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Abstract: Rainfall–runoff phenomena are among the main processes within the hydrological cycle.
In urban zones, the increases in imperviousness cause increased runoff, originating floods. It is
fundamental to know the sensitivity of parameters in the modeling of an urban basin, which makes
the calibration process more efficient by allowing one to focus only on the parameters for which the
modeling results are sensitive. This research presents a formal sensitivity analysis of hydrological
and hydraulic parameters—absolute–relative, relative–absolute, relative–relative sensitivity and
R2—applied to an urban basin. The urban basin of Tuxtla Gutiérrez, Chiapas, in Mexico is an area
prone to flooding caused by extreme precipitation events. The basin has little information in which
the records (with the same time resolution) of precipitation and hydrometry match. The basin model
representing an area of 355.07 km2 was characterized in the Stormwater Management Model (SWMM).
The sensitivity analysis was performed for eight hydrological parameters and one hydraulic for
two precipitation events and their impact on the depths of the Sabinal River. Based on the analysis,
the parameters derived from the analysis that stand out as sensitive are the Manning coefficient
of impervious surface and the minimum infiltration speed with R2 > 0.60. The results obtained
demonstrate the importance of knowing the sensitivity of the parameters and their selection to
perform an adequate calibration.

Keywords: sensitivity analysis; rainfall–runoff model; parameters model

1. Introduction

Rainfall–runoff phenomena are one of the main processes within the hydrological cycle. In urban
zones, the increases in imperviousness cause increased runoff, originating floods. Therefore, to protect
the population and movable and immovable property, hydraulic structures that make up urban
drainage (storm hydrants, collectors, emitters, and retention works, among others) are analyzed and
designed. According to Jha et al. [1], the number of reported flood events affected people and associated
economic damage has been significantly increasing over the past two decades. One tool in the analysis
and design of these structures is the use of the urban drainage models, which have been developed for
the last 30 years to contribute to the management and planning of stormwater [2,3]. The SWMM (Storm
Water Management Model) was developed by the Environmental Protection Agency [4] to simulate
the rainfall–runoff process in urban watersheds and is widely used for urban planning, analysis and
design related to drainage systems [5–7]. Numerous studies have investigated the use of this model
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to describe different phenomena related to runoff in urban basins; for example, Randall et al. [8]
implemented SWMM to assess the behavior of runoff under Low Impact Development (LID) scenarios.
Chang et al. [9] evaluated the DENFIS (Dynamic Evolving Neural Fuzzy Inference System) model
performance compared with the physically based model SWMM. Agarwal and Kumar [10] implemented
a runoff model to determine flood impact using the Green-Ampt Infiltration model in SWMM.

Technological advances in hydrological modeling have incorporated the use of data with greater
detail in terms of spatial and temporal resolution. On the other hand, remote measurement techniques
allow information to be obtained quickly in large areas through sensors operating in different spectral
bands, which opens the door to the use of large amounts of data applied to hydrological models,
which thereby become robust [11]. The ability to incorporate spatially distributed digital information is
then hampered by a lack of data on the same time scale (precipitation measurement and runoff) [12,13].
However, modeling hydrological processes can be challenging, particularly in highly heterogeneous
urbanized areas (land-use variation, slope, coverage) that produce multiple interactions between urban
drainage structures and system (for wastewater and stormwater) at different temporal and spatial
scales, which increases data requirements and complexity [14]. These complexities, in addition to the
data shortage at the required level, make it difficult to define a universal methodology for reproducing
urban flows at the catchment scale.

Hydrological models are approximations of natural systems, which create a substantial discrepancy
between the results of the model and reality [15]. The results of the models need to be adjusted
by means of parameter calibration, which helps to match the predictions with the corresponding
observations [16–18]. The increase in the number of parameters that are adjusted in a model leads to
a greater workload in the calibration process [19,20]. Therefore, to increase the speed of the process,
it is important to perform a sensitivity analysis to learn the set of parameters to which the models are
sensitive, to understand their behavior against their values’ variation and to use this information to
limit the number of parameters in the calibration [21,22]. It is therefore recommended to perform a
sensitivity analysis before starting with hydrological modeling [23,24]. This analysis has been applied
in different levels of watersheds. Shin and Choi [25] found that the size of the catchment makes a
difference in the parameter sensitivity between rainfall events.

