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Abstract: Wavelet transform, wavelet spectra, and coherence are popular tools for studying
fluctuations in time series in the form of a bidimensional time and scale representation. We discuss
two aspects of wavelet analysis—namely the significance and stochastic/deterministic character of
the wavelet spectra. Real-time series of discharge, sodium, and sulfate concentrations in the alpine
Rhône River, Switzerland, are used to illustrate these issues. First, the consequences of using an
arbitrary stochastic process (usually, AR (1)) instead of the best-fitted general ARMA process in the
evaluation of the significance of wavelet spectra are analyzed. Using a general ARMA instead of
AR (1) decreases the significance level of the differences in wavelet power spectra (WPS) of ARMA and
AR (1) compared to the WPS of the time series in all cases studied and points to a possible systematic
overestimation of significance in many published studies. Besides, the significance of particular
patches in the spectra is affected by multiple testing. A (conservative) way to circumvent this problem,
using global wavelet spectra and global coherence spectra, is evaluated. Finally, we discuss the issue
of causality and investigated it in the three measured time series mentioned above. Even if the use
of the best fitted ARMA pointed to no deterministic features being present in the corrected series
studied (i.e., stochastic processes are dominant in the three data series), coherence spectra between
variables allowed to reveal cause-effect relationships between two “coherent” variables and/or the
existence of a common effect on both variables. Therefore, such type of analysis provides a useful
tool to better understand data causal relationships.

Keywords: hydrological time series; continuous wavelet spectra; wavelet coherent spectra;
significance; causality

1. Introduction

Whenstudyingtimeseries, it isusual toperformaspectral (frequency)analysis (e.g., Fourier transform)
alongside the time analysis. As many time series resulting from natural phenomena are periodic or
quasi-periodic, such frequency analysis gives the fundamental oscillations of the phenomenon under
study. The Fourier transform, however, is only applicable to stationary time series data. When power at
different frequencies changes with time, results of spectra calculations can be misleading [1]. As natural
time series data are not stationary (e.g., climatic time series such as NAO and ENSO indexes, which do
show (quasi) periodicities, but with changing periods and strengths), other methods should be used
to study those series’ in the frequency domain. The most frequently applied, and probably the
best of such methods, is wavelet analysis (wavelet transform and wavelet spectrum), which gives a
two-dimensional description of the time series (both in time and in scale–frequency). Two types of
wavelet analyses exist, discrete and continuous; only the second will be used here.
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Wavelets are used in many fields where time series data are a central subject of study from
economics to climatology, astronomy, physiology, physics, geology, etc. In environmental sciences
and, particularly, hydrology, many authors calculate continuous wavelet power spectra (WPSs) and
wavelet coherence spectra (WCSs), most often applied to discharges [2–9]. Nitrate and other nutrient
concentrations have also been widely treated [10–18]. Reviews exist on hydrology applications of
wavelets [19] and hybrid wavelet-artificial intelligence models in hydrology [20]. Several free software
packages are available [21–24].

As is the case in other statistical questions (e.g., temporal trends), knowing when a feature of a
WPS or WCS of a time series is significant, and deducing from it the existence of a causal deterministic
effect, is not straightforward. In the case of wavelet analysis, three aspects need to be considered:
(i) the choice of the reference stochastic process; (ii) the problems derived from multiple testing;
(iii) causality itself. These three research questions are the object of this study and are discussed below.

Torrence and Compo [21] were the first to develop significance tests for WPSs and WCSs.
Any definition of statistical significance implies a comparison with a stochastic model. The usual
way to define significance in a wavelet spectrum is to compare the actual spectrum of the time series
with the spectrum of the stochastic AR (1) process (“red noise”) that best fits the original time series
[3–6,9,10,21–23,25–27]. If a particular point (t, s-scale) in the spectrum is outside, say, 95% of the
distribution of spectral power obtained from AR (1), it is admitted that a particular deterministic
cause(s) is (are) in play alongside the stochastic random process at this (95%) significance level.
Significance in WCSs can be defined in the same way, that is, adjusting an AR (1) process to each of the
two series we are comparing, obtaining a distribution of coherences at each point by using pairs of
realizations of both processes, and then comparing the coherence of the two-original series’ with the
distribution of coherence at each point. This is the method used in three of the four software packages
cited above. The reason for choosing AR (1) as a reference is that many geochemical processes can be
represented by that type of process [21]. What happens, however, if a series can be better fitted by a
stochastic process different from AR (1)? [28,29]. To our knowledge, this possibility has only been taken
into consideration by Aguiar-Conraria & Soares [24]. They have made available software based on an
ARMA (p,q) process type but they neither comment on nor compare it with the usual AR (1) choice.
Val et al. [18] mention the use of ARMA for significance estimation but they do not give any further
details either.

