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Abstract: Hydrological modeling of large river basins and flood plains continues to be challenged by
the low availability and quality of observed data for modeling input and model calibration. Global
datasets are often used to bridge this gap, but are often difficult and time consuming to acquire,
particularly in low resource regions of the world. Numerous calls have been made to standardize
and share data to increase local basin modeling capacities and reduce redundancy in efforts, but
barriers still exist. We discuss the challenges of hydrological modeling in data-scarce regions and
describe a freely available online tool site developed to enable users to extract input data for any
basin of any size. The site will allow users to visualize, map, interpolate, and reformat the data as
needed for the intended application. We used our hydrological model of the Upper Zambezi basin
and the Chobe-Zambezi floodplains to illustrate the use of this online toolset. Increasing access and
dissemination of hydrological modeling data is a critical need, particularly among users where data
requirements and access continue to impede locally driven management of hydrological systems.

Keywords: large river basins; hydrodynamic model; scarce data

1. Introduction

Large river basins such as the Amazon, Nile, and the Zambezi River Basins affect the
livelihood of millions of people and the animals and landscapes on which they depend [1,2].
Changes in basin climate, the hydrodynamics of the connected river system, and changes in
the human-built environment can profoundly impact basin hydrological dynamics and the
people and ecosystems living in and around those areas [3,4]. Hydrodynamic modeling can
provide a critical tool to evaluate and predict system function and the impact of potential
changes, such as studying the impact of infrastructure development on water quality and
hydropower potential [5,6].

Hydrological models have also been used extensively to predict potential flood extent
and risk of agricultural damage [7–9]. These tools are also critical in predicting potential
human health impacts, as flooding events may have considerable impacts on water quality
and waterborne disease outbreaks in associated populations [10]. Predicting the start of
a flooding event and flood water recession processes from upstream rainfall events may
provide considerable lead time to prevent or mitigate expected impacts [11].

Modeling large river basins can also be used to improve water resource management
and irrigation practices as water conditions change [12,13]. This can also be used to aid
in resolving conflicts between various water authorities or countries sharing the use of
river water by further understanding the problem, formalizing performance measures, and
evaluating sharing scenarios and alternatives [14]. Models can also provide forecasts and
insights into water availability for downstream nations [15].
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The remotely derived data can serve as a robust proxy for incomplete or absent
local data for large river basins, providing similar results to those obtained from the use of
conventional local weather data. For example, remote sensed climate data from the National
Centers for Environmental Prediction’s Climate Forecast System Reanalysis (CFSR) were
evaluated against local data sources and provided similar results for the hydrological
characterization of the Upper Blue Nile Basin in Ethiopia [16]. Similarly, remote sensed
data were used successfully to create a large-scale hydrodynamic model of the Amazon
River Basin [17], outcomes that agreed with locally derived data sources.

The need for remote imagery is not limited to hydrological model development with
remote sensing data used to evaluate historical basin flooding dynamics [18] and estimate
flood extent [19–23]. These studies provide critical insight in the hydrological dynamics,
but cannot be used to study future scenarios and forecast basin performance.

Not all data sourcing techniques rely on remote sensing options. For example, the
recently developed soil erodibility factor calculation provides a mechanism to generate an
estimate of sediment yield in watersheds based on sand, silt and clay percentages [24]. This
tool can be used in data-scarce regions, with some studies providing less than a 20% error
in the results [24].

Across all these applications, accurate and precise data are needed for effective model-
ing applications. Lack of data availability can have a negative impact on the accuracy of
models [25,26] and other estimations, compromising the application and use of these mod-
els, particularly in resource limited regions of the world. Data scarcity can be particularly
problematic for large basins that cover expansive regions [27–29], some with a total area
of more than 1 million km2 (e.g., the Zambezi River Basin covers eight countries in Africa
with an area of 1.3 million km2 [30]). These basins require macro-scale models [31] and a
large amount of input data, which can be challenging to obtain [15]. Modeling river basins
in western and more developed countries is often easier where climate, geographic and
geological data are more widely available. Data scarcity continues to plague low resource
environments where population vulnerability is elevated and the need for model access
and improved forecasting capacity is escalating [32].