Some researchers, such as Mannina and Viviani [26], considered sensitivity analysis, identifying
the model’s most sensitive parameters. They applied the analysis to 17 parameters that influence the
results of the discharges and concentrations of urban drainage, managing to reduce the number of
parameters to 12, which were subsequently used for the calibration of the model. Kleidorfer et al. [27]
analyzed the impact of uncertainty on modeling input data considering the parameters with greater
sensitivity, using the Metropolis–Hastings algorithm for the assessment of sensitivity in the calibration
parameters. Bárdossy [28] mentions that hydrological parameters cannot be identified as a single set of
values, and changes to a parameter can be absorbed by the remaining parameters of the model. Other
researchers, such as Thorndahl et al. [29], performed a sensitivity analysis of a set of parameters, by
comparing the conditions of the conceptual model and the general model, finding that the parameter
of greater sensitivity is the hydrological reduction factor. Bajracharya et al. [30] performed a global
sensitivity analysis (using the Variogram Analysis of Response Surfaces technique) of the parameters
that govern the behavior of runoffs of the Nelson Churchill River basin, represented in the Hydrological
Predictions for the Environment model (HYPE). Other studies that perform sensitivity analysis applied
to the SWMM model reveal the behavior of the parameters according to the study area and its
characterization [31–34].

Due to data being scarce in most of the world (especially in developing countries), research should
focus on the reliability of hydrological models. This can be achieved by comparing different sensitivity
analysis approaches in data-scarce regions.

This research presents a methodology that uses four common expressions to assess the sensitivity of
hydrological model parameters in an urban basin in Mexico. The expressions used are absolute–relative
sensitivity, relative–absolute sensitivity, relative–relative sensitivity, and correlation coefficient R2.
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This use of expressions aims to show their performance together to determine the sensitivity of
parameters in a well-known open-source model (SWMM). This application will show the benefits of
implementing such an analysis in applications with limited data. This work builds on our previous
study [35], in which a storm with a single peak was evaluated as input data and a sensitivity index
was calculated. In this work, a more robust sensitivity analysis is performed, as parameter influence is
evaluated with more than one equation. In addition, two different storms were evaluated, allowing us
to observe the difference in behavior of the riverbed depths due to the parameters under these differing
conditions. The study comprises the analysis of nine parameters that are used for modeling and are
difficult to estimate because of their complexity and variability in surface coverage in an urban context.

The document is organized as follows: Section 2 illustrates the materials and methods used in
sensitivity analysis; Section 3 presents the results of the analysis; Section 4 presents the discussion on
the results. Finally, Section 5 presents the main conclusions arising from this work.

2. Materials and Methods

2.1. Study Area

The Sabinal River basin has 355.07 km2 of surface, is located between the coordinates 16◦42′ and
16◦54′ north and between the latitude 93◦20′ and 9◦02′ west, with an elevation in the range of 384 to
1064 m above sea level and an average elevation of 724 m above sea level. This basin is characterized
by 42.31% permeable soil and 57.69% waterproof soil, the latter representing urban areas. In general,
the basin has an average slope of 6.89% and a concentration time of 328.80 min. The city of Tuxtla
Gutiérrez, Chiapas in México is located within the Sabinal River basin and is crossed from west to east
by the main riverbed, 21 km long. It has flooding problems caused by extreme precipitation events,
which can occur mainly from May to October. Therefore, sensitivity analysis was carried out using the
extreme precipitation events of 07/10/2011 (Event 1) and 07/27/2011 (Event 2), recorded every 10 min by
seven automatic stations. Figure 1 shows the automatic stations (yellow circles), as well as the urban
basin of the Sabinal River, which was divided into 96 sub-basins for modeling. Tables 1 and 2 show the
properties of the precipitation events mentioned above, in view of Figure 2a,b.
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Table 1. Precipitation characteristics, Event 1.

Station Duration (min) ∆t (min) Maximum
Intensity, (mm/h)

Accumulated
Precipitation (mm)

Berriozábal 490.00 10.00 100.50 45.50
Caridad 490.00 10.00 117.00 53.75
Mirador 490.00 10.00 81.00 27.00

Observatorio 490.00 10.00 115.50 23.75
San Antonio

Bombanó 490.00 10.00 78.00 32.25

Vista Hermosa 490.00 10.00 36.00 33.25
Viva Cárdenas 490.00 10.00 79.50 35.75

Table 2. Precipitation characteristics, Event 2.

Station Duration (min) ∆t, (min) Maximum
Intensity, (mm/h)

Accumulated
Precipitation (mm)

Berriozábal 1820.00 10.00 57.00 22.50
Caridad 1820.00 10.00 70.50 43.75
Mirador 1820.00 10.00 84.00 44.25

Observatorio 1820.00 10.00 81.00 58.75
San Antonio

Bombanó 1820.00 10.00 19.50 16.50

Vista Hermosa 1820.00 10.00 51.00 32.00
Viva Cárdenas 1820.00 10.00 40.50 22.25
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Figure 2. (a) Precipitation Event 1 and (b) Precipitation Event 2.