Some authors use white noise (AR (0)) instead of red noise as the reference process to estimate
significance, but again with little or no justification [8,13,30–33].

In principle, once the most suitable stochastic model is selected, it is possible to apply a significance
test at each (time, scale) point of the WPS to look for deterministic effects. In practice, however,
some problems related to significance in WPS remain unresolved, namely the multiple testing problem
(false positives or error I). For instance, if WPS were the result of a purely stochastic process, 5% of the
points would still present a spectral power higher than the 95% significance limit and would appear as
significant. We do not know how to differentiate those false positives, which are caused merely by
chance, from genuine peaks due to a deterministic cause. Besides, the power in a WPS point is correlated
with powers in nearby points because wavelet transform is the result of a convolution between mother
wavelet and time series values [30,34] and false positives appear as significant patches, not merely
points. Maraun et al. [23] developed an areal significance method that eliminates many, but not all,
of these false positives, but at the price of increasing error II (false negatives), i.e., not considering as
significant those points that are so.

In this study, we explore the consequences of failing to use the most suitable stochastic process
when assessing WPS and WCS significance through the evaluation of real-time series of discharge,
sodium, and sulfate in the alpine catchment of Rhône River in Switzerland. Then, we use global wavelet
spectra (GWSs) as a way of treating the multiple testing problem. Finally, the related question of
deterministic effects (causality) on those time series is also addressed by studying the global coherence
spectra (GCSs).
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2. Data and Methods

2.1. Data

Data used in this study comes from the Swiss NADUF programme. Switzerland has a network
of hydrological stations, belonging to the Swiss National River Monitoring and Survey Programme
(NADUF), which holds a long series of many physical and chemical parameters. The discharge
data used in this study (1074 evenly spaced points) are two-week averages of discharges measured
every 10 min at the hydrological station in Porte du Scex, Rhône River, Switzerland, during the
period 1974–2015.

Sodium and sulfate concentration data are two-week, discharge-weighted averages at the same
sampling point as discharges in the same period, 1974–2015, and with the same two-week periods.
There are 1052 sodium and 1049 sulfate data points. The few missing points have been interpolated
using the interp1 function of Matlab, which uses the piecewise cubic Hermite interpolation method.
For additional details on the NADUF data series, see [35,36].

2.2. Data Pre-Treatment and Reference Stochastic Processes Calculation

Before utilization, time series are detrended and standardized, as in Koscielny-Bunde et al. [37],
to eliminate short-term (seasonality) and long-term (trend) fluctuations. This is necessary to make the
time series as stationary as possible for the application of the methods to fit an ARMA model.

The trend is estimated with the non-parametric Mann–Kendall method and Sen’s slopes are
calculated as explained in [38]. Residual values XRt are obtained by subtracting trend straight line
from the series Xt instead of just the mean value as in [37]:

XRt = Xt − (a − b t) (1)

a and b being the Y-intercept and the Sen’s slope, respectively, and t the time.
To eliminate seasonality, the mean value Xmean of each month is subtracted from each residual

belonging to that month, and, to minimize possible seasonal variations of the variance, this difference
is normalized by the variance of the given month in the entire series, σ2, obtaining the corrected
(detrended and deseasonalized) time series XRCt:

XRCt = (XRt − Xmean)/σ2 (2)

To get the best fitting ARMA process, we use the ARMASA toolbox for Matlab, developed by
Broersen [39,40] and De Waele [29]. ARMASA can generate time series as realizations of a given
ARMA model as well as to select the optimal ARMA model (a stochastic process) corresponding to
a given time series. This procedure allows the assessment of the accuracy of the estimated model,
the computation of the autocorrelation function, and the power spectra of the series. The ARMAsel
algorithm calculates automatically the type and order of the stochastic process for the structures AR (p),
MA (q), and ARMA (r, r − 1).

