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Abstract: Nanotechnology has an extensive series of applications in agronomy and has an important
role in the future of sustainable agriculture. The agricultural industries should be supported by
innovative active materials such as nanofertilizers, nanofungicides, and nanopesticides. It is necessary
in the current situation to meet the dietary needs of the constantly expanding world population.
Nearly one-third of crops grown conventionally suffer damage, mostly as a result of pest infestation,
microbiological assaults, natural disasters, poor soil quality, and a lack of nutrients. To solve these
problems, we urgently need more inventive technology. The application of nanotechnology in
agriculture provides intelligent methods for delivering nutrients, herbicides, and genetic materials
for improving soil fertility, stress tolerance, and protection. The world is currently confronting
significant issues related to the rising demand for enough food and safe food as well as dealing
with the environmental damage caused by traditional agriculture. Nanomaterials have important
applications in agriculture for increasing plant growth and development and the quality and quantity
of the crops and controlling and managing agricultural diseases. The major objective of this article is
to describe the various applications and importance of nanoparticles in the agriculture sector.

Keywords: nanofertilizer; nanosensor; nanobarcode; nanopesticide; nanofungicide

1. Introduction

Nanotechnology is the learning of materials in the array of 1–100 nm. Currently,
nanotechnology is applied in numerous fields that include biology, chemistry, physics,
engineering, medicine, textile industries, paint manufacturing, cosmetic industries, agri-
cultural fields, etc. [1]. The knowledge of nanotechnology was first formulated by the
honorable Nobel Laureate Richard Feynman in his famous lecture at the California Institute
of Technology on 29 December 1959. He explained the design of nanomaterials using a
top-down approach [2]. Now, nanoparticles (NPs) are synthesized using various methods
such as physical, chemical, and biological. In physical methods, higher energy, inert gases,
and a larger area for implementation of instruments are used. It is costly and high radiation
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is used for the synthesis of NPs. The vapor phase method, condensation method, spray py-
rolysis, laser ablation, and photo irradiation methods are used for the synthesis of NPs [3].
The chemical methods like the sol-gel method, reverse micelles, co-precipitation method,
and chemical reduction method are utilized for the synthesis of material at the nanoscale
level [4–7]. In this method, more toxic and harmful chemicals are used for synthesizing
NPs. The drawback of this method is that it results in the release of harmful byproducts
while synthesizing nanomaterials [8]. Some perspective chemical approaches such as so-
lution combustion synthesis helps to avoid these negative effects [9–12]. Nowadays, an
alternative method of synthesis that is used to overcome these drawbacks is the biological
method, where biological materials like plants, microorganisms, and algae are used for
synthesizing NPs. The advantage of this method is that it is cost-effective, fairly toxic-free,
and environmentally friendly [13].

