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Abstract: Reducing uncertainty in design flood estimates is an essential part of flood risk planning and
management. This study presents results from flood frequency estimates and associated uncertainties
for five commonly used probability distribution functions, extreme value type 1 (EV1), generalized
extreme value (GEV), generalized pareto distribution (GPD), log normal (LN) and log Pearson type
3 (LP3). The study was conducted using Monte Carlo simulation (MCS) and bootstrapping (BS)
methods for the 10 river catchments in eastern Australia. The parameters were estimated by applying
the method of moments (for LP3, LN, and EV1) and L-moments (for GEV and GPD). Three-parameter
distributions (e.g., LP3, GEV, and GPD) demonstrate a consistent estimation of confidence interval
(CI), whereas two-parameter distributions show biased estimation. The results of this study also
highlight the difficulty in flood frequency analysis, e.g., different probability distributions perform
quite differently even in a smaller geographical area.
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1. Introduction

Flooding is a common natural disaster that causes loss of human lives and livestock
and damages crops and infrastructure. It also causes disruption to transportation routes
and other essential services and increases river erosion, resulting in increased sediment
and nutrient loads in the flowing water. In Australia, the annual expenditure on infras-
tructure requiring flood estimation is $1 billion, while the mean annual flood damage is
$0.4 billion [1]. Flood damage is remarkably serious in some years in Australia; for example,
the widespread floods across Queensland in 2011 claimed over 30 lives and caused over
$30 billion in damages [2]. To reduce the overall flood damage, an accurate flood risk
assessment is essential, and in this regard, hydrologists use ‘design flood’, which is a flood
discharge associated with an average recurrence interval (ARI) or return period [3].

Design flood is used in numerous engineering applications, such as planning and
designing bridges, culverts, flood control levees, and drainage pipes. Indeed, reliable design
flood estimation provides the basis for sustainable flood management. Among various
approaches to design flood estimation, at-site flood frequency analysis is widely used to
check the relative accuracy of other flood estimation methods, such as runoff routing and
rational methods. At-site flood frequency analysis generally needs a long record of runoff.
However, as the recorded streamflow data at most of the gauged stations are considerably
shorter than the design ARI, the estimation of design flood needs extrapolation beyond
the recorded data. Therefore, the choice of an inappropriate distribution function can
lead to substantial bias in estimated floods; in particular, at larger ARIs, it may cause
serious implications in practice, either from under- or over-estimation of design floods. For
example, an underestimation increases the risk of failure of the infrastructure, while an
overestimation increases the capital cost of the infrastructure unnecessarily.
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Some of the frequently used probability distributions in flood frequency analysis
include log normal (LN), extreme value type 1 (EV1), extreme value type 2 (EV2), log
Pearson type 3 (LP3), generalized extreme value (GEV), Weibull, generalized Pareto distri-
bution (GPD), and Wakeby [4–7]. For the purpose of parameter estimation, L-moments,
LH-moments, method of moments (MoM), and maximum likelihood estimation (MLE)
methods are generally adopted. The constraint of the MoM is that the higher moments
(e.g., coefficient of skewness) are greatly affected by the extreme values (either smaller
or larger) in the dataset; however, the L-moments are less impacted by these values [8].
LH-moments give more weight to the larger floods for achieving a relatively better fit to
the upper tail of the distribution [9]. Martins and Stedinger [10] stated that MLE is often
preferable to the MoM because of its robustness in estimating the distributional parameters
by maximising the probability (likelihood) of the sample data [11]. Recently, the Bayesian
inference method has become a popular alternative to MoM and MLE since, in this method,
the distributional parameters can be described by a distribution function [11]. Recently,
Chebana and Ouarda [12] developed a copula-based model to estimate non-stationary
multivariate flood quantiles. Based on a survey of 54 agencies in 28 countries, Cunnane [5]
noted that LN, P3, EV1, EV2, GEV, and LP3 distributions were recommended for general
application in 8, 7, 10, 3, 2, and 7 countries, respectively. Moreover, in the 1970s, LP3 distri-
bution was suggested as the most suitable distribution for New South Wales (NSW) [13]
and Queensland (QLD) [14]. Based on the findings of these studies, Australian Rainfall
and Runoff (ARR) 1987 (the national guide) suggested LP3 distribution with the MoM for
parameter estimation for flood frequency analysis in Australia [15].