AR (1) processes have also been fitted to time series using the “aryule” built-in function of Matlab,
which estimates the AR coefficient by the Yule-Walker approximation. 1000 realizations of each process
are calculated and an autocorrelation function (ACF) is calculated for each realization. The ACFs of the
original time series (transformed as explained above) are then compared to the ACFs obtained with
AR (1) and the optimal ARMA. Confidence limits of 95% have been constructed for each process and
each time lag by calculating distances from autocorrelations (ACs) of realizations to mean AC values at
each lag in standard deviation units, using the non-parametric procedure explained by Wilcox [41].
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2.3. Wavelet Analysis

An extensive literature exists for a comprehensive explanation of wavelet transform and related
topics (wavelet spectra and wavelet coherence). Outstanding examples of accessible tutorials with
geophysical and climatic applications are found in the literature ([1,21,30]). Aguiar-Conraria and
Soares [24] give a nice introduction to the wavelet topic even though it applies to economics. A brief
overview is given below.

The basic idea of wavelet analysis is to apply a band-pass filter (called “wavelet”) to a time series.
This filter has the particularity of being of variable temporal and frequency width. At each scale,
a wavelet with an extension in time defined by the scale is used. The wavelet is displaced in time and,
at each time point t of the series, the convolution of the wavelet with the value of the series calculated:

W n(s) =
∑N−1

n′=0
xn′ψ

∗

[
(n′ − n)δt

s

]
(3)

where n′ is the index of the time series x, n is a localized time index of the normalized wavelet ψ
(ψ* is the complex conjugate), s is the scale, t the time, and N the number of points of the time series.
The wavelet function at each scale is normalized to have unit energy as:

ψ

⌈
(n′ − n)δt

s

⌉
=

(
δt
s

)1/2
ψ0

[
(n′ − n)δt

s

]
(4)

where ψ is the normalized and ψ0 the original wavelet function.
The result is a set of coefficients W, depending on s and t, called continuous wavelet transform

(CWT). From Equation (3), the WPS is obtained as the square of the modulus of W. Maxima of spectral
power are, at each scale, where convolution (correlation) of time series with the wavelet is maximum,
i.e., at the times of maximum variability.

For each scale, we can average WPS at every time and obtain an analog of Fourier transform
spectrum called the global wavelet spectrum (GWS):

W
2
(s) =

1
N

N−1∑
n=0

∣∣∣Wn(s)
∣∣∣ 2

(5)

This spectrum shows the time-averaged power of the fluctuations in the series at each temporal
period (scale).

Two-time series X and Y can be compared by means of the “cross-wavelet spectrum”. If WX
n (s)

and WY
n (s) are the wavelet transforms at scale s of the series X, Y, the cross wavelet spectrum is defined

as:
WXY

n (s) = WX
n (s)·W

Y∗
n (s) (6)

with a power
∣∣∣WXY

n (s)
∣∣∣. WXY gives the correlation between the wavelet transform of each series at

each scale s and time ti.
A normalized version of the cross-wavelet spectrum is the “wavelet coherence”, which is defined

as the power of cross wavelet spectrum normalized to the two single wavelet spectra of series X and
Y [32]:

WCSi(s) =

∣∣∣WXY
i (s)

∣∣∣(
WPSX

i (s)·WPSY
i (s)

) (7)

For an analogy to Equation (5), we can substitute WCSi (s) for |Wn(s)|2 for each scale, and average
WCO at every time, and thus obtain a global coherence spectrum (GCS). This spectrum shows the
time-averaged coherence of the two series at each temporal period (scale).

