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Abstract: In recent decades, layered double hydroxides (LDH) have been proposed as innovative
corrosion inhibitors for reinforced concrete. Their protective action is based on the ability to intercalate
specific anions in the interlayer and on their ability to exchange the intercalated anion. In the present
study, an organically charged LDH, with sebacate anions in the interlayer (LDH-S), is proposed as
a water-repellent additive for mortar. The waterproofing efficiency of LDH-S and the associated
corrosion inhibition ability has been evaluated in reinforced mortar samples. A 42% decrease in the
water capillary absorption coefficient has been estimated when 3% LHD-S is added to a mortar. Both
the passivation processes of the steel rebars during the curing period and the initiation of corrosion
due to chloride exposure have been studied by electrochemical measurements. Three different
mortars have been evaluated: reference mortar (REF), mortar with Mg-Al LDH (LDH), and mortar
with LDH-sebacate (LDH-S). The latter has shown an important protective capacity for preventing
the initiation of corrosion by chloride penetration, with an inhibitory efficiency of 74%. The presence
of LDHs without sebacate in the interlayer also improved the performance of the mortar against
rebar corrosion, but with lower efficiency (23% inhibitory efficiency). However, this protection is
lost after continued chloride exposure over time, and corrosion initiates similarly to the reference
mortar. The low corrosion current density values registered when LDH-S is added to the mortar may
be related to the increased electrical resistance recorded in this mortar.

Keywords: LDH-sebacate; corrosion protection; waterproofed reinforced mortar; electrochemical
measurements; capillary absorption

1. Introduction

One of the main causes of reinforced concrete deterioration in marine environments is
the corrosion of the embedded rebars caused by the action of chloride ions, which reach
the steel–concrete interface through the pore network of the concrete [1,2]. Generally, the
steel rebars in concrete are passivated due to the high alkaline pH of the aqueous phase.
However, if chloride ions reach the steel surface in sufficient concentration, the local rupture
of the protective passive layer occurs, and a pitting corrosion process is initiated [3].

A first approach to solve this problem would be to prevent the entry of aggressive
species into the cementitious matrix by improving the waterproofing efficiency of con-
crete [4]. External surface treatments are often suggested for developing waterproof con-
crete [5]. Different types of inorganic surface treatments have been proposed for improving
concrete durability [6], such as surface coatings forming a physical barrier on the con-
crete surface [7], pore-blocking surface treatments that block capillary pores in concrete
surface [8], and hydrophobic impregnations that inhibit water penetration [9].

The performance of surface treatments depends on the initial moisture content and the
exposure environments [10]. In addition, surface treatments can degenerate over time, thus
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decreasing their effectiveness [11]. In this sense, the effectiveness of the concrete water-
proofing can be improved by incorporating waterproofing and/or water-repellent agents
during the preparation of the mixture, which are distributed in the bulk material. Among
the best-known admixtures for waterproofing concrete are crystalline admixtures [12,13],
commercial compounds whose composition is not revealed by the supplier.

Layered double hydroxides (LDH) are a class of well-known crystalline compounds,
commonly referred to as hydrotalcite-like compounds, because hydrotalcite (HT) is the
most studied and representative mineral of this family of compounds. The HT structure can
be derived from brucite-like layers, where some of the divalent cations are isomorphically
substituted by trivalent ones, and the positive charge generated is balanced by intercalation
of hydrated anions between the metal hydroxide layers. LDH can be represented by the
general formula [M2+

1−xM3+
x(OH)2]x+An−

x/n·mH2O, where M2+ and M3+ are the divalent
and the trivalent metals, and An− is the anion placed in the LDH interlayer, and is easily
substitutable with others present in the aqueous solution [14]. Anions can range from
simple inorganic species to complex organic anions, thus changing the interlayer LDH
surface from hydrophilic to hydrophobic [14,15].

In the recent years, LDHs have been proposed as corrosion inhibitors of concrete
steel reinforcements [16,17]. Both inorganic corrosion inhibitors such as nitrite [18–20] and
organic corrosion inhibitors such as benzoate [21], aminobenzoate [22] or phthalate [23]
have been intercalated in LDHs of different composition, Mg-Al-LDH [18–20], Ca-Al-
LDH [24,25] and Zn-Al-LDH [26]. The corrosion-protective activity of LDHs is based on
their ability for ionic exchange: aggressive ions, such as chloride and/or carbonate, can
be adsorbed from the aqueous solution in the LDH interlayer, which can then release the
corrosion inhibitors [27]. However, efficiency in the long-term of these “smart” corrosion
inhibitors could fail, as the chloride trapped in the LDH could be released again [16].