Biologically synthesizing nanomaterials using plant extract is eco-friendly as well
as cost-effective and also energy-efficient. And in the entire process of biosynthesis nei-
ther high energy inputs nor harmful chemicals are involved [14]. Biogenic nanomaterials
also play a vital role in both the innovative applications of modern science as well as in
modern agriculture. The process of creating NPs with the help of biomolecules (obtained
from viruses, fungi, bacteria, and plants) and biochemical reactions are termed as biogenic
synthesis of nanomaterials [15]. The biological resources involved in the process of green
synthesis of nanomaterials such as microorganisms (fungi, algae, virus, bacteria, and yeast
act as a reducing agent), biodegradable waste, and plant extract are called “nanofactories,
bionanofactories and biological factories” [16]. Green resources which can replace the old
production methods have been preferred in recent decades for the production of nano-
materials [17]. NP agriculture is the main driver of development in rural areas. A strong
agricultural economy brings social progress by increasing productivity, employment, and
income [18]. These modern materials’ novel and developing features have unquestionably
gained the attention of agriculture industries [19]. The use of nanomaterials in agriculture
helps to decrease nutrient losses to boost yields [20]. The advancement of science and
technology helps the agricultural industry by supplying it with fresh approaches and
addressing all challenging issues. With the development of nanotechnology, nanoformula-
tions are regularly generated for sustainable agriculture and they are more effective since
they contain fewer contaminants [21]. One of the potential fields where nanotechnology
could provide sustainable crop management is agriculture. For instance, the release of
chemicals using nano-based products has been successfully applied in a controlled and
specifically customized manner, resulting in a clean and simple pest management system.
In general, productivity and sustainability are regarded to be improved by the use of NPs
in agriculture [22]. In the agricultural field, the use of nanomaterials has produced great
results, such as efficient growth, higher output, and yield with better nutritional quality.
Agri-nanotechnology is a technique to improve crops under different climate conditions.
The excellent effects of metal oxide NPs on agriculture include efficient growth, enhanced
output, and nutritional quality [23,24]. The use of NPs in agriculture is well-known. A wide
number of applied scientific fields, including agriculture, use nanoemulsions with NPs of a
large variety of sizes [25,26]. The applications of nanotechnology, or the use of nanomateri-
als in agriculture, can be handy to address the challenges associated with the creation of
effective and potentially effective approaches for the control of insect pests in agriculture.
Different types of NPs (Figure 1) have been transformed into nanopesticides and nanofertil-
izers, including carbon nanotubes, silicon, molybdenum, silver, copper [27,28], zinc [29,30],
manganese [31], titanium [32,33], iron and its oxides [34], and nanoformulations of common
agricultural inputs including phosphate, urea, sulphur, validamycin, tebuconazole, and
azadiractin [35]. Recent developments in chemistry and material science have helped us
master nanoparticle technology, which has significant implications for agriculture [36].
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Agriculture plays an important role in improving economic growth as well as meeting
the nutritional needs of people of all countries. Numerous factors affect sustainable agricul-
ture such as insect/pests, weeds, economic status, and population. It is very important to
develop the grade of the agricultural aspect to meet the needs and challenges [37]. A large
quantity of chemicals are used both in fertilizers (30–40%) and pesticides to achieve the tar-
get crop yield. Potassium, nitrogen, and phosphorous have only 20–40% efficiency that may
not be good for the soil in the long run. Therefore, the total yield of food crops is affected by
this unfertilized soil in and around the plateau regions [38]. Several problems are faced by
the farmers which include compound effects, economic crisis, negative effects of climatic
change, and poor yield. The problems that the agricultural industry faces as a result of
a growing global population, changing diets with increased demand for animal-sourced
meals, and climate change make managing numerous risks more vital than ever [39]. To
overcome these difficult circumstances, numerous technological advancements must be
chosen to boost crop yields and raise farmer standards. Such technology involves the use
of nanosensors based on the nanotechnology implemented in every concept of agriculture.
Nanotechnology is a boon to agriculture to overcome excessive gas emissions (methanol,
carbon dioxide, and nitrogen oxide) due to temperature changes and the alteration of
rainfall trends, which play a major role in crop yield. This also improves the staple crop
growth, food fabrication, nutritional benefit, efficiency in the controlled release of herbicide,
and growth regulators, such as the atrazine herbicide nanocarrier capsules [40]. Aluminium
(Al), zinc oxide (ZnO), zinc (Zn), titanium oxides (TiO2), silicon (Si), cesium oxide (CeO2),
copper (Cu), and aluminum oxides (Al2O3), among others, are utilized to boost agricultural
yield (Figure 2 and Table 1). These NPs protect plants and improve food sustainability,
such as Ag, which has a bigger influence on yield quality than antibacterial characteristics
and leads to a high nutritional value in the yield [41].
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Table 1. Role of nanomaterials in sensor fabrication and its applications.

Name of Nanoparticle for Sensor Fabrication Applications References

Silver Nanoprobe Detection of malathion residues in water and
food samples [42]

Silver NPs Detection of triazophos in water and food samples [43]

Gold and silver nanoparticle Determination of organo phosphate pesticides [44]

Thiazolylazopyrimidine-functionalized TiO2
Nanoparticle Detection of Cu (II) in water samples [45]

Zinc oxide quantum dot Detection of pesticide in water [46]

Carbon quantum dot Detection of flumioxazin [47]

Green carbon dots Ultra-sensitive fluorescent detection of pesticides [48]

TiO2/poly (CTAB) modified sensor Detection of aminotriazole [49]

Mercaptobenzoic acid labelled
gold-silver-alloy-embedded silica NPs Detection of sensitive quantitative thiram [50]

Bimetallic zinc oxide and titanium dioxide nanoparticle Control of Spodoptera frugiperda [51]

Fluorescent carbon dots Detection of water contaminants [52]

CuO-TiO2
Detection of methyl parathion pesticide in

ground water [53]

Silica carbon quantum dot Detection of indoxcarb [54]

Nanoparticle-Molybdenum nanocomposite Detection of pesticide residues [55]

TiO2 designed carbon-based sensor Detection and determination of fungicide carbendazim [56]