Here, we report the development of a freely available online data acquisition and
manipulation resource, the Large Basin Data Portal, that can be used to support hydrological
model development for any basin. A typical modeling effort incorporates five activities:
(1) Input data source identification; (2) Input data extraction, remapping, and formatting;
(3) Model development; (4) Model calibration using historical data; (5) Running the models
and obtaining results. The Large Basin Data Portal simplifies the processes involved in
modeling activities 1, 2, and 4. We provide a description of the methods used to create the
site and provide an overview of site functionality and access. We also illustrate the use
of the tools by modeling the Upper Zambezi River Basin and the Chobe–Zambezi flood
plains, regions of the world with limited data. The Zambezi River is Africa’s longest river,
and the largest flowing into the Indian Ocean from Africa [33,34].

2. Materials and Methods

The Large Basin Data Portal was developed using a combination of HTML (Hyper-Text
Markup Language), CSS (Cascaded Styling Sheets), and JavaScript for the user interface
development, and PHP [35] scripts and C language modules [36] for the backend pro-
gramming used to retrieve and process datasets. The portal incorporates several user tools
than can be categorized into 3 categories: Data Extraction, Data Visualization, and Utility
tools. The data processing flow for all the tools can be generalized into 6 stages (Figure 1).
Section 2.1 describes these stages and the general methods used by these stages, while
Section 2.2 describes the specific methods and datasets used by each tool.
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Figure 1. Data processing flow showing the 6 stages of data manipulation, starting with data retrieval
from dataset source to final data output generation and visualization.

2.1. Data Processing Stages
2.1.1. Stage 1—Data Retrieval

Stage 1 of the data processing flow utilized Application Programming Interfaces (API)
wherever available from the data providers. APIs allow granular data selection, which
reduces the amount of data retrieved from the source to obtain the specific geographical
area and time period required by the user. When APIs are not available for a data source,
the data portal utilizes automatic dataset file download. In some cases, datasets are static
and do not change, and these datasets are downloaded and maintained on the data portal.
Table 1 shows the lists of data sources and datasets utilized by the tools available in the
data portal and their data retrieval methods.

Table 1. Data sources and data sets used by the Large Basin Data Portal and their respective spatial
and temporal resolution, spatial and temporal coverage, and retrieval methods.

Data Source Data Sets Spatial and Temporal
Resolution and Coverage Data Retrieval Method

MOD09A1 (Terra Surface
Reflectance)

500 m (Worldwide)
8-Day (2002–Present)

MCD12Q1 (Land Cover Type) 500 m (Worldwide)
Annual (2001–Present)

Moderate Resolution Imaging
Spectroradiometer (MODIS)

MOD15A2H (Terra Leaf Area
Index)

500 m (Worldwide)
8-Day (2002–Present)

Location and time specific data
retrieved automatically through
the MODIS API when needed.

Google Elevations 3 arc s (Worldwide) Location specific data retrieved
through online API as needed.

CPC Global Precipitation 0.5◦ (Worldwide)
Daily (1979–Present)Earth System Research

Laboratory (ESRL)—Climate
Prediction Center (CPC) CPC Global Temperatures 0.5◦ (Worldwide)

Daily (1979–Present)

Yearly global online dataset files
are downloaded automatically

when needed.

UN Food and Agriculture
Organization (FAO)

Harmonized World Soil Database
(HWSD) 30 arc s (Worldwide)

Static dataset files have been
pre-downloaded into the

data portal.
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2.1.2. Stage 2—Coordinate System Remapping

Stage 2 of the data processing flow maps the data coordinates between the UTM (Uni-
versal Transverse Mercator) and Longitude/Latitude coordinate systems as needed based
on the model setup and the modeling tool used by modelers. UTM rectangular grids are
widely used in modeling since they attempt to represent the modeled area as a flat surface
in contrast to the spherical Latitude/Longitude system. The data portal uses the standard
coordinate conversion calculations documented by the UTM geocoding standard [37].