A different way to protect steel rebars from corrosion in concrete is by using water-
proofing concrete that prevents the entrance of water, followed by the penetration of the
dissolved aggressive ions. Fatty acids are hydrophobic compounds due to the presence of
hydrophobic alkyl chains. However, they have been shown to highly affect the properties
of cement when added to cement-based materials in a dosage above 0.5% in clinker weight,
promoting a significant increase of the setting time [28]. Nevertheless, fatty acids incorpo-
rated in the inorganic LDH matrix could be a promising additive for the waterproofing
of concrete. A recent study has shown that the presence of ZnAl-LDH intercalated with
the sebacate anion (ZnAl-S) in epoxy coatings significantly improves their anticorrosive
properties, depending on the degree of its dispersion in the matrix [29].

The present work aimed to explore the waterproofing ability of MgAl-LDH interca-
lated by sebacate (LDH-S), as well as its protective capacity when added in cementitious
mortars as corrosion inhibitors in the presence of chloride ions. The LDH-S was synthetized
by the coprecipitation method and characterized by different techniques, such as XRD,
FT-IR, TGA and ICP. The water repellent capacity of the mortar containing the LDH-S
was assessed by water capillary absorption tests. The corrosion protection ability was
monitored by electrochemical measurements considering two stages: the rebar passivation
in the alkaline environment of the mortar, and the corrosion initiation due to the chloride
penetration through the mortar pores.

2. Materials and Methods

Mg(NO3)2·6H2O, Al(NO3)3·9H2O and sebacic acid ((CH2)8(COOH)2) were acquired
from Sigma-Aldrich (St. Loui, MO, USA). All of the chemicals were at least 98–99%.
Portland CEM II/A-L 42.5 R from Cosmos Cements, siliceous sand with a maximum size
of 1.5 mm and tap water were used as raw materials for preparing the mortar samples.

2.1. Synthesis of LDH

Organic LDH, LDH-S, was obtained through the coprecipitation method in a N2
atmosphere and using CO2-free water, adding 250 mL of solution containing 0.15 mol of
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Mg(NO3)2·6H2O and 0.05 mol of Al(NO3)3·9H2O to 500 mL of the alkaline (0.16 mol of
NaOH) 0.125 mol sebacate solution. The LDH suspensions thus obtained were filtered
and washed with CO2-free, distilled water and dried at 60 ◦C. For comparison purposes, a
MgAl-CO3 (LDH-CO3) was prepared with the coprecipitation method, dropping a solution
containing 0.75 mol of Mg(NO3)2·6H2O and 0.25 mol of Al(NO3)3·9H2O into a solution
containing 1.7 mol of NaOH and 0.5 mol of Na2CO3. The resultant suspension was washed
with distilled water and dried at 60 ◦C.

2.2. Characterization of LDH Additives

X-ray diffraction (XRD) patterns were recorded by a Bruker D8 Discover diffractometer
(Bruker, Karlsruhe, Germany). The Fourier transform infrared spectra (FT-IR) were recorded
by PerkinElmer Frontier MIR using ATR (PerkinElmer España SL, Madrid, Spain).

Elemental chemical analyses were measured by Induced Coupled Plasma mass spec-
troscopy (ICP-MS) on a PerkinElmer Nexion-X instrument (PerkinElmer España SL, Madrid,
Spain).

2.3. Production of Mortar Samples for Water Capillary Absorption Tests

Cylindrical specimens of 70 mm in diameter and 30 mm in height were manufactured
for the water capillary absorption test. A cement/sand/water dosage of 1/3/0.5 was used
for producing the cementitious mortar. Mortars incorporating additives were mixed with
3% by cement weight of the LDH. Both LDHs (LDH-S and LDH-CO3) were considered.

Mortar samples were demolded 24 h after casting and cured under controlled climate
conditions at 21 ± 2 ◦C and >95% HR. Two samples of each mortar were evaluated for
repeatability assessment.

2.4. Production of Reinforced Mortar Samples

Reinforced mortar specimens were prepared by embedding steel rebars 500S (6 mm
nominal diameter) in a mortar cover of approximately 1 cm. A mortar with similar com-
position to the one used for the waterproofing test was used in the reinforced specimens.
Mortars incorporating LDH-based additives (M-LDH-S and M-LDH-CO3) in 3% by cement
weight were also studied.