Like precipitation data, data from the Parque del Oriente hydrometric station are available at the
exit of the basin, which has depth information for the month of July with registration every 10 min in
the river section. Figure 1 shows the location of the hydrometric station with the number 5 and with the
triangle symbol in red. Figure 3a,b show the depths recorded by that station caused by precipitation
events 1 and 2.
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2.2. Hydrological Model

The integrated Stormwater Management Model (SWMM) was generated by the Environmental
Protection Agency in the United States [5]. SWMM is a dynamic hydrology–hydraulic water quality
simulation model that can be used for single-event or long-term (continuous) simulation of runoff

quantity and quality from primarily urban areas [4,5,8]. The runoff component operates on a collection
of sub-catchment areas that receive precipitation and generate runoff. Each one of the sub-basins
is considered as a nonlinear reservoir, where the contribution of flow to the deposits comes from
precipitation, snow or releases from upstream stores. SWMM also simulates route flows from the
system, infiltration, evaporation and surface runoff. The surface runoff of a given area is determined
when the water depth within a catchment exceeds the maximum storage value, and the outflow is
determined by Manning (1), which integrates the continuity Equation (2), considering friction through
the incorporation of the Manning coefficient (n). The major loss considered in the rainfall and runoff

modeling is infiltration loss. In this study, infiltration loss is calculated with the Horton Equation (3) [36].
The infiltration losses are considered only from the pervious areas of a sub-catchment [5].

QM =
1
n

L (y− y′)5/3s1/2 (1)

Here, QM is the flow by Manning, n is the Manning coefficient, L is the width sub-basin, y is the water
depth, y′ is the lowering of height storage and s is the slope.

A
∂y
∂t

= Ai−Q (2)

Here, Q is the flow, A is the area of the basin, i is the intensity of the rain, y is the depth of storage in
depressions and t is the time.

fp = f0 − ( f0 − f∞)e−∝d(t−tw) (3)

Here, fp is the soil infiltration capacity, f∞ is the minimum or end value of fp (in t = ∞), f0 is the
maximum or initial value of fp (in t = 0), tw is the start time of the storm and ∝d is the decay coefficient.

SWMM requires the input of parameters related to catchment characteristics, sewer network
and soil type. The values range of the parameters was derived from the following (Table 3, [37,38]):
Manning’s roughness for overland surfaces and conduits, soil infiltration parameters and surface
depression storage. Manning’s roughness is the measure of resistance to the runoff flow. The value of
the roughness coefficient depends on the type of soil, surface cover and vegetation in pervious areas,
and in impervious areas it depends on the type of the material used in the construction of streets and
building roofs. Other parameters depend on the soil type and the slope; for example, the impervious
area depression storage, which is defined as water stored in depressions on impervious areas (depleted
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only by evaporation), and pervious area depression storage is defined as water stored in depressions on
pervious areas (subject to infiltration and evaporation). Likewise, the measure of urbanization is given
as the percentage of imperviousness for each sub-catchment or area depression storage, where the
urban catchments are composed of pervious and impervious areas (which increases when the urban
area develops). For Horton’s infiltration equation, the values of minimum or maximum infiltration
rate and decay coefficient depend on the soil, vegetation and initial moisture content; these parameters
should be estimated using results from the field or from specialized literature. Finally, Manning’s
roughness coefficient for conduits is one of the parameters used to calculate flow in a pipe or open
channel and depends on the material type.

Table 3. SWWM model parameters.

Parameter Abbreviation Maximum Value Minimum Value

Manning’s duct coefficient ManN 0.010 0.030
Manning’s N for impervious area Nimperv 0.001 0.200

Manning’s N for pervious area Nperv 0.010 0.200
Depth of depression storage on

impervious area, mm Simperv 0.000 10.000

Depth of depression storage on
pervious area, mm Sperv 0.000 20.000

Percentage of impervious area
with no depression storage, % PctZero 0.000 100.000

Maximum infiltration rate, mm/hr MaxRate_fa 1.000 200.000
Minimum infiltration rate, mm/hr MinRate_fe 1.000 25.000

Decay coefficient, 1/hr Decay_k 1.000 30.000

2.3. Sensitivity Analysis

Parameter sensitivity analysis is a necessary background for any deeper analysis and helps
to improve the understanding of the model’s behavior. Its goal is to explore the change in model
output resulting from a change in model parameters or model inputs and to separate influential from
non-influential parameters. Sensitivity analysis investigates the sensitivity of a parameter with respect
to the simulation results at a certain parameter value. The following expressions calculate different
sensitivity indexes for each of the possible model parameters [39,40]:

si, j(ΘM) = ΘM, j
∂ f

(
ΘM, j

)
∂ΘM, j

(4)

si, j(ΘM) =
1

f
(
ΘM, j

) ∂ f
(
ΘM, j

)
∂ΘM, j

(5)

si, j(ΘM) =
ΘM, j

f
(
ΘM, j

) ∂ f
(
ΘM, j

)
∂ΘM, j

(6)

where f
(
ΘM, j

)
represents the n output variables of the model, and ΘM, j represents the jth independent

parameters of the model.
Expression (4) represents the absolute–relative sensitivity, which describes the absolute change

in the results for a relative change in parameters. Expression (5) is the relative–absolute sensitivity,
which describes the relative change in the results for an absolute change of the parameter. Finally,
expression (6) is the relative–relative sensitivity, which describes the relative change in results for a
relative change in parameters [39,40].
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The gradient term ∂ f
(
ΘM, j