2.1.3. Stage 3—Linear Spatial Interpolation

The diversity of the data sources generally results in data that do not have either
the same temporal or spatial resolution. Transformation techniques need to be used to
transform such data to a uniform modeling grid where all input data can be defined at each
grid point.

Linear spatial interpolation is used when data availability is not at the exact grid points.
Such cases include elevation and cases where data are defined in a different geo-reference
system. In many cases, data are defined at specific latitude and longitude coordinates
(spherical grid) while a modeling grid is in the Universal Transverse Mercator (rectangular
grid). Linear spatial interpolation is performed in Stage 3 to generate data values at
the desired grid points. Spatial interpolation is needed when converting data between
coordinate systems and when upscaling or downscaling (sampling) to achieve the desired
spatial data resolution.

The data value at any given point (not defined by the original data) can be derived from
the surrounding 4 data points (corners of the rectangle that includes the desired point). Two
types of spatial interpolation may be performed based on the data type. Qualitative data
such as soil type use the data value at the nearest defined point (corners of the enclosing
rectangle) based on distance. Quantitative data such as elevation, rainfall or temperature
use the inverse distance weighting (IDW) methodology [38] based on the data values at
the 4 enclosing rectangle corner points. The value uk at any point k inside the enclosing
rectangle can be calculated using:

uk =
∑4

i=1

(
ui

dk,i

)
∑4

i=1

(
1

dk,i

) (1)

where ui is the value at point/corner i and dk,i is the distance between point k and point i.

2.1.4. Stage 4—Derived Data Calculation

Stage 4 of the data processing flow consists of several submodules that manipulate the
data to derive new measurements (e.g., calculating reference evapotranspiration for daily
temperatures). These submodules are specific to the measurements being derived, and are
described in more detail when the tool that uses them is presented.

2.1.5. Stage 5—Time Series Clustering

Time-varying data with high spatial resolution such as LAI (Leaf Area Index) and land
cover data generate very large amounts of input data that can considerably slow down
model execution. Some modeling tools allows modelers to divide the modeled grid into
groups of cells with a single time-series data file representing the input for that group
of cells [39].

Stage 5 utilizes the K-Means data clustering algorithm [40] to group grid points into
groups of points that have similar time-based profiles, thus reducing the number of time
series profiles that need to be fed into models. The algorithm starts by grouping adjacent
grid cells into a specific number of clusters N selected by the user. Higher N values will
give more accurate results, but will produce a larger amount of data. Then, the average
daily data value (e.g., daily LAI) is calculated for each cluster, generating a daily time-
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series profile for each cluster. The statistical distance di,k for each cell i to cluster k is then
calculated as:

di,k = ∑
all days j

(
vi,j − pk,j

)2
(2)

where vi,j is the data value of cell i on day j and pk,j is the data value of cluster k profile on
day j. Each cell is then reassigned to a cluster with the minimal statistical distance and the
average daily profile for each cluster is recalculated. This reiterative approach is continued
until cells are no longer reassigned to new clusters, or for a certain number of iterations.

2.1.6. Stage 6—Output Data Formatting

Stage 6 formats the data and creates files that can be utilized by the modeling software.
In some cases, the data can be visualized on online maps which not only helps modelers,
but is also useful for quick visual analysis of historical climatic events.

2.2. Output Data Validation

The outputs of the tools were validated using a manual comparison of the outputs
with the original data from the source datasets. Tool output data were also compared
to other datasets. The comparison was performed mainly for the Upper Zambezi River
Basin, and the Occoquan watershed in northern Virginia, USA. The output of the flood
mapper was also visually compared to historical satellite flood images available from
NASA satellites [41].