In addition to LP3 distribution, Vogel et al. [16] found GEV and Wakeby distributions
to provide the best fit to the annual maximum (AM) flood data in winter rainfall-dominated
parts of Australia. The suitability of the GEV distribution was further demonstrated by Had-
dad and Rahman [17] in a flood frequency analysis study using 18 Australian catchments.

Kuczera [18] proposed a flood frequency analysis method based on a Monte Carlo
Bayesian framework for computing the expected probability distribution as well as quantile
confidence limits for any flood frequency distribution using gauged glow data. He included
six commonly used probability distributions in his approach, which is called the FLIKE
software. This is the recommended software in the ARR 2019 for flood frequency analysis
in Australia [19]. In FLIKE, uncertainty in flood frequency analysis is specified by 90%
confidence intervals (CIs) for LP3, EV1, LN, GEV, and GPD distributions.

While there are many studies on flood frequency analysis, studies on uncertainty
estimates are still limited in frequency estimates. In this study, uncertainty in flood fre-
quency analysis in Australian catchments was evaluated by two different methods: Monte
Carlo simulation technique (MCST) and bootstrapping (BS). In the MCST [20,21], the pa-
rameters of a given probability distribution are specified by probability distributions and
a correlation matrix. The other approach, BS [22–28], can be either non-parametric (via
resampling with replacement) or parametric (via fitting a parametric distribution to the
observed sample and then randomly drawing new samples from this distribution) [29].
Non-parametric BS is applied here. Five different probability distributions are considered in
this study, which are LP3, EV1, LN, GEV, and GPD. The parameters are estimated through
the MoM (LP3, P3, LN, EV1) and L-moments (GEV and GPD). Finally, these results are
compared with the ARR 2019 recommended software, FLIKE.

2. Study Area and Data

In this study, 10 stream-gauging stations were selected, which are located in New
South Wales, Australia (Figure 1). While selecting the stations, a streamflow record length
of at least 30 years was considered as a minimum sample size for reasonable estimates in
flood frequency analysis [30]. Table 1 presents the details of the 10 stations, including the
AM flood record lengths. The record length ranges from 36 to 80 years, with an average
value of 51 years. All the sites have AM flood record lengths above the suggested threshold
value. The catchment area of the selected stations ranges from 82 to 1010 km2, with an
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average value of 334.4 km2. The mean streamflow over the 10 stations used in this study
varies from 52.09 m3/s (Station ID 212320) to 322.63 m3/s (Station ID 210022). The station
ID 208006 has the highest recorded flow, at 2047.85 m3/s. Moreover, the skewness, CV,
minimum, and median of flow for each of the 10 stations can be seen from Table 1. It is
assumed that AM flood data are not associated with any measurement error, and the data
satisfy the assumptions of independence and stationarity. The data is obtained from the
Australian Rainfall Runoff Project 5: Regional Flood Methods national database [31]. The
selected stations do not have any missing data over the length of the record. Therefore, we
preferred the AM method over other approaches, e.g., partial duration series (PDS). This is
supported by a study by Nagy et al. [32]. Moreover, all the ten-gauge stations used in this
study are located in the East Coast region. It can be noted that Australia’s hydroclimate
comprises eight natural resources management (NRM) regions. The East Coast region is
defined on its western boundary by the Great Dividing Range and on its eastern boundary
by the east Australian coastline [33]. The region contains 5 of the 10 largest urban areas
in Australia and is home to around 40% of Australia’s population. The East Coast region
ranges from the tropical climate in the north to the temperate climates of the southern New
South Wales coast near Wollongong [34]. Most of the precipitation falls in the summer
months across both the northern and southern subregions [34]. The difference between
winter and summer precipitation is more pronounced in the north than in the south. This
is due to the northern subregion having larger tropical influences, such as the monsoon,
tropical cyclones, and tropical depressions, and receiving less precipitation associated with
fronts during the cooler months [34]. Average annual precipitation is less in the northern
subregion than in the southern subregion. Year-to-year precipitation variability in the East
Coast region is related to El Niño, La Niña, and the Southern Annular Mode (SAM).
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Table 1. Physical properties and data length for the selected stream-gauging stations * CV stands for co-efficient of variation.