2. The Application of Nanotechnology in Agriculture

Nanotechnology is considered the potential solution for solving various agricultural
problems. It has received more attention in the last few decades. This leads to the de-
velopment of a new and unique method of farm production for improving agricultural
productivity [57]. It provides new agronomical agents with a delivery method to improve
crop yield. Nanotechnology increases agricultural productivity through various delivery
agents like nanopesticides, nanofertilizers, nanofungicides, nanoherbicides, and nanosen-
sors for the identification of disease in crops, genetic engineering, plant monitoring, animal
health monitoring, post-harvest production management, etc. [57]. Nanotechnology is also
utilized to improve crop health without causing damage to the soil. It also reduces nitrogen
lost due to leaching and soil microorganisms. NPs afford ‘magic bullets’, which comprise
chemicals, and herbicides or genes that target specific crop components for the proclamation
of their content. Nanocapsules are very helpful in the effective dispersion of herbicides over
the cuticles and tissues in plants via the deliberate and steady proclamation of the dynamic
materials, spot-targeted distribution of several macromolecules required for enhanced
plant disease resistance, effectual nutrients application, and improved plant growth [58].

Nanosensors (nano-based delivery systems) will possibly facilitate the effective utiliza-
tion of agronomic natural resources such as nutrients, chemicals, and water over precise
agricultural practices. The farm managers could gain the ability to distantly sense the
infecting insects or facts of stress levels like drought with the help of nanomaterials and
universe allocating arrangements through satellite imaging of the field [59]. Once the
crop is found to be affected by pests or the soil is in drought conditions, the automatic
modification of insecticide applications or an irrigation point scan be completed. It also
perceives the occurrence of plant diseases and the level of nutritive components in the
soil. The nano-encapsulated deliberate proclamation of fertilizers tends to store fertilizer
utilization and reduce ecological contamination [3].
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3. Nanoproducts
3.1. Nanofertilizer

Nano- and biofertilizers, which are more effective and environmentally friendly than
the outmoded chemical fertilizers, are now an important part of agriculture [60]. Nanofer-
tilizers will considerably help us reduce urea consumption, cut urea imports, and lower the
cost of urea subsidies by improving nitrogen usage efficiency [61]. Nanofertilizers deliver
nourishment in a regulated manner in response to a variety of cues, such as heat, moisture,
and other abiotic stresses. With the help of various chemical, physical, mechanical, or bio-
logical procedures, nanofertilizers are created, or modified versions of traditional fertilizers,
bulk fertilizer ingredients, or derivatives of various vegetative or reproductive portions
of the plant [62]. Nanofertilizers are thought to be a cutting-edge strategy for preserving
nutrients, particularly nitrogen, as well as the environment [63]. They are used to improve
the fertility and productivity of the soil and the quality of agricultural output [64]. In
nanoscale polymers, the release of nutrients and growth stimulants is controlled, gradual,
and efficient [65]. Nanofertilizers have high surface areas and particles that are smaller
than the pores of plant roots and leaves to promote penetration into the plant from the
applied surface and increase uptake and efficient use of nutrients [66]. When the particle
size of the fertilizer is reduced, the specific surface area and particle density increase, giving
nanofertilizers more surface area to interact with and increasing nutrient penetration and
uptake [67]. Nanofertilizers increase the availability of nutrients to growing plants, which
improves plant growth overall by increasing the production of dry matter, chlorophyll, and
photosynthesis [68]. The low cost of natural zeolites and the recent increase in public aware-
ness of the phenomenon have evoked significant economic interest in the development
of zeolite-based nanofertilizers [69]. Numerous studies have shown that nanofertilizers
improve crop growth, yield, and quality, resulting in a higher yield and higherquality
crop product for animal and human consumption [20–22,70]. Nutrients from nanofertilizer
are transported and delivered to cells more efficiently through 50–60-nm-wide nanoscale
passageways between cells. Nanofertilizers have increased cuticle absorption and are more
soluble and reactive, allowing for targeted administration and control [71].

Copper belongs to the groupof metals recognized as trace elements. In general, these
metals have high density and high atomic mass around a value of 20, which include
metals like copper, zinc, nickel, and lead. Cu occurs through Cu2+ also Cu+. It performs
as a structural component in directing proteins and is one of the chief constituents in
photosynthetic electron transport, oxidative stress, cell wall metabolism, etc. [72]. In plants,
copper is one of the important elements for the manufacture of chlorophyll. Copper’s
performance as a cofactor in enzymes includes superoxide dismutase (SOD), oxidation,
polyphenol oxidase, plastocyanin, and amino oxidase [73]. Copper induces numerous
enzymes and plays a role in RNA synthesis and the progress of the photosystems (Figure 1).
It is an important component for plant growth and it is involved in several functional
methods. It is a significant cofactor for metalloproteins [74]. Copper is essential for making
biomass, chlorophyll production for photosynthesis, and the germination of seeds [75].
High-entropy-alloy NPs were found to be effective as nanofertilizes [76].