Wavelet power spectra (WPSs) are calculated using Torrence and Compo software available at
http://paos.colorado.edu/research/wavelets/. Wavelet coherence spectra (WCSs) are calculated using this

http://paos.colorado.edu/research/wavelets/
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software and that of Maraun and co-workers available at http://tocsy.agnld.uni-potsdam.de/wavelets/.
We have integrated these calculation methods in two Matlab scripts, calculating WPSs and GWSs
of discharge, sodium and sulfate, and WCSs and GCSs of discharge-sodium, discharge-sulfate,
and sodium-sulfate. We have used as mother wavelet the Morlet wavelet with ω0 = 6. Only values
inside the cone of influence have been considered. Distances (in standard error units) to the mean of
distributions of spectral power or coherences are calculated, and spectral powers or coherences of the
original transformed series are considered significant if they have a distance to the mean larger than
the 95% of the distribution [41].

3. Results

Using ARMASA, we have fitted ARMA models to the time series of discharges, sodium, and sulfate
two-week concentrations in Porte du Scex (Rhône River, Switzerland). Figure 1 represents both the
original and the corrected time series. Sulfate is best fitted with an AR (3) process, although AR (1) gives
ACs which are almost all of them inside the confidence limits and are practically identical to those from
AR (3). For discharge and sodium, AR (1) gives in several cases (lags) ACs outside the confidence limits.
AR (9) is the best-fit process for discharge, and AR (34) for sodium (Figure 2). The case of sodium is
atypical, as a pronounced one-year seasonality is present after seasonality elimination. This might be
due to the human-dominated sodium inputs to the river, which are highest in winter [35].
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Sulfate shows a very different GWS, with two high peaks at 5 and 13 years. 
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‘global’ significance in the whole time period (limited by the cone of influence). 

Figure 2. Autocorrelation functions (ACFs) of the original time series and AR (1) fitted processes and
better fitted ARMA processes. In x-axes is the time lag (1 unit = two weeks). Circles are the ACFs of the
time series (transformed as explained in the text), the blue line the ACF of the fitted process, and red
and green lines the 95% confidence limits of the fitted process ACF. (a) Discharge AR (9), (b) discharge
AR (1), (c) sodium AR (34), (d) sodium AR (1), (e) sulfate AR (3), (f) sulfate AR (1).

WPSs have been calculated for all three-time series. Significant areas are clearer at short scales
(less than one year) and in scales of 1–2 years in 1998–2005 in discharge and sodium spectra. At 6–8 years,
there is a small significant area in 1990–1997. Sulfate shows a feature at 4–6 years around 1996. The big
significant area at the beginning of the series and longest scales is not reliable because it is outside the
cone of influence (Figure 3).

Characteristic interannual fluctuations are more visible using GWSs (Figure 4). GWSs of discharge
and sodium are similar, with a high peak at about 7 years and a shoulder at about 10 years, but main
short-scale peaks differ in both spectra (one year for sodium, two years for discharge). Sulfate shows a
very different GWS, with two high peaks at 5 and 13 years.

The main fluctuations of discharge and sodium are significant when referred to an AR (1) process
but none is significant when the best fitting ARMA processes are used as reference (Figure 4).
Regarding sulfate, the two peaks are not significantly different from the GWSs of the two stochastic
processes AR (1) and AR (3). The significant areas in some time periods do not give a ‘global’
significance in the whole time period (limited by the cone of influence).
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Figure 3. Wavelet power spectra (WPSs) for (a) discharge, (b) sodium, (c) sulfate and significance 
levels (p values) of deviations from those WPS of WPS of the best fitted ARMA processes and of WPS 
of AR(1): Best ARMA significance levels of the deviation for (d) discharge, (e) sodium, (f) sulfate, 
AR(1) significance levels of the deviation for (g) discharge, (h) sodium, (i) sulfate. Broad white lines 
correspond to p = 0.05, and the areas inside these lines then contain the points (t,s) with significant 
differences to WPS of time series. The cone of influence (COI) appears as a thin white line. 