The exposed area of the bars was delimited to 6 cm2 covering the edge of the bar
with isolating tape. Before embedding in mortar, steel rebars were cleaned in a HCl:H2O
1:1 with 5 g/L urotropine solution and degreased in acetone. The final aspect of the steel
rebar before testing is shown in Figure 1 (left). Two rebars were tested for each mortar for
repeatability assessment.
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Figure 1. (Left)—Rebar before embedding in mortar. (Right)—Electrochemical cell with three reinforced
mortar samples and the stainless-steel mesh used as a counter-electrode for the electrochemical tests.

Reinforced samples were demolded 24 h after casting, and immersed in an alkaline
solution of Ca(OH)2 for curing. After 28 days curing in the alkaline conditions, the alkaline
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solution was changed by a 0.5 M NaCl solution for 50 days. In this way, both the passivation
and the corrosion stages could be monitored by periodic electrochemical measurements.

2.5. Waterproofing Efficiency of the LDH-Based Additives

The waterproofing efficiency of the studied mortars was assessed after 14 days curing.
Measurements were carried out for 3 days according to the Fagerlund method [30]. The
mortar specimens were placed 5 mm in contact with water and periodically weighed. From
the weight–time curve obtained, two parameters can be deduced: the saturation time,
when the weight gain is stabilized, and the water capillary absorption coefficient, estimated
according to [30]. For each type of studied mortar, the average value of the two tested
samples was considered.

2.6. Electrochemical Tests

A three-electrode electrochemical cell was used for monitoring the corrosion response
of the steel rebars, as shown in Figure 1 (right). For the electrochemical measurements,
a stainless-steel mesh located around the samples was used as a counter-electrode, an
Ag/AgCl electrode in 3 M KCl was used as a reference electrode, and the reinforced
samples acted as working electrodes.

An Autolab PGSTAT204 potentiostat/galvanostat with a frequency analyzer module
(FRA) using NOVA software was used for the electrochemical tests. The evolution of
the corrosion potential (Ecorr), the electrical resistance of the mortar cover (Re) and the
polarization resistance (RP) of the steel rebars were periodically measured. RP values were
obtained by linear potential sweep from −10 mV to +10 mV with respect to the measured
corrosion potential. Re was determined by applying an alternating current at a single
frequency of 1000 Hz between the rebar and the counter electrode. A potentiostatic method
with an amplitude of 10 mVrms around Ecorr was defined.

Electrochemical measurements were considered only after 4 days curing of the mortars,
before non-stable response of the different parameters monitored were registered.

At the end of the test, to accelerate the corrosion process and make the chloride-
generated pitting more visible, a constant potential of +250 mV vs. Ag/AgCl reference
electrode was applied for 4 h.

The corrosion current density (icorr) was obtained indirectly using the Stern and Geary
equation [31], icorr = B

RP ·A , where B is a constant equal to 26 mV [32], RP is the value of
polarization resistance, and A is the exposed area. The inhibitory efficiency of the LDH was
estimated at the end of the test using the following equation:

EI(%) =
iacum, REF − iacum,LDH

iacum, REF
·100 (1)

where iacum,REF and iacum,LDH are the cumulative values of corrosion current density during
the whole test for the reference mortar, and the mortars with LDH, respectively.

3. Results and Discussion
3.1. Characterization of the LDH Additives

The diffraction patterns of both additives, included in Figure 2, were characteristic of
LDH compounds, with intense basal reflections (00l) at low angles and low asymmetric
reflections at intermediate and high angles [14,15]. An increase in d (003) value for the
LDH-S was observed compared to LDH-CO3 (15.6 Å for LDH-S vs. 7.8 Å for LDH-CO3), as
expected due to the larger size of sebacate anion and in agreement with [29,33].

Although we carried out a very careful synthesis under inert conditions, the reflection
at 24◦ in 2θ indicates that the LDH-S sample mixed with sebacate also contained a certain
amount of carbonate, since this anion has a very high affinity for the intermediate layer. The
position of the (012) plane characteristic for LDH compounds, which overlaps with the (009)
reflection for LDH-CO3, was maintained unchanged in the HT-S sample pattern [14,34].
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Figure 2. XRD patterns of LDH-CO3 and LDH-S. * Peaks of the carbonate phase in LDH-S. 
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well as the C-H stretching vibrations at ~2900 cm−1 and bending vibrations at ~1408 cm−1 
of the aliphatic chains. The absence of the protonated carboxylic group (-COOH) band of 
sebacic acid at ~1700 cm−1 confirmed that this compound is intercalated in the interlayer 
in its anionic form. 

Figure 2. XRD patterns of LDH-CO3 and LDH-S. * Peaks of the carbonate phase in LDH-S.