2.3. Large Basin Data Portal—Data Extraction Tools
2.3.1. Elevation Grid Extraction

Elevation/Topology grids are the most critical input to any hydrological model. The
topology of the modeled area governs how and where overland and underground water
flows, creating streams and rivers and lakes. Within the Large Basin Data Portal, a user
can easily obtain the required elevation grid for the area of interest by simply specifying
the model’s rectangular area and the resolution of the grid. The elevation data are then
extracted from Google Maps [42] using an API in the background. The tool (Figure 2) then
utilizes the Coordinate System remapping and Spatial interpolation stages to produce the
final grid in the desired resolution. Finally, the grid is written to a CSV (Comma Separated
Values) text file which can be used in or imported into various modeling programs. A
simple demonstration of the use of the Elevation Grid Extraction tool and other data
extraction tools is available in Video S1.
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2.3.2. Soil Type Extraction

Soil type represents the upper part of the unsaturated zone and is used to model
surface water penetration into the ground. The soil type extraction tool (Figure 3) can be
used to extract the soil type grid from the FAO HWSD global dataset [43], which combines
regional and national databases of soil types and maps. The dataset has a spatial resolution
of (0.00833◦). The spatial resolution is equivalent to 1 km near the equator. Since the desired
grid points and the FAO HWSD grid points may not match, the tool uses data from the
closest FAO HWSD grid point for each desired grid point.
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2.3.3. Rainfall Extraction

The rainfall extraction tool (Figure 4) can be used to extract rainfall data from the
NOAA ESRL CPC global rainfall dataset [44]. The ESRL data are derived from various
remote sensors and have a spatial resolution of 0.5◦ (equivalent to 55 km near the equator)
and a 1-day temporal resolution. The tool assigns each desired grid point to a cell group,
and a time series of rainfall is produced for each cell group based on the desired time period.
The user needs to specify the model’s rectangular area and the resolution of the grid.
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2.3.4. Leaf Area Index (LAI) Data Extraction

Many water modeling efforts, especially models that involve flooding, require LAI
data to properly account for evapotranspiration. The LAI data extraction tool (Figure 5)
gathers LAI data from NASA’s MODIS MOD15A2H dataset [45]. MODIS datasets are
derived from reflectance measurements at various wavelengths performed by the MODIS
Terra and Aqua spacecraft. The dataset has a 500 m spatial resolution and an 8-day temporal
resolution. For a large basin, the amount of data could be extremely large, so the tool uses
the k-means clustering algorithm [40] to group grid points into areas of similar temporal
LAI profiles (points that have similar LAI during the whole yearly cycle). The tool produces
two separate outputs; the first is a grid with the assignment of each grid point to a specific
LAI profile. The second is a time series of LAI data for each LAI profile. LAI data in this
format are required by some modeling software [39].
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2.3.5. Reference Evapotranspiration Data Extraction

Crop evapotranspiration is one of the critical pieces for modeling a water basin.
Modeling software calculates the crop evapotranspiration based on a crop coefficient
and reference evapotranspiration, which represents climate and solar conditions for the
modeled area.

Reference evapotranspiration (ET0) can be calculated using the Penman–Monteith
equation [46] and standard climate input data. For large basins, not all climatic measure-
ments are available for this equation, so the simplified version of the Penman–Monteith
equation known as the Hargreaves equation [47] is used, which is based on daily max/min
temperatures (Tmax and Tmin) as follows:

ET0 = 0.0023Ra((T max + Tmin)/2 + 17.8)
√

Tmax − Tmin (3)

where Ra is the surface radiation

Ra =
24·60

π
Gscdr[ωssin ϕsin δ + cos ϕcos δsin ωs] (4)

and Gsc is the solar constant (0.082 MJ/m2/day), dr is the inverse relative distance of earth
and sun, ωs is the sunset hour angle, and δ is the solar decimation calculated using the
Julian day of the year J and geographical latitude ϕ of the location, as follows:

dr = 1 + 0.003cos
(

2π

365
J
)

(5)

ωs =
π

2
tan−1

(
−tan ϕtan δ√

X

)
(6)
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δ = 0.409sin
(

2π

365
J − 1.39

)
(7)

X = max
(

1− (tan ϕ)2(tan δ)2, 0.00001
)

(8)