 

Figure 3. Wavelet power spectra (WPSs) for (a) discharge, (b) sodium, (c) sulfate and significance
levels (p values) of deviations from those WPS of WPS of the best fitted ARMA processes and of WPS
of AR (1): Best ARMA significance levels of the deviation for (d) discharge, (e) sodium, (f) sulfate,
AR (1) significance levels of the deviation for (g) discharge, (h) sodium, (i) sulfate. Broad white lines
correspond to p = 0.05, and the areas inside these lines then contain the points (t,s) with significant
differences to WPS of time series. The cone of influence (COI) appears as a thin white line.
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Figure 4. Global wavelet spectra (GWSs) with best fitted ARMA and AR (1) for discharge, sodium, and
sulfate. y-axes represent spectral power for the time series at each scale and x-axes scales (in years).
(a) discharge, AR (9); (b) discharge, AR (1); (c) sodium, AR (34); (d) sodium, AR (1); (e) sulfate, AR (3);
(f) sulfate, AR (1).

WCSs of discharge and sodium, discharge and sulfate, and sulfate-sodium have been calculated
(Figure 5) from the wavelet coherence spectra (Figure 6). Discharge and sodium are particularly
strongly coherent at scales of more than four years, but significant global coherence exists between
both variables at practically every scale. Sulfate and discharge are coherent at scales smaller than four
years (except around one year), with three peaks at 1.6, 2.5, and 3.7 years. In this case, and contrary to
the sodium, there is no coincidence with the main peaks in GWSs of sulfate and discharge.

Using the original two-week averaged data of discharge and concentrations, we have plotted
the c-Q relationships of discharge and sodium and sulfate. In both cases, a strong relationship with
discharge is clearly observed, stronger in the case of sodium (Figure 7).



Hydrology 2020, 7, 82 11 of 17
Hydrology 2020, 7, x FOR PEER REVIEW 11 of 18 

 

 

 

 
Figure 5. Global coherences and wavelet coherence spectra (WCSs) for (a) discharge-sodium, (b) 
discharge-sulfate, and (c) sulfate-sodium. y-axes represent coherences (between 0 and 1) and x-axes 
scales (in years). 

  

Figure 5. Global coherences and wavelet coherence spectra (WCSs) for (a) discharge-sodium,
(b) discharge-sulfate, and (c) sulfate-sodium. y-axes represent coherences (between 0 and 1) and x-axes
scales (in years).



Hydrology 2020, 7, 82 12 of 17Hydrology 2020, 7, x FOR PEER REVIEW 12 of 18 

 

 
Figure 6. Wavelet coherence spectra. Axes as in WPS spectra. Only coherences inside the cone of 
influence (COI) are represented by a color scale. The white line limits 95% significant areas. (a) 
Discharge-sodium; (b) discharge-sulfate; (c) sulfate-sodium. 

Figure 6. Wavelet coherence spectra. Axes as in WPS spectra. Only coherences inside the cone
of influence (COI) are represented by a color scale. The white line limits 95% significant areas.
(a) Discharge-sodium; (b) discharge-sulfate; (c) sulfate-sodium.



Hydrology 2020, 7, 82 13 of 17
Hydrology 2020, 7, x FOR PEER REVIEW 13 of 18 

 

 

 

 
Figure 7. (a) Sodium and (b) sulfate concentration-discharge relationships. 

Sulfate and sodium show a global coherence spectrum similar to that of discharge-sulfate, with 
significant coherence at <4 years and no coherence at longer time scales. 

4. Discussion 

4.1. Choice of the Reference Stochastic Process 

Our results clearly show that very different conclusions concerning significance can be obtained 
in wavelet analysis depending on the stochastic process chosen to derive that significance. Moreover, 
using more realistic ARMA processes instead of AR (1) gives less significant results in all the systems 
tested. Thus, using AR (1) instead of, for instance, the best-fitted ARMA is not irrelevant because 
using AR (1) leads to consider as significant features that are not significant if an ARMA process is 
employed instead. We suggest that an optimal ARMA, and not an AR (1), should be used when 
estimating significances in wavelet and wavelet coherence spectra. 
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Sulfate and sodium show a global coherence spectrum similar to that of discharge-sulfate,
with significant coherence at <4 years and no coherence at longer time scales.