)
/∂ΘM, j is solved numerically by using runs of the model with slightly

different values of ΘM. Then the gradient term can be approximated by expression (7):

∂ f
(
ΘM, j

)
∂ΘM, j

=
f
(
ΘM, j + ∆ΘM, j

)
− f

(
ΘM, j − ∆ΘM, j

)
2∆ΘM, j

(7)

where ∆ΘM, j is a small increment in the parameter value.
In addition to the three equations above, the coefficient of determination R2 calculation is used.

This is defined as the squared value of the coefficient of correlation [41].

R2 =


∑n

i=1

(
Oi −O

)(
Pi − P

)
√∑n

i=1

(
Oi −O

)2
√∑n

i=1

(
Pi − P

)2


2

(8)

Here, O are the observed values and P are the modeling values.
The range of R2 lies between 0 and 1 and describes how much of the observed dispersion is

explained by the prediction. A value of 0 means no correlation, whereas a value of 1 means that the
dispersion of the prediction is equal to that of the observation [41].

2.4. Methodology

The general methodology set out in this work for sensitivity analysis is shown in Figure 4.
The methodology indicates that the sensitivity analysis process begins with the characterization of
the urban basin in which the runoffs (depths in the riverbed) promoted by the precipitation event are
evaluated. Topographic, hydrographic and land-use characteristics were configured.Hydrology 2020, 7, 73 8 of 21 
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The hydrological model SWMM is then selected to perform runoff modeling. The input data
required for modeling are then entered—in this case, precipitation events and parameters.

The next step is the individual sensitivity analysis of the input, hydrological and hydraulic
parameters. The analysis is performed by evaluating the runoff outputs of the model, generated by
1000 individual values of one of the modeling parameters (randomly generated with the Monte Carlo
Simple method), and keeping the values of the other parameters fixed. The process is repeated for
each of the parameters. In the next step, the sensitivity associated with the modeling results generated
by the variation of individual parameters is calculated with Equations (4)–(6).

Obtaining sensitivity of the parameters includes doing the following:
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• Obtaining box plot from the results of accumulated depths and calculation of mean, standard
deviation and coefficient of variation in order to evaluate the dispersion of the data.

• Obtaining box plot of parameters and calculation of mean, standard deviation and variance in
order to evaluate data dispersion.

Once the sensitivity is calculated, R2 is obtained in order to evaluate the performance of the results
due to the parameters (Equation (8)).

Finally, validation of sensitivity analysis results is carried out using event 2 and repeating the
steps of this methodology.

3. Results

3.1. Sensitivity Analysis Event 1

This section shows the results of the sensitivity analysis carried out in the urban basin of the
Sabinal River using the Equations (4)–(6) and (8) described above. The model’s simulations were
carried out using input data (hydrological and hydraulic parameters and precipitation Event 1) in
SWMM 5.0. In addition, hydrometric station 5 is represented in the model, from which the results of
the cumulative depth series corresponding to the variation of the parameters (1000 embodiments per
parameter) were taken.

Figure 5 shows the variation of the accumulated depths with respect to the parameters.
The accumulated output depth values for MinRate_fe are in a range of 167.03 to 218.56 m, and Nimperv
from 169.94 to 243.66 m, approximately. The accumulated depth values, generated by the MinRate_fe
parameter, within quartile two (179.03) are the closest to the accumulated depth (183.33 m) of the
hydrometric series observed in the Sabinal. The Nimperv parameters that generate depth values closer
to those observed (Figure 5) are observed between the lower limit and quartile one (169.94 to 210.25).
On the other hand, the parameters Decay_k, MaxRate_fa, PctZero, Sperv, Simperv and Nperv generate
output results with less variation between them. As for the variation of the ManN parameter, it does
not generate a change in the modeling results.Hydrology 2020, 7, 73 9 of 21 
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Figure 5. Variation of the accumulated depth on the Sabinal River with respect to the parameters.

A key feature of Figure 5 is that MinRate_fe has a positive bias of the accumulated depths, since
the case’s whisker is longer towards the high values (there is greater dispersion of quartile three at the
upper limit of the data), while Nimperv has a negative bias. This is because the box whiskers are long
towards the low values (greater dispersion of the lower limit to the quartile one data).

In Table 4, it can be noted that the results obtained from accumulated depths have greater variation
with respect to the MinRate_fe and Nimperv parameters since the standard deviation and coefficient of
variation are 20.09 m and 10.73%, respectively, for MinRate_fe, and for Nimperv, the standard deviation
is 19.85 m and coefficient of variation is 8.97%.
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Table 4. Mean µ, standard deviation σ, and coefficient of variation Cv of the depth values with respect
to the parameters, Event 1.