The reference evapotranspiration extract tool (Figure 6) downloads the daily min/max
temperatures from ESRL’s CPC Global temperature datasets [44]. The coordinates are then
remapped from Longitude/Latitude to UTM. Spatial interpolation is then performed to
obtain temperatures at the desired grid points, and the reference evapotranspiration is
calculated. Finally, the results are written into CSV text files that can be used in various
modeling programs.
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2.4. Large Basin Data Portal—Data Visualization Tools
2.4.1. Flood Mapper

The Flood Mapper (Figure 7) extracts surface reflection data for various bands from
the MODIS MOD09A1 dataset [48] and uses the algorithm described in [49] to derive
the presence of overland water due to flooding events from reflectance measurements at
various wavelength bands. The algorithm calculates NDWI (Normalized Difference Water
Index) and NDVI (Normalized Difference Vegetation Index) as:

NDVI = (R 2 − R1)/(R2 + R1) (9)
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NDWI = (R 2 − R6)/(R2 + R6) (10)

where R1 is the reflectance in the wavelength range 620–670 nm, R2 is reflectance in the
wavelength range 841–876 nm, and R3 is reflectance in the wavelength range 1628–1652 nm.
Finally, the combination of NDVI, NDWI and the reflectance measurements are used to
detect the presence of surface water at each grid cell, based on Table 2.
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Table 2. Criteria to classify whether surface water is present in each grid cell based on reflectance,
Normalized Difference Vegetation Index, and Normalized Difference Water Index derived from
MODIS datasets.

R1 R2 R2–R1 NDVI NDWI Classification
>9.17 No Surface Water

>6.45 >0.5335 No Surface Water
>2.91 >0.228 ≤0.2872 No Surface Water

≤1.02 ≤2.91 Water
≤2.91 <0.1509 Water
≤2.91 >−0.2931 Water

The resulting water presence classification for each grid cell is then displayed on a
Google map. The data have a 500 m spatial resolution and an 8-day temporal resolution
and are available globally starting with the year 2000. A simple demonstration of the use of
the Flood Mapper and other data visualization tools is available in Video S2.
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2.4.2. LAI Mapper

To understand rainfall runoff into rivers and overland flood dynamics, it is helpful
to visualize LAI for the modeled area, which has a significant impact on evapotranspira-
tion. The LAI Mapper (Figure 8) retrieves LAI data from NASA’s MODIS MOD15A2H
dataset [45] using the MODIS API for the desired area, and displays them on a Google map.
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Figure 8. Screenshot of the Large Basin Data Portal Leaf Area Index (LAI) mapper with input parame-
ters and the displayed map of the eastern section of the Chobe–Zambezi flood plains, Africa. The
green shading overlay reflects various levels of LAI on 14 March 2023, based on data derived from
the MODIS MOD15A2H dataset. The darker green areas represent areas with higher LAI (areas with
higher plant/tree density).

2.4.3. Land Cover Mapper

Land Cover data are helpful in the overland modeling situation to determine overland
water movement friction. A modeler can use the data to choose the correct Manning
number for a 2D hydrodynamic model. For instance, forest areas would have a higher
manning number than savannah lands. The Land Cover Mapper (Figure 9) retrieves
Land Cover data from NASA’s MCD12Q1 MODIS dataset [50] using the MODIS API, and
displays the results on a Google map. The tool allows users to select one of 5 classification
methodologies imbedded in the MCD12Q1 dataset: (1) Annual International Geosphere-
Biosphere Programme (IGBP); (2) Annual University of Maryland (UMD); (3) Annual
Leaf Area Index (LAI); (4) Annual BIOME-Biogeochemical (BGC); and (5) Annual Plant
Functional Types (PFT).
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Figure 9. Screenshot of the Large Basin Data Portal land cover mapper with input parameters and the
displayed map of the eastern section of the Chobe–Zambezi flood plains, Africa. The colored overlay
represents different types of land cover type. Data are derived from the MODIS MCD12Q1 dataset
for the year 2019, and are based on the Annual IGBP classification imbedded in the dataset.