The FT-IR spectra of LDH-CO3 (Figure 3) shows a characteristic band at around
3500 cm−1, corresponding to the water molecules and free OH− groups stretching vi-
brations, the band at 1650 cm−1 corresponding to the bending mode vibration of water
molecules, and the band at 1375 cm−1 of the carbonate antisymmetrical stretching mode.
LDH-S spectra showed the most characteristic bands of fatty acid at around 1560 cm−1

and 1460 cm−1 due to antisymmetrical and symmetrical vibrations of carboxylate groups,
respectively, as well as the C-H stretching vibrations at ~2900 cm−1 and bending vibrations
at ~1408 cm−1 of the aliphatic chains. The absence of the protonated carboxylic group
(-COOH) band of sebacic acid at ~1700 cm−1 confirmed that this compound is intercalated
in the interlayer in its anionic form.
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These findings, in agreement with XRD results (Figure 2), corroborate the intercalation
of sebacate anions in the LDH interlayer.

3.2. Water Capillary Absorption Test

In Figure 4, the weight gain as function of the square root of time for the three tested
mortars is represented (the average value of two samples per mortar is shown). Typical
behavior can be observed in two different stages: during the first hours, a linear weight
increase with the time is registered, until the second stage is reached, in which the weight
gain is almost stabilized.
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Figure 4. Water capillary absorption tests in mortars after 14 days curing.

In the case of the mortar with waterproofing additive (M-LDH-S), a significant decrease
was observed both in the rate of water penetration during the first hours and in the total
amount of water absorbed. However, in the case of mortars with LDH-CO3, similar
behavior to the case of the reference was observed. The time of saturation (tn) estimated
of all the studied mortars (between 3–4 h) was as detailed in Table 1. The water capillary
absorption coefficient (K), estimated according to [30], is detailed in Table 1 for the different
studied mortars.

Table 1. Water capillary absorption coefficients estimated according to the Fagerlund method [30].

Sample tn (min) K (kg/cm2 min0.5)

M-REF 208 0.0184
M-LDH-CO3 190 0.0220

M-LDH-S 224 0.0104

An increase in the saturation time and a decrease in the water capillary absorption
coefficient was obtained in the case of mortar incorporating LDH-S. A waterproofing
efficiency of 42% can be estimated from the K values included in Table 1. When LDH-CO3
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was added to the mortar, no improvement in water penetration by capillary absorption
was observed. In fact, even higher values of K were obtained in this case.

3.3. Passivation Stage of Reinforced Mortars

The passivation of the steel rebars embedded in the mortars was monitored during
the curing period by monitoring the evolution of the corrosion potential, and the corrosion
current density estimated by the Stern-Geary equation, as described in the previous section.
In each studied mortar, the two rebars showed a similar evolution, and thus, in the results
of the present study, the mean value between two rebars is used.

In Figure 5, the evolution of the corrosion potential (Ecorr) for the three studied mortars
is represented. The typical passivation process, with a continuous increase of the potential
during the first days of rebar contact with the alkaline phase of the mortar pores, was
registered. After about 15 days curing, the three studied mortars showed values of Ecorr
above −0.2 V vs. SCE, that is, the criteria established by Rilem Recommendations [35] as a
low probability for active corrosion occuring.
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Concerning the evolution of the corrosion current density (icorr), the typical response of
a passivation process was also observed for the three studied mortars, as shown in Figure 6.
In this case, lower values of icorr during the whole period of curing were registered for
the rebars embedded in mortar containing LDH-S. The inhibitive action of the sebacate
incorporated in the interlayer of the LDH can be confirmed when compared to the evolution
of icorr for the rebars in mortars with LDH-CO3. In this latter case, higher corrosion rates
were registered, as well as a delay in reaching the corrosion values below 0.2 µA/cm2, which
can be considered as the boundary between negligible and active moderate corrosion [36].
The presence of sebacate in the interlayer of the LDH seems to promote the passivation of
the rebar, as the passive situation related to a negligible corrosion was reached before the
reference case, and lower icorr values were maintained.
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Figure 7. Evolution of the electrical resistance for the three studied reinforced mortars during the
passivation period.

A continuous increase during the first days of curing was observed in all the mortars,
as expected due to the evolution of the hydrated solid phases in the cementitious matrix.
After some time, an almost constant value of the electrical resistance was reached for the
different mortars. This steady stage was reached faster in the case of the reference mortar



ChemEngineering 2022, 6, 72 9 of 13

without any additive than in the other mortars, probably due to the continuous release of
water from the LDH that promotes later hydration processes of the cementitious matrix [37].
Higher values of the electrical resistance were measured for the M-LDH-S, as expected due
to the water-repellent ability of this additive, as has been confirmed in Section 3.2 in the
present study. The higher values of the electrical resistance in the mortar incorporating
LDH-S seem to be related to a more protective action of this mortar on the passivation
processes of the steel rebars (see Figure 6).