3.2. Nanopesticides and Nanofungicide

Nanopesticides have taken the place of traditional pesticides. Conventional pesti-
cides deliver a nanoformulation with metal NPs or polymers, which is one of the most
difficult areas of the pesticide industry [77]. Nanopesticide nanocomponents are quite
small and additives that do not exist in conventional pesticides are typically very harmful
in nanopesticides. The advantage of pesticide nanoencapsulation is the controlled and
gradual release of the active component through manipulation of the nanocapsule’s outer
shell, which delivers a small dose over a long period of time, reducing unwanted pesticide
runoff. Nanopesticides have also improved plant pest and disease management [78]. To
protect plants, the following nanopesticides are used: Ag, Cu, SiO2, and Zn. Chemical
pesticides and fertilizers increased food output significantly but at the expense of crop
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quality and soil fertility [79]. These nanopesticides increase solubility while decreasing soil
runoff [80]. Target-specific nanopesticides should help to reduce non-target plant damage
and the amounts of pesticides released into the environment. The nanomaterials used
to make pesticides have a number of advantageous properties, including high stiffness,
permeability, thermal stability, and biodegradability [81]. The use of pesticides is one of
the most effective ways of protecting plants from insects, fungi, and weeds. To protect
our environment and save non-target species, we must use natural and environmentally
friendly pesticides as well as small amounts of chemical pesticides [82].

Copper is utilized as both a nanopesticide and nanofungicide. It is an imperative
disease management device for both organic and conventional methods of cultivation.
The pest-like arthropods include phytophagous insects and mites that destroy both the
grown crops and stored agricultural products [83]. For instance, the red flour beetle
Triboliumcastaneum is a pest that particularly affects the stored agricultural produce and
foodstuff, damaging their quality and destroying them (Figure 1). This beetle also decreases
the germination percentage of grains. Copper NPs have fungicidal and insecticidal activity
against pests that affect the crop. Hence, they can be used as copper-based nanopesticides,
nanofungicides, nanofertilizers, and nanoherbicides [84,85]. There are many other copper-
based pesticides and fungicides such as copper ammonium complex, copper oxychloride,
copper sulfate, copper hydroxide, and copper oxide [86]. The active form in all copper-
based products is Cu2+ copper ions. Organisms like bacteria, fungi, algae, and molds
that are sensitive to tiny amounts of copper ions have broad-spectrum activity against
microorganisms. This occurs because of the interaction with nucleic acids that affect energy
transportation, disruption of enzymes, and integrity of cell membranes [87].

Nanopesticides were developed to replace conventional pesticides [88]. The nanopesti-
cide components in nanopesticides are extremely small and the additives in nanopesticides
that are in common pesticides are often very toxic.

3.3. Nanoinsecticide

Among them, nanocapsules are by far the most popular method for releasing insec-
ticides under control. It is also used to nanoformulate organic pesticides such as neem
oil [89]. Food is a fundamental necessity for the world’s ever increasing population and, as
a result, there is an ever increasing need to grow more food, prompting efforts to better
protect agricultural crops from pest infestation. Polymer-based nanoformulations have
been used to encapsulate the majority of pesticides. Nanoinsecticides have the following
advantages over bulk substances: controlled release that increases the effectiveness of both
natural and chemical insecticides, reduced rate of application, easy and safe handling,
greater susceptibility to photodegradation, and lower toxicity to non-target organisms.
Insecticides have been encapsulated in a wide range of polymer and non-polymer-based
nanoformulations, including NPs [90]. Nanofibers, nanogels, nanospheres, micelles, na-
noemulsions, and nanocapsules are all examples of nanomaterials [91]. The effective use of
biodegradable polymers of natural origin rather than synthetic ones for encapsulation is
a result of the current rise in environmental awareness. A commercial formulation of the
pesticide bifenthrin is also used. These tests will establish a new benchmark for improved
pesticide formulations capable of gathering plant-based systemic resistance. Synthetic
pesticides may pollute the environment if used frequently due to their high residue levels.
Because many insect pests are becoming resistant to insecticides, a new approach to pest
control is also required.