Parameter µ (m) σ (m) Cv (%)

Nimperv 221.30 19.85 8.97
Nperv 178.05 2.15 1.21

Simperv 178.31 1.96 1.10
Sperv 175.10 3.89 2.22

PctZero 177.75 3.23 1.82
MaxRate_fa 170.61 3.34 1.96
MinRate_fe 187.25 20.09 10.73

Decay_k 178.57 1.85 1.04
ManN 176.08 0.00 0.00

Once the analysis of the accumulated depths had been done, sensitivity analysis was carried out
for each of the expressions presented. Figure 6 shows that the rate of change of the random parameters
used in this analysis generated different values of absolute–relative sensitivity indexes, except ManN,
the value of which was zero because it had no variation in accumulated depth. As a result, in quartile
three at the upper limit, the parameters MinRate_fe and Nimperv have greater dispersion of the
high values (positive bias) and of absolute-relative sensitivity values: 0.0810 to 0.1890 and 0.0761 to
0.1767, respectively.
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example, the absolute–relative sensitivity values of the Nimperv parameter are 0.1047 and 0.0110 of 
standard deviation and variance, respectively; 0.5723 for standard deviation and 0.3276 for variance 
in the case of relative–absolute sensitivity; and for relative–relative sensitivity, 0.04870 for standard 
deviation and 0.00237 for variance. In the case of MinRate_fe for the relative–absolute sensitivity, the 
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On the other hand, Figure 7 shows the results of the relative–absolute sensitivity. The Nimperv
and Nperv parameters have high dispersion values: Nimperv from 1.1232 to 2.1777 (quartile three at
upper limit) and Nperv from 0.2231 to 0.4943 (quartile three to upper limit), both parameters with
positive bias. All other parameters have low sensitivity values with less dispersion.
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Finally, Figure 8 shows the sensitivity values of the parameters obtained from the relative–relative
relationship: the Nimperv and MinRate_fe parameters are those with high sensitivity values and with
the highest dispersion ranging from quartile two to the upper limit. The sensitivity values for Nimperv
range from 0.0482 to 0.1635 and for MinRate_fe from 0.0554 to 0.2180. As in calculations with previous
sensitivity calculation expressions, the other parameters have less bias in the obtained values.
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Table 5 shows the statistical characteristics of each of the above figures, which correspond to the
different methods to obtain the sensitivity of the model results according to the parameters. For example,
the absolute–relative sensitivity values of the Nimperv parameter are 0.1047 and 0.0110 of standard
deviation and variance, respectively; 0.5723 for standard deviation and 0.3276 for variance in the case
of relative–absolute sensitivity; and for relative–relative sensitivity, 0.04870 for standard deviation and
0.00237 for variance. In the case of MinRate_fe for the relative–absolute sensitivity, the values are 0.2223
and 0.00494 for standard deviation and variance, respectively, and for the relative–relative sensitivity
they are 0.08626 for standard deviation and 0.00744 for variance. In the case of relative–absolute
sensitivity, instead of MinRate_fe, it was the Nperv parameter with values of 0.3961 for standard
deviation and 0.1569 for variance.

Table 5. Mean µ, standard deviation σ and variance, σ2 of sensitivity values, Event 1.

Parameter
Absolute–Relative Relative–Absolute Relative–Relative

µ σ σ2 µ σ σ2 µ σ σ2

Nimperv 0.0670 0.1047 0.0110 0.7875 0.5723 0.3276 0.05945 0.04870 0.00237
Nperv 0.0139 0.0491 0.0024 0.2332 0.3961 0.1569 0.02644 0.06645 0.00442

Simperv 0.0116 0.0241 0.0006 0.0061 0.0262 0.0007 0.02112 0.05493 0.00302
Sperv 0.0184 0.0424 0.0018 0.0041 0.0192 0.0004 0.02677 0.05586 0.00312

Pctzero 0.0187 0.0419 0.0018 0.0009 0.0066 0.0000 0.02659 0.07668 0.00588
Maxrate_fa 0.0207 0.0695 0.0048 0.0007 0.0042 0.0000 0.03378 0.06498 0.00422
Minrate_fe 0.0970 0.2223 0.0494 0.0202 0.0660 0.0044 0.08293 0.08626 0.00744
Decay_k 0.0109 0.0240 0.0006 0.0026 0.0106 0.0001 0.02447 0.07148 0.00511
ManN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000

Based on the above analysis, Figure 9a (medium sensitivity) and Figure 9b (maximum sensitivity,
according to the upper limit of the whisker box) show the most sensitive parameters in the hydrological
simulation model.
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R2 was calculated according to the methodology. In Figure 10, R2 efficiency results are shown: it 
can be seen that the R2 values for Nimperv are in the range of 0.31 to 0.82, having greater amplitude 
in the whiskers box. The next parameter with greater amplitude in the whiskers box is MinRate_fe, 
with a range of R2 from 0.62 to 0.79. The other parameters have less bias in the obtained values. 