3.4. Corrosion Stage of Reinforced Mortars

As detailed in the previous section, after the passivation of the rebars during the
curing period in saturated calcium hydroxide, the reinforced samples were exposed to a
chloride solution to promote the penetration of the chloride ions through the concrete pores
to the rebar. During this stage, the same electrochemical parameters as in the passivation
stage were monitored: corrosion potential (Ecorr) and corrosion current density (icorr).

In Figure 8, the evolution of the corrosion potential during the exposure to chloride
penetration is shown. A rapid significant decrease of the corrosion potential in all cases can
be observed after just the first day of immersion of the reinforced mortar samples in the
solution of sodium chloride.
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Figure 8. Evolution of the corrosion potential for the three studied reinforced mortars during the
corrosion stage (exposure to chloride action).

In the case of the reference mortar, the drop in potential was higher than in the case of
the mortar with LDH additives. The potential decrease in the mortar with LDH-S was less
significant, and only in this case the Ecorr seemed to evolve to more anodic values during
the first days of exposure to the chloride solution.

When the corrosion current density evolution is considered, the behavior of the three
studied reinforced mortars was different during the exposure to chloride action, as can be
observed from Figure 9.

In the case of the reference sample, an increase of icorr values to the region considered as
moderate corrosion (>0.2 µA/cm2) was registered after 7 days of exposure to the chloride
penetration, indicating the corrosion initiation of the embedded rebars. In the mortar
with LDH-CO3, this increase occurred after approximately 25 days of chloride exposure,
probably due to the ability of LDH to trap chloride. In fact, the icorr values fluctuated on the
limit between passivation and corrosion for a few days, until a new increase of icorr values
was produced after 40 days of exposure to chloride action.
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When LDH-S was added to the mortar, rebars did not show any sign of corrosion even
after 50 days of exposure to chloride, confirming the protective ability of the LDH-S as a
corrosion inhibitor. Low values of icorr, below 0.1 µA/cm2, were maintained during the
whole test.
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3.5. Inhibitory Efficiency of LDH-Based Additives

To evaluate the efficiency of the corrosion inhibitors based on LDH, the total charge
passed during the entire chloride exposure period (Qcorr) has been estimated and repre-
sented in Figure 10 for the different studied mortars. In this case, the response of each rebar
has been considered, and therefore two points for each mortar are shown in Figure 10.
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While in the case of M-REF and M-LDH-S, a similar response is registered for the two
embedded rebars in each case, in the case of M-LDH-CO3, higher variability is observed.
Nevertheless, it can be observed that both M-LDH-CO3 and M-LDH-S showed lower values
of charge, indicating a certain higher protective ability of these mortars. When LDH-S was
added to the mortar, the decrease was significantly higher, confirming the higher efficiency
of this additive as a corrosion inhibitor. The inhibitory efficiency of both additives can
be estimated using Equation (1), and the mean values of 74% and 23% were obtained for
M-LDH-S and M-LDH-CO3, respectively.

At the end of the chloride exposure, one rebar of each mortar was subjected to an
anodic current by connecting the rebar to +0.250 V vs. SCE for 4 h to accelerate the corrosive
development, making the damage more visible to visual inspection of the rebars. In Figure 11,
the photographs of the exposed surface after the anodic polarization are included.
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Figure 11. Visual aspect of the rebars at the end of the test.

The visual inspection of the rebar surface confirms the electrochemical results. While
the reference mortar and the M-LDH-CO3 show corrosion spots distributed on the exposed
surface, in the case of the M-LDH-S mortar, the presence of these spots is not evident.

4. Conclusions

The waterproofing ability of LDH with sebacate (LDH-S) in the interlayer has been
confirmed with a decrease of 42% in the water capillary absorption coefficient. This water-
repellent capacity resulted in a very effective corrosion inhibition for steel rebars embedded
in mortar with 3% LDH-S (74% inhibition). The effect of LDH-S can be observed from the
passivation of the rebar due to the contact with the alkaline aqueous phase of mortar pores.
The action of LDH-S seems be related to the increase in the electrical resistance values of
the mortar cover due to the hydrophobic effect caused by sebacate presence.

A less effective corrosion inhibition, associated with the presence of LDH in the mortar,
has been also observed (23% inhibition), probably due to the ability of this additive to trap
chloride ions. However, this protection was lost after continued chloride exposure, and
corrosion initiated similarly to the reference mortar.

Further studies are underway to analyze the protection mechanism associated to the
presence of LDH-S in the mortar.
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