3.4. Nanoherbicide

Herbicides are traditionally used to prevent the growth of undesirable weeds. Weeds
planted alongside crops typically inhibit their growth [92]. Herbicide use may affect plant
development and growth. Herbicides are a type of pesticide that is used to prevent or
eliminate weeds. Herbicides can be injected into tissues and cuticles using nanocapsules,
which have demonstrated delayed and continuous release of active ingredients. Herbicides
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that are more stable in the soil can reduce germination rates and fresh weights. Thus, pre-
emergence herbicides with inhibitory effects that delay weed germination are desirable [93].
They are typically unaffected by conventional treatment, have high toxicity, and have a
long half-life. Key nano-based materials, on the other hand, such as nanopolymers and
nanoshells, have a wide range of scientific applications. Better soil motility, as revealed
by the tobacco mild green mosaic virus (TMGMV), provides a potential platform for a
medication carrier for agricultural applications. According to Santaella and Plancot [94],
pesticides are delivered to plant parasitic nematodes using TMGMV as a nanocarrier.
Carbon-coated AuNPs created via the simple heat treatment of intracellular biogenic NPs
have been found to be an improved abiotic carrier for plant transformation [95].

Copper oxide NPs are utilized as nanoherbicides for controlling the weeds that affect
plant growth. The copper-based nanoherbicides enter through the root, translocate in
vascular bundles and to other parts like photosynthetic cells, and inhibit the glycolysis
pathway and energy transportation through an electro chain that takes place in roots and
parts of the plant. This affects the weed plant and causes starvation of the plant, reducingthe
growth and development of the crops, which leads to the death of the crop [96].

4. Nanogrowth Promoter

Chemical fertilizers are essential for boosting agricultural production globally to meet
the rising food demand of the world’s expanding population [97]. The three main commer-
cial fertilizer kinds that are most frequently utilized are nitrogen, phosphate, and potassium.
According to reports, the global ammonia uses for industrial and agricultural purposes in-
creased steadily during the previous decade at 2.0% of the compound’s annual growth rate.
In order to address the critical challenges of food security, sustainability, crop production,
and eco-safety, modern agriculture is holding the creative approach of nanobiotechnology
for the creation of nano-biofertilizer (Table 2) [98]. The biofertilizer (which contains nutri-
ents and bacteria that stimulate plant growth) is covered with nanoscale polymers in the
formulation of nano-biofertilizer (nanoencapsulation) [99].

Table 2. Effect of NPs in plant system.

Organisms Name Mode of Application Responses Reference

Spinacia oleracea Nanofertilizers Increased photosynthesis and growth of
the crop [100]

Solanumly copersicum Nanofungicides Controls late blight disease caused by
Phytophthora infestans [101]

Maize (Zea mays) Nanofertilizers Crop growth and progression [74]

Fungal disease Nanofungicides Fungal disease (Fusarium sp). treatment
in plants [102]

Pomegranate bacterial
blight Nanobactericide The growth of Xanthomonas axonopodispv.

Punicae inhibited [103]

Disease in tomato Nanobactericide The growth of Phytophthora infestans inhibited [101]

Wheat Nanofertilizers Increases the growth and yield [104]

Lettuce Nanofertilizers Increases photosynthesis process, increases
transpiration rate and increase crop production [105]

Phaseolus radiates and
Cucurbita pepo Nanoherbicides

Reduction in seedling development, decrease
in biomass and impediment of root elongation

and growth
[106]

Cucurbita pepo and Elodea densa Nanoherbicides Reduced growth of the weed plant and
reduction in development of weed plant [107,108]
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Table 2. Cont.

Organisms Name Mode of Application Responses Reference

Lolium perenne and
Lolium rigidum Nanoherbicides Causes DNA damage, accumulation of

oxidative stress molecules [109]

Fagopyrum esculentum and
Cucumis sativus Nanoherbicides Decrease in growth of the plant induce

oxidative stress, increase in SOD and CAT [110]

Tribolium castaneum Nanopesticides Controls and kills the agricultural arthropods [87]

Zea mays Nanofertilizers Decreased GPX and CAT, and succinates
dehydrogenase activity. [74]

S. lycopersicum Nanofertilizers Enhanced dry weight and
flavonoid production [111]

H. vulgare Nanofertilizer Increases flavonoid content in plants [112]

A. thaliana Nanofertilizer Enhanced anthocyanin content [113]

Anopheles stephensi and
Tenebrio molitor NanopPesticides Good larvicidal activity present in CuO NPs [114]

Spodoptera littoral Nanopesticides Decreases the mortality and biological features
of the insect [81]