Figure 9. (a) Average sensitivity of modeling parameters and (b) maximum sensitivity of modeling
parameters, Event 1.

R2 was calculated according to the methodology. In Figure 10, R2 efficiency results are shown:
it can be seen that the R2 values for Nimperv are in the range of 0.31 to 0.82, having greater amplitude
in the whiskers box. The next parameter with greater amplitude in the whiskers box is MinRate_fe,
with a range of R2 from 0.62 to 0.79. The other parameters have less bias in the obtained values.Hydrology 2020, 7, 73 12 of 21 
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parameters with lower Simperv sensitivity and Decay_k. 
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Based on the sensitivity and R2 calculation, Figure 11a,b show the behavior of the depths generated
by Event 1. This shows the change of the depth hydrogram according to the maximum, minimum and
mean value and the parameter value with greater R2, for parameters with higher Nimperv sensitivity
and MinRate_fe.
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Figure 11. Depth levels of Sabinal river using (a) Nimperv parameter and (b) MinRate_fe parameter.
The blue line is a minimum value, the magenta line is an average value, the green line is a maximum
value, the red line is a parameter with a maximum value of R2 and the black line is depth levels in
hydrometric station.
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In contrast to Figure 12a,b, the change in the depth hydrogram is observed according to the
maximum, minimum, mean value and the parameter value with the highest R2 for two of the parameters
with lower Simperv sensitivity and Decay_k.Hydrology 2020, 7, 73 13 of 21 
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can be observed that the parameter that generates the greatest variation in the accumulated output 
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generated by the Nimperv parameter, within the lower bound and quartile two (371.58 to 437.20), are 
the most dispersed and close to the observed accumulated depth. The MinRate_fe parameter 
generated depth values close to observed and less dispersion than the previous parameter (Figure 
13) are observed between the lower bound and the upper bound (367.84 to 384.52). On the other hand, 
the parameters MaxRate_fa, PctZero, Decay_k, Sperv, Simperv and Nperv generate output results 
with less variation between them (compact boxes). As for the variation of the ManN parameter, these 
do not result in a change in modeling results. 

One key feature in Figure 13 is that for Nimperv, it has a negative bias of the accumulated depths, 
since the whisker of the box is longer towards the low values (there is greater dispersion of the lower 
limit to quartile one of the data). With respect to the above, in Table 6, it can be noted that the results 
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Figure 12. Depth levels of Sabinal river using (a) Simperv parameter and (b) Decay_k parameter.
The blue line is a minimum value, the magenta line is an average value, the green line is a maximum
value, the red line is a parameter with maximum value of R2 and the black line is depth levels in
hydrometric station.

3.2. Validation of Results, Event 2

This section shows the results of the sensitivity analysis carried out in the urban basin of the
Sabinal River according to the methodology proposed (expressions (4), (5), (6) and (8)). The modeling
was carried out with the input data (hydrological and hydraulic parameters and precipitation Event 2).
In this case, the accumulated depth of the observed hydrometry was 201.25 m.

Figure 13 shows the variation of the accumulated depths with respect to the parameters, and it can
be observed that the parameter that generates the greatest variation in the accumulated output depth
values is Nimperv, which is in a range of 371.58 to 496.41 m. The accumulated depth values, generated
by the Nimperv parameter, within the lower bound and quartile two (371.58 to 437.20), are the most
dispersed and close to the observed accumulated depth. The MinRate_fe parameter generated depth
values close to observed and less dispersion than the previous parameter (Figure 13) are observed
between the lower bound and the upper bound (367.84 to 384.52). On the other hand, the parameters
MaxRate_fa, PctZero, Decay_k, Sperv, Simperv and Nperv generate output results with less variation
between them (compact boxes). As for the variation of the ManN parameter, these do not result in a
change in modeling results.
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One key feature in Figure 13 is that for Nimperv, it has a negative bias of the accumulated depths,
since the whisker of the box is longer towards the low values (there is greater dispersion of the lower
limit to quartile one of the data). With respect to the above, in Table 6, it can be noted that the results
obtained from accumulated depths have greater variation with respect to the Nimperv parameter, since
the standard deviation and coefficient of variation are 32.47 m and 7.12%. For MinRate_fe, the standard
deviation is 4.89 m and the coefficient of variation is 1.30%.

Table 6. Mean µ, standard deviation σ, and coefficient of variation Cv of the depth values with respect
to the parameters, Event 2.

