
Hamilton syringe	Sigma Aldrich	20740-U	1000 Series, Gastight, 1001LTN, volume 1 mL,
			needle size 22 ga (bevel tip point style 2),
			needle L 51 mm (2 in.), mfr. no. 81317
			(Hamilton)
Headspace vials	Agilent	5188-5392	Vial, screw top, headspace, clear, round
	Technologies		bottom, 10 mL, 23 × 46 mm, vial size: 22.75 ×
			46 mm
screw cap	Agilent	5188-2759	Screw cap, headspace, steel, magnetic cap,
	Technologies		PTFE/silicone septa (top white, bottom blue),
			18 mm, cap size: 18 mm

Supplementary Table S2. List of other lab material used within this study.

sample name	d-spacing (003) (Å)	contour chain length (Å)	tilt angle (°)
MgAl-5COO	8.3	8.5	2.5
MgAl-7COO	16.4	11.1	19.4
MgAl-11COO	36.0	16.1	54.9
MgAl-17COO	47.7	23.6	37.1
MgAl-8SO3	21.3	12.6	28.4
MgAl-12SO3	36.2	17.6	43.1
MgAl-18SO3	31.7	25.2	7.2
MgAl-12SO4	37.9	18.5	41.9

Supplementary Table S3. d-spacing of the (003) reflexes of the synthesised organo-LDHs, the calculated contour chain length of each organic anion and the calculated tilt angle of the alkyl chain of each organic anion.

absorption bands	MgAl-CO3	MgAl-12SO4	
ν(O-H)	3585-3430	3698-3394	
ν1,ν3(H-O-H)	3585-3430	3698-3394	
vas(CH3)		2958	
vas(CH2)		2920	
vs(CH3,CH2)		2851	
δ(H2O)	1638	1638	
δ(CH ₂)		1469	
δas(CH3)		1469	
δs(CH3)		1384	
v3(CO3)	1384, 1369	1384, 1361	
vas(SO3)		1248, 1221, 1128	
$v_s(SO_2)$		1080, 1050, 1018	
$v_{as}(C-O-S)$		996	
$v_2(CO_3)$	865	883	
ν(C-S)		763	
ϱ(CH2)		722	
δ(Me-OH)		722	
$v_4(CO_3)$	663	664	
(Me-OH)	559	634, 590	
δas(SO2)		535	
(O-Me-O)	419	421	

Supplementary Table S4. Band positions in the FTIR spectra of the reference sample MgAl-CO3 and MgAl-12SO4 with corresponding assignments

absorption	MgAl-5COO	MgAl-7COO	MgAl-11COO	MgAl-17COO
band				
ν(O-H)	3503-3403	3585-3400	3590-3372	3584-3398
ν1,ν3(H-O-H)	3503-3403	3585-3400	3590-3372	3584-3398
vas(CH3)	2960	2957	2957	2957
vas(CH2)	2927	2927	2923	2918
vs(CH2)		2873	2874, 1411	1410
vs(CH3,CH2)	2857, 2854	2852	2852	2850
v(C=O)	1763	1768	1768	1764
δ(H ₂ O)	1627	1612	1640	1640
vas/s(COO-)	1575	1558, 1468	1558, 1468	1560, 1469
δas(CH3)	1575	1558, 1170	1558, 1199	1560, 1189
δas(CH2)	1575, 1228	1558, 1212,	1558, 1228	1560, 1229,
		1110		1210, 1110
v3(CO3)	1384, 1357	1384, 1361	1384	1384, 1359
δs(CH3)		1384, 1361	1384	1384, 1359
δas(COO⁻)		1258	1257	1267
$v_2(CO_3)$	826	834	834	835
δ(Me-OH)			781, 721	720
Q(CH2)		722	721	720
v4(CO3)	667	665	674	676
(Me-OH)	640	608, 446		
(O-Me-O)	446	414	416	445, 411

Supplementary Table S5. Band positions in the FTIR spectra of the MgAl-xCOO samples with corresponding assignments.

absorption	MgAl-8SO3	MgAl-12SO3	MgAl-18SO3
band	-	-	-
ν(O-H)	3643	3647-3365	3661-3398
ν1,ν3(H-O-H)	3560-3348	3647-3365	3661-3398
vas(CH3)	2958	2957	2958
vas(CH2)	2924	2920	2918
vs(CH3,CH2)	2873, 2855	2873, 2851	2851
δ(H2O)	1638	1633	1638
δ(CH ₂)	1468	1468	1471
δas(CH3)	1468	1468	1471
δ₅(CH ₃)	1383, 1359	1384, 1359	1384, 1356
v3(CO3)	1359	1384, 1359	1384, 1356
vas(SO2)	1293, 1211,	1292, 1277, 1199,	1292-1177
	1177	1185	
$v_s(SO_2)$	1050	1060, 1049	1050
$v_2(CO_3)$	854		
ν(C-S)	792	798	797
δ(Me-OH)	792, 723	721	721
Q(CH ₂)	723	721	721
$v_4(CO_3)$		669	669
(Me-OH)	598	616	616
δas(SO2)	527	535	535
(O-Me-O)	421	421	421

Supplementary Table S6. Band positions in the FTIR spectra of the MgAl-xSO3 samples with corresponding assignments.