5. Nanobarcode Technology

In day-to-day life, barcoding plays an essential role in livestock and agricultural man-
agement. Due to its precise efficiency, it has been used extensively as an identification tag
that is detected by UV lamps and optical microscopes. They are encoded by doping special
earth with multi-fluorescence material in micro-meter-sized glass nanobarcodes which are
used extensively in the agricultural industry [115]. The nanoparticle should be readable by
a machine, long-lasting, easily encodable, smaller than micron-sized taggant particles that
are used under the process that is semi-automated, and highly scalable for the production of
nanobarcodes. The stripped nanorods of nanobarcodes are made by electroplating metallic
particles such as gold, silver, aluminium, zinc, etc. The multiplexed analysis of nanobarcode
technology may be effectively used in ID tags in the field of the genetic marking of drought,
insect, pest, and salinity-resistant plants in a cost-effective manner [116]. Nanotechnology is
unique in tagging agro-food products and conventional transportation.

Nano-bioprocessing and nanobarcoding are also helpful in monitoring the crop yield-
ing quality, apart from disease detection. Barcoding processes have been developed for
the specific detection of reactions with a distinct label. One among them is DNA microar-
ray in which the reaction of positional encoding has been carried out to detect a specific
kind of mixed reaction. On the other hand, the radioisotope, which is responsible for a
particular disease or fertilizer, is encoded as the marker [117]. Tagged phytopathogens
with the microscopic probes are detected through fluorimeter. A battery-powered nano-
barcode is currently being developed; once completed, it will be paired with a Global
Positioning System (GPS) enabling the easy identification of viruses and pesticides of any
sort. The quantum dots are also used as nanobarcodes developed by a group of scientists
for the detection of phytopathogens by gene-expression-quantification techniques [118].
Dasgupta et al. [119] have presented a discussion of barcode technology applications that
are less focused and affirm that this might be a big breakthrough in developing the nano-
barcode thrust area.

5.1. Nanosensors in Agriculture

The antibacterial impact and wastewater rehabilitation capability have been the pri-
mary emphasis in the development of silver NPs used in agricultural issues [120]. The
Food Safety Authority of Ireland states that silver NPs were employed in the food pack-
aging industry to kill food-borne pathogens from long-stored food products in the year
2008. According to an initial study, silver nanoparticles inhibit powdery mildew disease
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at 100 ppm concentration by eradicating the fungal hyphae and promoting the growth
of conidia in the Cucurbitaceae family [121]. The organophorous pesticide present in the
environment and post-harvest food has been determined by the silver nano-entreated
biosensor [122]. Zhang et al. [123] have shown that manufactured silver nanoparticle
monolayers can improve sensitivity for Raman detection and aid in the detection of methyl
parathion concentrations. According to a phytotoxicity study, silver NPs accumulated
in the inner and the outer cell wall feign toxic content in the cell wall mechanism due
to the complex mechanism of the cell wall. Though changes in the concentration of the
nanoparticle vary, the size of the nanoparticle remains the same, developing chemical
variations [124]. To identify possible pathogen issues in plant and postharvest foods, silver
NPs are utilized as bio-nanosensors and electrical nanosensors.

A triangular silver nanoparticle with exceptional optical characteristics and heightened
sensitivity to its nanoenvironment was recently produced [125]. Developing chitosan-
mediated biosensors encoded with the capability to cascade the CD4-binding domain of the
host-virus via the inhibition of disulfide bond regions has been achieved. They have also
been responsible for the interaction of genetic viral material by inhibiting RNA production
and extracellular virions. They absorb the heavy metal depositions in agricultural fields
depending on their thermal and chemical stability. The silver-nanoparticle-based biosensor
detects the carcinogenic nitrile pollutant with hyper-branched polyethyleneimine. The
100 nM concentration of nitrite detection is achieved with the combination of nitrate mixture
and hydrogen peroxide in the acidic condition. The generation of peroxynitrous acid
aggregates the silver nanoprobe, which is analyzed through fluorescence quenching [126].
Thus, the key findings of this study provide the door for an unknown pathway that might
be enhanced in silver-nanoparticle-based nanosensors [127]. The main approaches of the
use of nanosensors in agriculture are presented in Figure 3.
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5.1.1. Nutrient Deficiency Detection Using Nanosensors

One of the major problems faced by farmers is nutrition deficiency in crop cultivation
to obtain sustainable crop yield over a fixed time period all over the world. This is
mainly due to the lesser supplement of fertilizer as well as soil fertility and this could
be rectified through timely detection by implementing the nano-biosensor before being
visually exhibited (Indian farming). On the other hand, the smart delivery systems help
to deliver the nutrition compounds loaded with pre-programed, self-regulated, spatially-
targeted, and functional biosystems to avoid biological barriers to successful targeting [128].
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5.1.2. Nanosensors for the Detection of Heavy Metals