2.5. Large Basin Data Portal—Other Modeling Tools
2.5.1. Lake and Land Depression Water Storage Capacity Calculator

Some river water basins contain natural storage lakes that store seasonal water. The
amount of water stored depends on the topology of the surrounding area. As water levels
increase, the water expands into larger areas that have an elevation lower than the water
surface levels. In many locations, the volume of water that can be stored is unknown and
may be needed for proper basin hydrology modeling.

The storage capacity of a land depression or a lake can be calculated using volume
calculation methods of irregular conic frustums [51]. Given the elevation grid for an area,
the minimum and maximum elevations of the grid are first calculated. Then, starting with
the minimum elevation, contour lines are constructed for each elevation Ei in the grid with
increments of 1 m (Figure 10).
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Figure 10. Illustration of elevation contour line construction for a sample elevation grid. The sample
grid is a 6 × 6 grid with elevation at each grid point ranging from 923 m to 933 m above sea levels.
In this example, contour lines for elevations 925 m, 926 m, 927 m, 928 m, and 929 m above sea level
are constructed.
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The area Ai within each contour line is then calculated to represent the surface area of
the lake when the water surface level reaches elevation Ei. Finally, the lake potential water
storage if water surface elevation reaches elevation E can be calculated as:

VE =
1
3

E

∑
i=Emin

Ai + Ai−1 +
√

Ai Ai−1 (11)

where Emin is the minimum surface elevation of the lake (surface elevation of the lake
bottom), and Ai is the area of the lake within the contour line representing elevation
Ei and Ai−1 is the area of the lake within the contour line representing the next lower
elevation Ei−1.

With the Lake/Land depression water storage capacity calculator (Figure 11), users
enter the approximate geographical center of the lake and the search radius. The tool
then downloads elevation data for the selected area from Google Maps using the API.
The contour lines are then constructed and the area of each contour line and total storage
volume is calculated.
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Figure 11. Screenshot of the lake storage calculator and a sample output for Lake Liambezi at the
border of Botswana/Namibia showing the calculated lake water surface area and potential storage
capacity when water levels increase from 925 m to 928 m above sea level. Data are derived from the
Google Maps Elevation dataset.

2.5.2. UTM Coordinates Convertor

The Longitude/Latitude spherical geographical coordinate system is not ideal for
modeling. In many cases, an alternate geographical coordinate system with flattened rect-
angular grid is used, such as the UTM system. This basic coordinates converter (Figure 12)
allows the user to convert point coordinates between the two systems using the calculations
described in [52].
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Figure 12. Screenshot of UTM coordinates conversion tool providing the ability to convert geographi-
cal coordinates between the UTM and Latitude/Longitude coordinate systems. The screenshot shows
the conversion results for a sample location: Kasane, Botswana (25.15◦ E, 17.82◦ S).

2.6. Large Basin Data Portal—Database of Data Sources for Modeling

The tools that were described here use specific datasets for extraction and visualization.
Other datasets are also available, and the Large Basin Data Portal includes a list of additional
databases of globally available datasets with their temporal/spatial resolution and time
period/spatial coverage for easy reference by users (Table A1). This resource list will be
updated as new datasets are identified or become available, with key datasets added for
user access within the Large Basin Data Portal.

3. Results—Case Study: The Upper Zambezi River Basin Region

Within the larger Zambezi River Basin, we focus on the Upper Zambezi River Basin
region spanning Zambia, Angola, Namibia, and Botswana (Figure 13) covering an approxi-
mate area of 514 km2 [53]. Local datasets for this large region are largely unavailable. Using
the Large Basin Data Portal, we extracted various climatic, topographic, and soil data to
create the inputs for a hydrodynamic model of the region. The hydrodynamic model was
built using MIKE-SHE modeling software [39]. Data from 2009 to 2019 were extracted for
the region (930 km × 914 km) with a resolution of 500 m, resulting in more than 3.4 million
grid cells.