Station No. Station ID Station Name River Name Gauge Lat Gauge Lon Catchment
Area (km2) Data Length (Year) Skewness CV * Mean Min Max Median

1 204017 Dorrigo no.2 & no.3 BielsdownCk −30.3067 152.7133 82 40 1.45 0.82 202.50 16.11 749.31 161.10

2 206014 Coninside Wollomombi −30.4783 152.0267 376 57 1.67 0.84 148.94 2.00 620.18 91.43

3 208006 Forbesdale
(Causeway) Barrington −32.0383 151.8700 630 39 2.14 0.81 460.85 43.98 2047.85 375.57

4 209002 Crossing Mammy
Johnsons −32.2500 151.9800 156 36 0.75 0.75 219.58 12.66 696.04 203.81

5 210011 Tillegra Williams −32.3200 151.6867 194 80 1.75 0.87 322.63 15.82 1349.65 243.11

6 210022 Halton Allyn −32.3100 151.5100 205 71 1.30 0.80 194.00 14.63 695.56 171.09

7 212008 Bathurst Rd Coxs −33.4300 150.0800 199 60 2.71 1.22 75.22 0.40 594.01 36.93

8 212011 Lithgow Coxs −33.5367 150.0933 404 50 1.93 1.07 103.54 0.22 594.24 48.31

9 212018 Glen Davis Capertee −33.1200 150.2800 1010 40 1.59 1.22 88.77 0.58 447.18 40.75

10 212320 Mulgoa Rd South Ck −33.8783 150.7683 88 40 3.57 1.49 52.09 0.03 448.90 25.66
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3. Methodology

In this study, five different probability distributions were adopted: LP3, EV1, LN, GEV,
and GPD. Six annual exceedance probabilities (AEPs) were considered, 1 in 2 (50% AEP),
1 in 5 (20% AEP), 1 in 10 (10% AEP), 1 in 20 (5% AEP), 1 in 50 (2% AEP), and 1 in 100
(1% AEP).

The parameters were estimated using the method of moments for the LP3, EV1, and
LN distributions. The EV1 and LN have only two parameters; to estimate these, the mean

(
−
x) and standard deviation (σ) values of the sample data were used. The LP3, GEV, and

GPD are three-parameter distributions. For LP3, the three parameters were estimated

using the sample mean (
−
x), standard deviation (σ), and skewness (γ) of the logged AM

flood series. For the GEV and GPD distributions, the shape (κ), scale (α), and location (ζ)
parameters were estimated by the L-moments technique.

Bootstrapping (BS) and Monte Carlo simulation techniques (MCST) were applied to
assess the uncertainty in flood frequency analysis. Finally, the results of these approaches
were compared with the FLIKE software, recommended in the ARR 2019.

The adopted BS and MCST approaches are summarized below, and the procedure is
illustrated in Figure 2:
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Figure 2. Computation flowchart of estimating flood quantiles using bootstrapping and Monte
Carlo methods.

Step 1. Read the AM flood series dataset at site j with record length nj;
Step 2. Simulate m = 1 to 10,000 AM series at site j with record length nj by bootstrap-

ping (with replacement). For each of the simulated AM series, calculate qT (T = 2, 5, 10, 20,
50, and 100 years) using all five distributions, as presented below:

i. Log Pearson Type 3 (LP3): calculate mean (
−
x), standard deviation (σ), skewness of

the log of the AM dataset (γ), and the frequency factor, Kp(γ).