The presence of heavy metals in agriculture, such as mercury, arsenic, lead, chromium,
nickel, cadmium, and copper, is considered harmful to both people and the environment.
Cd(II)-EDTA-BSA antigen and goat anti-mouse immunoglobulin (IgG) were disseminated
over the NC (nitrocellulose) membrane, which was further treated with a concentrated
colloidal gold probe on a glass fiber membrane to create immunochromatographic strip
nanosensors, which are highly sensitive sensors that can detect cadmium levels [129]. Using
a modified reverse microemulsion technique, amino-capped cadmium telluride at silicon
dioxide fluorescent silica NPs was created. To create cadmium telluride (CdTe), silicon
dioxide (SiO2), cadmium selenide (CdSe) ratio metric probes, an optical nanosensor to
detect cadmium, and the dual-stabilizers which capped cadmium selenide quantum dots
were covalently attached to the silica surface [100]. Calorimetric nanosensors were created
by implanting fresh dithiocetal-grounded stimuli-receptive molecular gates on MSN filled
with a reporter dye that can detect mercury [130]. To detect Pd, cationic-(3-(acetylthio)-
propyl-pyrazin-1-iumligand was used to stabilize another calorimetric nanosensor made
from gold NPs (II) [131]. Fe2O3 NPs produced via chemical coprecipitation, coated with
silica, and afterward electrostatically coupled with cysteamine-capped cadmium telluride
quantum dots (CdTe QDs) yielded multimodal nanosensors that can detect mercury [132].
A form of nanosensor known as surface plasmon resonance was created when ECAgNPs
were made by combining varying ratios of epicatechin and AgNO3, followed by magnetic
stirring, and was later employed for lead detection [133]. The hydrothermal synthesis of
NH2-UiO-66 produced an electrochemical sensor that efficiently detects copper, cadmium,
and lead. The cross linking agents such as N-hydroxysuccinimide (NHS) and 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide (EDC) were used to produce Fc-NH2-UiO-66,
which was then dispersed on trGNO nanosheets [134]. In order to create multifunctional
magnetic-fluorescent NPs, which were subsequently used as nanosensors, carboxymethyl
chitosan was used as an encapsulating agent to pack Fe3O4 NPs and quantum dots. As a
result, many kinds of nanosensors were developed to find dangerous heavy metals [135].

5.1.3. Nanosensors for the Detection of Pathogens

Nanosensors are designed in a way that makes them useful for a variety of detec-
tions, showing a good impact on agriculture. Gold nanorods were created utilizing the
seed-mediated growth technique, and then they were immobilized on the surface of the
fiber core. The fiber was then sunk in a solution of Cymbidium mosaic virus (CymMV) or
Odontoglossum ringspot virus (ORSV) antibody to functionalize the gold nanoparticle surface
and build an optical particle plasmon resonance (FOPPR) immunosensor to detect CymMV
or ORSV (Lin et al., 2014). To identify the presence of Tomato Ring Spot Virus (ToRSV),
Arabis Mosaic Virus (ArMV), and Bean Pod Mottle Virus (BPMV), amino-functionalized
iron oxide/silicon dioxide metal NPs (NH2-Fe3O4/SiO2 MNPs) were created from metal
NPs and these MNPs were then covalently immobilized with antibodies [123]. Gold (III)
chloride trihydrate (HAuCl4) and sodium citrate dehydrate were utilized to synthesize gold
NPs of various sizes and a layer-by-layer assembly was employed to change the electrode
that detects Ganoderma boninense in electrochemical sensors [136]. In order to detect Phy-
tophthora cactorum through an electrochemical nanosensor and for amperometric sensing,
stannic oxide (SnO2) and titanium dioxide (TiO2) were utilized as electrochemical detection
elements and screen-printed carbon electrodes were changed with SnO2 or TiO2 NPs before
usage [137]. Gold NPs created by the citrate reduction of gold (III) chloride trihydrate were
also used to create an electrochemical biosensor. In order to identify Pseudomonas syringae,
the tris-(2-carboxyethyl)-phosphine was added to a mixture of Pseudomonas syringae DNA.
Nanosensors are designed to be able to detect a variety of entities, making them essential
in the agricultural industry [138].
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5.1.4. Nanosensors for the Detection of Pesticide Residue