Data and tools from the Large Basin Data Portal were used to create maps for the
Upper Zambezi River Basin area (Figures 14–18). The elevation data extraction tool was
used to extract the elevation grid for this region from the Google Maps Elevation dataset
(Figure 14), and the soil type extraction tool was used to extract the soil type grid from
the FAO HWSD dataset (Figure 15). Rainfall (Figure 16) and reference evapotranspiration
(Figure 17) inputs were derived from the ESRL CPC Global precipitation and temperature
datasets. These datasets have a resolution of 0.5◦, which is equivalent to approximately
55 km in the study area. Since the requested rainfall grid has a resolution of 500 m (much
higher resolution than the available data), the tool clusters the 3.4 million grid cells into
approximately 300 cell groups and provides a daily precipitation profile for each cell
group for the requested period. The reference evapotranspiration grid was calculated from
the temperature datasets and was dependent on the latitude of the grid cell, resulting
in variance even between cells using the same temperature profiles. The grid cells were
clustered into approximately 600 cell groups and a daily reference evapotranspiration
profile was created for each cell group for the requested period. The LAI was extracted
from the MODIS MOD15A2H dataset, which had a resolution of 500 m. The cells were
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also clustered into approximately 600 cell groups based on their LAI profile for the time
period (Figure 18).
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4. Discussion

Many modelers spend a considerable amount of their time identifying, collecting,
remapping, and reformatting input data for use in hydrological models. In many cases, such
data are not available or not databased particularly in less developed countries. In these
cases, modeling must rely on global datasets that estimate such data from satellite imaging
and remote sensing resources. Many sources exist, and include NASA’s MODIS terra
instrument measurements, the NOAA (National Oceanic and Atmospheric Administration)
ESRL data, the European Centre for Medium-Range Weather Forecasts, and FAO soil and
evapotranspiration datasets, among others.

The Large Basin Data Portal developed here allows users to reduce the time and re-
sources required to develop hydrological models and other associated applications where
remote sensed data are required. The portal simplifies the process of retrieving, remapping,
formatting and in some cases visualizing these data.

The portal tools developed here were successfully used to identify and extract the
correct data and create the climatic and geographical inputs for a model of the Upper
Zambezi River Basin region (Figures 14–18). The basin is extremely large (Figure 13), and
data are limited. Modeling this region would not be possible without the utilization of
remote sensing resources such as those extracted from the data portal. Indeed, it was the
time required to identify these data resources that prompted the development of the Large
Basin Data Portal.

With this portal, the process of generating several of the input data required to model
any basin of any size, such as the Zambezi River Basin region, has now been simplified to a
few clicks for many data types. The steps used to generate the input data for the Upper
Zambezi River Basin model can be repeated by just modifying the required grid coordinates.
The modeler can easily produce topology, rainfall, reference evapotranspiration, soil type,
LAI, and land cover data for another basin.

The Large Basin Data Portal can be further improved by enhancing some of its function-
alities, such as: (1) Adding the ability to select other data sources for each tool instead of
a single preselected data source; (2) Adding tools to extract other types of climatic data;
(3) Continually adding and updating the database of available global datasets listed in
the portal; (4) Adding more output formats that may be needed for the various modeling
platforms as they are updated or introduced into the market.

The use of the tools is not limited to modeling efforts. For example, the Flood Mapper
can be used to explain flood hazards, assess risk, and develop contingency plans [54,55].
The extraction of elevation grids has a wide range of uses, including urban design and
building dams, reservoirs, and hydraulic structures on rivers [56,57], and soil maps can be
used to plan farm constructions and carry out agricultural planning [58,59].

5. Conclusions

Global datasets and modeling support tools simplify the process of building hydrody-
namic models for large river basins and flood plains. The use of global datasets as inputs
to large river basin models has been shown to produce results that closely correlate with
actual measured river flow data [60,61]. The Large Basin Data Portal simplifies and speeds
up the process of identifying data and building models, allowing modelers to direct the
focus of effort on the critical steps of model parameter establishment and results analysis.
Improving data access not only increases the capacity of users to contribute to such efforts,
but advances our ability to harness the power of hydrological modeling to address the
complex challenges that face the management of large basins across the globe.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/hydrology10040087/s1, Video S1: Large Basin Data Portal demonstration
video for the data extraction tools, Video S2: Large Basin Data Portal demonstration video for the data
visualization tools.

https://www.mdpi.com/article/10.3390/hydrology10040087/s1
https://www.mdpi.com/article/10.3390/hydrology10040087/s1
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Appendix A

Table A1. List of data sources currently databased in the Large Basin Data Portal as of 30 March
2023. The list shows the temporal and spatial resolution of the datasets, along with time period and
spatial coverage.