Kp(γ) =
2
γ
(1 +

γzp

6
− γ2

36
)

3

− 2
γ

(1)

where zp is the pth quantile of the standard normal distribution.
Estimate flood quantiles (qT) by

q =
−
x + σ× Kp (2)
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ii. Extreme Value Type 1 (EV1): calculate mean (
−
x), standard deviation (σ), and

frequency factor (Kp)

Kp =

√
6

π
[−0.5772157− log{− log(1− 1

T
)}] (3)

Estimate flood quantiles (qT) using Equation (2).

iii. Log normal distribution (LN): calculate mean (
−
x), standard deviation (σ), and

frequency factor (Kp) as the pth quantile of the standard normal distribution.
Estimate flood quantiles (qT) using Equation (2).
iv. Generalized extreme value distribution (GEV):
the parameters of the GEV distribution in terms of L-moments (λ1, λ2, λ3) are:

κ = 7.859c + 2.9554c2 (4)

α =
κλ2

Γ(1 + κ)(1− 2−κ)
(5)

ζ = λ1 +
α

κ[Γ(1+κ)−1]

where
c = 2λ2

λ3+3λ2
− ln(2)

ln(3)

(6)

Estimate flood quantiles (qT)

qT = ζ +
α

κ
[1− {− log(1− 1

T
)}κ ] (7)

v. Generalized Pareto distribution (GPD):
The parameters of the GPD, in terms of L moments (λ1, λ2, λ3, λ4), are:

τ3 =
λ3

λ2
(8)

τ4 =
λ4

λ2
(9)

κ =
1− 3τ3

1 + τ3
(10)

α = (1 + κ)(2 + κ)λ2 (11)

ξ = λ1 − (2 + κ)λ2 (12)

Estimate flood quantiles (qT)

qT = ξ +
α

κ

(
1− (

1
T
)κ

)
(13)

Step 3. Estimate 5th and 95th percentile for each of the six quantiles from each of the
five distributions (BS method).

Step 4. Estimate a covariance matrix from the set of 10,000 mean, standard deviation,
skewness, and L-moment (for GEV and GPD only) values based on AM series obtained at
Step 2.

Step 5. Calculate the mean of mean, the mean of standard deviation, the mean of the
skewness, and the mean of L-moments (GEV and GPD only).

Step 6. Generate variables (mean, standard deviation, skewness, and L-moments (GEV
and GPD only)) 10,000 times, applying the multivariate normal distribution.

Step 7. Estimate flood quantiles (qT) for each of the distributions.
Step 8. Estimate 5th and 95th percentile for each of the above quantiles.
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We applied three different goodness-of-fit tests to evaluate the merits of the five
distributions used in this study with respect to the recorded flood data. The goodness-of-fit
tests are chi-square, Kolmogorov–Smirnov and Anderson–Darling test. Except for the
chi-square test, the other two tests were non-parametric.

4. Results and Discussion
4.1. Uncertainty Estimates for LP3 Distribution

Figure 3 shows an example of flood quantile estimates along with the confidence
intervals for the 10 stations. In FLIKE, both the likelihood functions and parameters were
evaluated by the Bayesian approach; however, we have estimated the three parameters
of the LP3 distribution by the MoM (without the Bayesian approach), and hence some
differences in results are expected, as found in this study. Both the BS and MCST were found
to result in very similar upper (95%) and lower (5%) confidence limits of flood quantiles for
all six AEPs for the 10 stations. For LP3 distribution, the upper limit estimates by FLIKE
were generally higher than those by the BS and MCST for most of the stations. In the case
of the lower limit, very similar flood quantile estimates were found for most of the stations
by all three approaches (BS, MCST, and FLIKE). The historical peaks were contained within
the upper and lower bounds of the confidence interval. Both the Kolmogorov–Smirnov test
and the Anderson–Darling tests confirmed that LP3 distributions were well fitted to the
observed dataset for all 10 stations. LP3 estimated confidence bands from BS, MCST, and
FLIKE could be reliably used for the 10 stations.