Various nanosensors can also be used to detect pesticides that pose a risk to both
crop plants and consumers. Imazapyr, a pesticide that was detected using fluorescent
nanosensors, is produced by employing a hydrothermal technique involving Ytterbium
(III) oxide (Yb2O3) coated with 3-aminopropyl-triethoxysilane [139]. Atrazine-imprinted
NPs are created using the emulsion polymerization process and then attached to the gold
surface of the surface-plasmon-resonance (SPR)-based affinity sensor to detect atrazine [140].
Surface-plasmon-resonance-based fiber-optic nanosensors are produced by chemically
synthesizing tantalum pentoxide (Ta2O5) NPs contained in a reduced graphene oxide
matrix, then adhering to silver-coated fiber-optic probes to detect fenitrothion [141]. For
a fluorescence sensor, a copper oxide/multi-walled copper nanotube (CuO/MWCNT) is
prepared by precipitating the copper nitrate by adding an aqueous NaOH solution to detect
glyphosate [142]. Electrochemical luminescence sensors that were made via the layer-by-
layer assembling of grapheme-gold NPs and luminol-gold NPs-L-cysteine-copper (Lu-Au-
Lcys-Cu(II)) composites can also detect glyphosate [143]. Methyl parathion is detected
using an electrochemical sensor generated with copper oxide-titanium dioxide (CuO-TiO2)
nanocomposites that were coated on the glass carbon electrode using a simple liquid
control precipitation process [53]. Electrochemical aptasensors produced with FeO NPs
generated using a chemical co-precipitation process was placed on fluorine tin oxide (FTO),
then aptamer immobilization occurred in the iron-oxide-doped chitosan/FTO electrode
using streptavidin, and an electrochemical nanosensor generated via the electro-catalyst of
copper oxide NPs was created on 3D grapheme, produced using a hydrothermal process
in which both detect malathion [144,145]. In order to create optical nanosensors that can
detect dimethoate, silver nanodendrites were created using a laser-assisted photochemical
technique and mounted on the microsphere end-shaped optical fiber surface, whereas
optical sensors made by converting NPs which are produced using the co-precipitation
process of lanthanide metal-EDTA complexes to prepare sensor film were dissolved in
tetrahydrofuran with the addition of dioctyl phthalate, PVC polymer, and NIR dye to detect
metribuzin [146].

6. Conclusions

The main issues with nanotechnology-enabled goods relate to the potential usage
of large quantities of NPs, which have hazardous consequences at varying degrees at
increasing concentrations. The continuous use of nano-enabled items, particularly in
agriculture, may raise their concentration in the soil and the crops themselves. The health
of humans could be harmed by even a small amount of NPs. Increased toxin levels have
the potential to impede and slow growth. However, the form, size, concentrations, basic
materials, and coatings of NPs have a unique impact on their toxicity. There is a wide
variety of nanotechnology-enabled items in use that have the potential to decompose
into new classes of hazardous contaminants such as metals, metal-oxides, carbon, and
semi-conductor materials. Green nanotechnology, a multidisciplinary area developing
clean, safe, and environmentally acceptable substitutes for items now utilized in numerous
industries, is addressing these concerns. Based on recent findings, this review examined
the utilization of nano-enabled items and identified some intriguing traits. In conclusion,
the focus of the research should be on figuring out how items containing nanotechnology
interact with the effects on epigenetics.

We revealed several categorized existing and co-existing features of nanosensors and
their applications. This emerging device is eco-friendly and rapidly analyzes environ-
mental features, highlighting the interaction between scrutinized stuff and the limits of
materials used in nanosystems. Furthermore, nanosensors will be utilized in agriculture
for independent management, interpretation of the exchanges among plant roots and other
soil organisms, nutrient maneuvers, and disease and deficiency prevention, including the
sustainable development of crop traits. Finally, the development of nanosensors will seek
to provide better efficiency, and higher accuracy with satellite communication.
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Nanoparticle-treated crops not only show improved growth and better yield, but also
better resistance to affliction by insects, pests, fungi, and weeds. NPs increase the potency
of the plant, yield, and solubility, and decrease pests, insects, and weeds that grow laterally
with crops, decreasing the use of chemical products. The significant interest in the utiliza-
tion of nanotechnology in the agricultural field has unique and specific applications such
as nanofertilizers, nanoherbicides, nanofungicides, nanopesticides, and nanoinsecticides to
trail the products, which would increase the yield. In conclusion, nanotechnology can be
readily applied to achieve better quality and a higher yield of produce. It can be utilized as
nanofungicide, nanoherbicide, and nanopesticide to protect the crop.
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