Category Data Type Source and Dataset Temporal
Resolution Time Period Spatial Resolution Spatial

Coverage

Climate Evaporation

European Centre for
Medium-Range

Weather
Forecasts (ERA)

6 h 1979–Present 80 km Worldwide

Climate Evaporation/Transpiration

Global Land
Evaporation

Amsterdam Model
(GLEAM)

Daily 1980–Present 0.25◦ Worldwide

Climate Evapotranspiration MODIS (MOD16A2) 8-Day 2001–Present 500 m Worldwide

Climate Precipitation
Nicholson African
Monthly Rainfall

Database
Monthly 1901–1984 Scattered Weather

Monitoring Stations Africa

Climate Precipitation WorldClim Monthly 1970–2000 30 arc s Worldwide
Climate Precipitation ESRL Daily 1 1979–Present (1) 0.5◦ 1 Worldwide

Climate Precipitation
National Centers for

Environmental
Information

Hourly/Daily Varies by location Scattered Weather
Monitoring Stations Worldwide

Climate Precipitation

European Centre for
Medium-Range

Weather Forecasts
(ERA)

6 h 1979–Present 0.4◦ Worldwide

Climate Precipitation
NASA Global
Precipitation
Measurement

30 min 1 2000–Present (1) 0.1◦ 1 Worldwide

Climate Solar Radiation WorldClim Monthly 1970–2000 30 arc s Worldwide

Climate Temperature

European Centre for
Medium-Range

Weather Forecasts
ERA

6 h 1979–Present 0.4◦ Worldwide

Climate Temperature
National Centers for

Environmental
Information

Hourly/Daily Varies by location Scattered Weather
Monitoring Stations Worldwide

Climate Temperature
(Land Surface) MODIS (MOD11A2) 8-Day 2000–Present 1 km Worldwide

http://caracal.info/
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Table A1. Cont.

Category Data Type Source and Dataset Temporal
Resolution Time Period Spatial Resolution Spatial

Coverage

Climate Temperature
Min/Max ESRL Daily 1 1979–Present 1 0.5◦ 1 Worldwide

Climate Temperature
Min/Max WorldClim Monthly 1970–2000 30 arc s Worldwide

Climate Water Vapor
Pressure WorldClim Monthly 1970–2000 30 arc s Worldwide

Climate Wind Speed

European Centre
for Medium-Range
Weather Forecasts

(ERA)

6 h 1979–Present 0.4◦ Worldwide

Climate Wind Speed WorldClim Monthly 1970–2000 30 arc s Worldwide
Land Cover LAI MODIS (MOD15A2H) 8-Day 2002–Present 500 m Worldwide
Land Cover Land Cover FAO HWSD N/A N/A 30 arc s Worldwide
Land Cover Land Cover Type MODIS (MCD12Q1) Yearly 2001–Present 500 m Worldwide

Land Cover Vegetation
Indices MODIS (MOD13Q1) 16-Day 2000–Present 250 m Worldwide

Soil Soil Type FAO HWSD N/A N/A 30 arc s Worldwide
Surface

Reflectance
Surface

Reflectance MODIS (MOD09A1) 8-Day 2002–Present 500 m Worldwide

Topography Elevation Google Maps
Elevation N/A N/A 3 arc s Worldwide

Topography Elevation NASA Shuttle Radar
Topographic Mission N/A N/A 3 arc s Worldwide

Topography Elevation FAO HWSD N/A N/A 30 arc s Worldwide
1 Data resolution and availability may vary by subproduct.
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