4.2. Uncertainty Estimates for GEV Distribution

In the case of GEV distribution, the flood quantile estimates (expected values) using
MCS and BS were found to be similar to FLIKE results for all 10 stations (Figure 4). However,
the upper confidence limit estimates by the FLIKE were found to be generally higher
compared with the BS and MCST methods. The lower limits by FLIKE were generally
lower compared with the BS and MCST. Hence, the confidence intervals by FLIKE were
wider than those of the BS and MCST for the GEV distribution. The historical peaks
were within the confidence bounds, though GEV offered a slightly narrower confidence
band than LP3. Both distributions, LP3 and GEV, have three parameters. We estimated
parameters using the MoM and L-moments for LP3 and GEV, respectively. Both the
Kolmogorov–Smirnov and Anderson–Darling tests confirmed that GEV distributions were
well fitted to the observed dataset for all 10 stations.

4.3. Uncertainty Estimates for EV1 Distribution

For the EVI distribution, the quantile estimates (expected values) by our approach
(MCS and BS) showed a wide variation from those of FLIKE for most of the stations
(Figure 5). The CIs from FLIKE were found to be narrower than the estimation by the
BS and MCST for most of the stations. Moreover, in EV1, the upper limit of FLIKE was
lower than that from the BS and MCST for almost all 10 stations, though this was not the
case for the LP3 and GEV distributions. For some stations, particularly station ID 212011,
few historical peaks were located outside the confidence band. The goodness-of-fit tests,
e.g., Kolmogorov–Smirnov and Anderson–Darling showed that EV1 distributions were
well fitted to the observed dataset for all 10 stations. However, the skewness was not zero
for the selected stations. Therefore, the two-parameter distributions e.g., EV1, may not be a
good option.

4.4. Uncertainty Estimates for LN Distribution

For the LN distribution, our flood quantile estimates (expected values) are very similar
to those of FLIKE. The lower limit estimates are very similar for all three approaches
(FLIKE, BS and MCST). However, FLIKE provides higher values for the upper limit than
the other two methods (Figure 6). The historical peaks locate near the lower limit of CI.
The confidence band from LN is even wider than what LP3 distribution offers in this study.
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The goodness-of-fit test e.g., Kolmogorov-Smirnov and Anderson-Darling test show that
LN distribution is well fitted to the observed dataset for all 10 stations. Again, LN is a
two-parameter distribution and could be unreliable on some occasions.
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4.5. Uncertainty Estimates for GPD Distribution

For the GPD, the flood quantile estimates (expected values) by FLIKE matched very
well with our approach. FLIKE provided higher values for the upper limit of CI for the
majority of the stations except station IDs 208006 and 210022. For some of the stations,
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FLIKE gave a smaller lower limit than the BS or MCST (e.g., station IDs 206014, 212018,
and 212008) (Figure 7). The historical peaks were within the upper and lower bounds.
Even GPD offered a slightly narrower confidence band than GEV and LP3. GPD is a
three-parameter distribution, and we estimated parameters using the L-moments approach.
Both the Kolmogorov–Smirnov and Anderson–Darling tests confirm that GEV distributions
were well fitted to the observed dataset for all 10 stations.
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4.6. Uncertainty Estimates for Large Floods (1% AEP)

Figure 8 shows discharges for the confidence band (between 5th and 95th percentile)
at 1% AEP using BS, MCST, and FLIKE methods. For all five distributions, the estimations
from BS and MCST were very similar, however, different from FLIKE depending on
distribution and location. In the case of LP3 distribution, FLIKE had higher values than BS
and MCST, except station ID 209002. Moreover, FLIKE had a narrower uncertainty band
than the other two approaches only for station ID 210022. Similarly, FLIKE had higher
upper limit and wider uncertainty band for GEV and LN over all the stations. Interestingly,
this was quite opposite (less magnitude of upper limit and narrower band for FLIKE than
BS/MCST) for EV1 distribution. For GPD distribution, FLIKE had a higher estimation
of upper limit than BS and MCST for most of the stations. Generally, as AEP reduced,
the differences in higher confidence band among the five distributions increased, i.e., the
differences were the smallest for 50% AEP and the highest for 1% AEP. It is noteworthy
here that LN had much higher estimates of upper confidence limit and much wider band
than the other four distributions (an example is shown in Figure 8). On the other hand, it is
also observed from Figure 8 that all three approaches (FLIKE, BS, and MCST) had relatively
lower magnitude resulting from EV1.
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The results highlight several key issues. Firstly, the use of a single flood frequency
distribution was not appropriate for the NSW state, as it is dominated by highly variable
hydro-meteorological features. Secondly, the use of MCST and BS can provide a quick
method of assessing the uncertainty in flood frequency analysis, which may not be obvious
from a simple plot of observed AM flood data with the fitted distribution line. Thirdly, the
sampling variability in flood frequency analysis was quite high given the wider band of
the estimated CIs.