Parameter µ (m) σ (m) Cv (%)

Nimperv 455.74 32.47 7.12
Nperv 379.46 4.38 1.15

Simperv 383.17 2.60 0.68
Sperv 380.89 3.85 1.01

PctZero 383.11 2.66 0.69
MaxRate_fa 376.21 3.44 0.91
MinRate_fe 376.43 4.89 1.30

Decay_k 383.45 2.38 0.62
ManN 387.46 0.00 0.00

On the other hand, the sensitivity results indicate that parameter Nimperv has greater dispersion
(positive bias) in quartile three and the upper limit (Figure 14), where the values of absolute–relative
sensitivity range from 0.0654 to 0.1514, respectively. In contrast, the parameters MinRate_fe, Decay_k,
MaxRate_fa, PctZero, Sperv, Simperv and Nperv have sensitivity values with less dispersion.
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Figure 15 shows the results of the relative–absolute sensitivity: the Nimperv and Nperv parameters
are the ones with the highest sensitivity values with respect to the model outputs; in this case, Nimperv
from 0.7863 to 1.4513 (quartile three at upper limit) and Nperv from 0.2231 to 0.4943 (quartile three to
upper limit), both parameters with positive bias. All other parameters have low sensitivity values with
less dispersion.
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standard deviation and variance, respectively. On the other hand, these values are 0.6241 for the 
standard deviation and 0.3895 of variance with the relative–absolute sensitivity. Finally, for relative–
relative sensitivity, these values are 0.05722 for standard deviation and 0.00327 for variance. In this 
case, the Nperv and Simperv parameters are not considered, because having a large amount of outlier 
data causes the standard deviation and sensitivity variance values to increase. 

Based on the above analysis, Figure 17a,b show the medium sensitivity and maximum 
sensitivity (according to the upper limit of the whisker box) of parameters that generate the sensitivity 
in the hydrological simulation model. 
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Finally, Figure 16 shows the sensitivity values of the parameters obtained from the relative–relative
relationship: the Nimperv parameter is the one with high sensitivity values with the highest dispersion
ranging from quartile three to the upper limit. In this case, the sensitivity values for Nimperv range
from 0.0679 to 0.1326. As in calculations with previous sensitivity calculation expressions, the other
parameters have less dispersion in the obtained values.
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Table 7 shows the statistical characteristics of each of the above figures, which correspond to
the different methods of obtaining the sensitivity of the model results according to the parameters.
For example, the Nimperv parameter for relative–absolute sensitivity has values of 0.1031 and 0.0106
of standard deviation and variance, respectively. On the other hand, these values are 0.6241 for the
standard deviation and 0.3895 of variance with the relative–absolute sensitivity. Finally, for relative–
relative sensitivity, these values are 0.05722 for standard deviation and 0.00327 for variance. In this
case, the Nperv and Simperv parameters are not considered, because having a large amount of outlier
data causes the standard deviation and sensitivity variance values to increase.

Based on the above analysis, Figure 17a,b show the medium sensitivity and maximum sensitivity
(according to the upper limit of the whisker box) of parameters that generate the sensitivity in the
hydrological simulation model.
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Table 7. Mean, µ, standard deviation, σ, and variance, σ2, of sensitivity values, Event 2.

Parameter
Absolute–Relative Relative–Absolute Relative–Relative

µ σ σ2 µ σ σ2 µ σ σ2

Nimperv 0.0596 0.1031 0.0106 0.6875 0.6241 0.3895 0.05345 0.05722 0.00327
Nperv 0.0107 0.0221 0.0005 0.2182 0.6057 0.3668 0.02482 0.10692 0.01143

Simperv 0.0090 0.0445 0.0020 0.0059 0.0323 0.0010 0.03140 0.20057 0.04023
Sperv 0.0107 0.0294 0.0009 0.0023 0.0090 0.0001 0.02197 0.10039 0.01008

Pctzero 0.0090 0.0415 0.0017 0.0005 0.0028 0.0000 0.02181 0.07978 0.00637
Maxrate_fa 0.0108 0.0321 0.0010 0.0002 0.0008 0.0000 0.02257 0.10334 0.01068
Minrate_fe 0.0490 0.3743 0.1401 0.0057 0.0305 0.0009 0.03501 0.23318 0.05437
Decay_k 0.0086 0.0340 0.0012 0.0017 0.0108 0.0001 0.02140 0.10890 0.01190
ManN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000
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R2 was calculated according to the methodology. In Figure 18, R2 efficiency results are shown,
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Based on the sensitivity and R2 calculation, Figure 19a,b show the behavior of the depths generated
by Event 1. This shows the change of the depth hydrogram according to the maximum, minimum,
and mean values and the parameter value with greater R2. These four parameters have higher Nimperv
sensitivity and one of the lowest sensitivity parameters, MinRate_fe.
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4. Discussion

Some authors, such as Baek et al. and Sharifan et al. [42,43], suggest Nimperv and ManN as
influential parameters in modeling with SWMM. Other researchers like Randall et al. [8] identified
Horton’s infiltration speeds as relatively sensitive parameters. Temprano et al. [44] also found the
parameter with the highest sensitivity is the percentage of impervious surface. Guan et al. [45–47] report
that the sensitive parameters in modeling in SWMM are those related to waterproofness, specifically in
areas with depressions, Manning n of surfaces, and ducts.

This work implements the use of scarce data. Two different precipitation events and nine different
input parameters were used. Each event was evaluated to show the robustness of the sensitivity
analysis methodology in the hydrological modeling of urban basins, due to each individually analyzed
parameter. The results show differences in the sensitivity of the model to the calculated parameters,
where there is the accumulated depth as the comparison target.

For Event 1, it was found that the parameters with the highest sensitivity are Nimper and
MinRate_fe. For Nimperv, cumulative depth values decrease while Nimperv values decrease and
increase their values in the same way the parameter values grow. In the case of MinRate_fe, as the
value of the parameter is lowered, the accumulated depth increases, and as the value of the parameter
increases, the accumulated depth decreases. The above has a direct impact on the peak flow and runoff

volume of the output hydrogram. For example, a high Nimperv value produces a dimmed output
hydrogram with a higher runoff volume. A small Nimperv value produces a hydrogram with higher
peak flow and lower runoff volume. In the case of MinRate_fe, a low parameter value produces an
output hydrogram with high peak flow and higher runoff volume, and a high parameter value results
in a hydrogram with a lower runoff volume and high peak flow.

In the case of validation with Event 2, the highest sensitivity parameter is Nimperv. The behavior
of the parameter values and the values of the output hydrograms behave in the same way as in the
previous case: its impact is on the volume of runoff and peak flow. MinRate_fe is less sensitive because
the precipitation event is made up of two storms, and as a result, there is greater saturation in the
ground at the end of the first peak of the storm. The remaining parameters for both Event 1 and Event
2 have a lower sensitivity relative to the result spectrum of the accumulated depths and have less
influence on runoff volume and peak flow. In addition to the configuration of the basin and the location
of the analysis point, the ManN parameter does not generate sensitivity in the model outputs. This may
be due to the amount of base flow, the runoff generated by the nearby sub-basins, and the velocity.

According to the results, these parameters can be applied to carry out the calibration process.
In turn, these parameters can be used individually or together. For example, in this case, R2 efficiencies
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greater than 0.60 were found, indicating that there is more than one possible Nimperv parameter value
that calibrates the model with a reliable fit, that is, forming sets of two or more parameters and thus
having a better fit to the observed hydrogram [48]. The results show that with the methodology used,
it is possible to have reliable calibration with scarce data. According to this study, having more than
one hydrometric station would be calibrated according to the area of influence of the station, applying
the methodology used in this research.

For expressions for calculating the sensitivity of modeling results with respect to the reason for
changing the parameters, it was found that they correctly identify the parameters that cause the most
variation in the results. SWMM correctly represents the rainfall–runoff phenomenon, and the sensitivity
of the input parameters depends on the characterization of the basin under study, precipitation and
antecedent moisture, so the order of sensitive parameters is different for each area under study.

5. Conclusions

This study reflects the importance of sensitivity analysis of hydrological and hydraulic parameters
interacting in a hydrological model of an urban basin, mainly because these parameters allow one to
perform an adequate calibration of a model in which the runoff time series best fit the observed data
obtained from hydrometry.

Therefore, an effort should be made to perform this type of analysis and give certainty to the results
in modeling. Thus, it is also important to perform sensitivity analysis with different methodologies
that fit the needs of the modeler, since each case study is different.

For the case study, it can be concluded that satisfactory results were obtained, achieving the
objective of characterizing the sensitivity of the modeling parameters under a framework of hydrometric
data shortages and obtaining the result that the most important parameters of this basin are Nimperv
and MinRate. In addition, the analysis was not only performed using the Equations (4)–(6) but
complemented by the calculation of the standard deviation, variance and R2 of the result. Implemented
R2 shows that there are several parameters that provide a good representation of the system. The results
show that the sensitivity of the parameters depends on the basin under study and the effects of secondary
interactions between the model parameters. It is also shown that the most sensitive parameters in a
simulation vary according to the storm and the accumulated precipitation. As Knighton [21] suggested,
SWMM is well parameterized for the calculation of the rainfall–runoff ratio, so care must be taken
when identifying sensitive parameters and the order in which they are applied.

In cases where data scarcity is high, the implementation of methods that enable the quantification
of sensitivity in model predictions permit more reliable results.

Finally, subjectivity in rainfall–runoff modeling should be considered, since it depends mainly
on the expertise decision-making of the modeler; in future studies, the uncertainty analysis of such
models should be considered as well.
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