The levels of uncertainty in FFA found in our study are comparable to those of other
studies. FLIKE has a similar spread of uncertainty for LP3 and GEV for all 10 stations
considered in this study. In the case of MC and BS, most of the stations have wider
uncertainty bands in LP3 than GEV. We have applied the MoM and L-moments for LP3
and GEV, respectively. Hu et al. [35] conducted a study for some selected gauging stations
in the United States. They showed that GEV distribution combined with the maximum
likelihood estimation method is associated with the largest uncertainty, while the LP3
exhibits comparable bias and smaller uncertainty. This doesn’t agree completely with our
findings because of using different techniques for estimating LP3 and GEV parameters and
different geographical locations.

The record length has a significant impact on estimating FFA and mainly affects the
uncertainty of the estimates. For example, a record of around 35 years in the AMS approach
is associated with 50% higher uncertainty than the 70-year reference [35]. Gaume [36]
noted that a short record length results in significant uncertainty for medium-to-large ARIs
in FFA. In another study by St. George and Mudelsee [37] for the Rayado Creek in the
USA, omission of the highest flow value resulted in a drop of 45% for a 100-year flood
estimate. In the context of regional flood frequency analysis, Rahman et al. [38] showed
that for southeast Australia, a 100-year flood estimate is associated with 30 to 60% median
error range. From Table 1, station IDs 210011 and 212022 have the highest record of 80
and 71 years, respectively, whereas station ID 209002 has the lowest record of 36 years. To
handle uncertainty, we have applied BS and MC in all 10 stations.

5. Conclusions

In this study, uncertainty in flood frequency estimates for 10 gauging stations in
New South Wales was examined using the Monte Carlo simulation and bootstrapping
methods. We have found that the quantile estimates from our approach notably differ
with those from FLIKE (the Australian Rainfall and Runoff recommended method) for
most of the stations for LP3 and EV1 distributions. We estimated the parameters using the
MoM and L-moments, whereas FLIKE adopted the Bayesian inference method. Moreover,
for some of these stations, LN has much higher estimates of the upper confidence limit
compared to the other four distributions. This is misleading in some cases. It should be
noted here that skewness was not zero for the selected stations; and hence, the use of
two-parameter distributions, such as EV1 and LN, may not be appropriate, i.e., these can
provide remarkably biased estimations for higher return periods.

A key finding of this study is that in the case of the upper limit of CIs, two-parameter
distributions such as LN and EV1 generally provide either over- or under-estimation.
However, the three-parameter distributions, such as LP3, GEV, and GPD, provide a con-
sistent estimation of the upper confidence limits. Moreover, L-moments appears to be a
robust technique for parameter estimation in this study. Generally, FLIKE provides higher
values for the upper limit of CI than BS and MCST for all the distributions except EV1.
Furthermore, while all stations are located within a proximity of each other, some of the
stations, e.g., 208006 and 210011) have a very high magnitude of upper confidence limits
compared to other stations. The results of this study highlight the difficulty in at-site
flood frequency analysis (i.e., different probability distributions perform quite differently
even in a smaller geographical area). This is primarily due to sampling variability, as the
recorded AM flood data are generally of a limited length and differing land characteristics
that modify the rainfall into runoff. Results indicate that a single probability distribution
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for at-site flood frequency analysis is not suitable for the entire region. This is consistent
with the recommendation in the most recent version of Australian Rainfall and Runoff.
Flood frequency analysis relies on some assumptions, notably the stationarity of data series.
However, the stationarity assumption is not always valid for various reasons, such as
climate change and human activities [39,40]. Therefore, in future work, it is essential to test
the stationarity or develop models that consider the non-stationarity in a new flood risk
assessment framework.
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