4. Discussion

4.1. Choice of the Reference Stochastic Process

Our results clearly show that very different conclusions concerning significance can be obtained
in wavelet analysis depending on the stochastic process chosen to derive that significance. Moreover,
using more realistic ARMA processes instead of AR (1) gives less significant results in all the systems
tested. Thus, using AR (1) instead of, for instance, the best-fitted ARMA is not irrelevant because using
AR (1) leads to consider as significant features that are not significant if an ARMA process is employed
instead. We suggest that an optimal ARMA, and not an AR (1), should be used when estimating
significances in wavelet and wavelet coherence spectra.
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4.2. How to Tackle the Multiple Testing Problem

As discussed in the introduction, the multiple testing problem has to be considered when dealing
with significances [30,34]. The use of GWS and GWC spectra offers a way of overcoming these problems.
Both spectra are obtained from the WPS and the WCS respectively by averaging spectral power at each
scale over the entire time interval of the time series. When the GWS (or the GWC) is bigger (at a value
of scale) than the critical value obtained with the reference stochastic process, we accept that it is an
indication of the existence of a deterministic effect on the time series at this scale. The disadvantage of
this procedure is that we lose the information about the time evolution of the fluctuations of the series,
which is one of the main features of wavelet analysis, but the information on the series fluctuation at
different time scales is preserved. By using averaging to discover significant features in the wavelet
spectra, we are also taking a conservative approach, as possibly significant areas (t, s) in the WPS or
GWC spectra could result in a non-significant average in the GWS or WCS spectra.

Another alternative to estimate significance levels could be to construct resamplings from the
original time series with bootstrap. Aguiar-Conraria and Soares [24] offer this alternative in their
software. However, the bootstrap can be used to construct confidence limits but not to assess the
probability of a deterministic cause. For this, a distribution of WPSs or WCSs corresponding to the H0

(null) hypothesis (purely stochastic effect) must be constructed, and, therefore, a reference stochastic
process is necessary.

4.3. Further Insight into Causality

Significance, as defined above, is a pretty clear and unambiguous concept. Causality is a more
complex issue. The most widely used treatment of the cause-effect relationship between two-time
series is the “Granger causality”, first exposed by that author in 1969 [42,43]. An analysis of that
concept of causality and other more recent developments can be found in Eichler [44]. Two main
characteristics of causality are accepted in those approaches: (a) temporal precedence: causes precede
their effects, and (b) physical influence: manipulation of the cause changes the effects [44].

An interesting topic is how it is possible to obtain evidence of deterministic causality acting
on a time series without using the methods mentioned above. We have implicitly considered that
a significant (x %) departure of the best stochastic ARMA model which describes the time series
indicates deterministic causality at this (x %) significance level. Strictly speaking, the significance
test just falsifies (or not) the H0 hypothesis (that is, H0 = “an ARMA process “explains” the time
series”), but the lack of a good “ARMA explanation” does not guarantee a deterministic explanation
because other stochastic processes (for example, long-term memory processes type ARFIMA [45])
could be in play. Deterministic nonstationary effects on discharge and sodium time series are acting
in the catchment (i.e., anthropogenic inputs of sodium salts [35] and changes in discharge variability
caused by dam building in the Alpine Rhône tributaries [46]). Those effects, which are not completely
taken into account by the detrending and deseasonalizing of the time series, could be the origin of
the non-stochastic features in the WPSs. An investigation on the particular causes of deviations from
stochastic behavior as, for example, the possible non-stationarity of corrected time series, is outside the
scope of this study.

As a result, we accept that the rejection of the ARMA explanation can be a useful indication of a
deterministic factor acting on the time series; i.e., statistical significance is an indication (not a firm
proof) of non-stochastic causality. This is the, often implicit, assumption made by many authors when
looking for causes of the observed time series (for example, wavelet analysis of series of temperature
or climate proxies, as river discharge [4] to identify climate change fingerprints). To decide whether
a cause-effect relationship is acting on the time series, we need to analyze the correlation between
the time series in question and the suspected cause, that is, the cross-correlation and the coherence
spectrum of the two series.

Looking at our results, WPSs of discharge and sodium and sulfate concentrations show that
spectral power is not significant at the 95% level at most times and scales, Thus, stochastic processes
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are dominant in the three-time series. Moreover, GWSs of the series are not above the significance limit
at any time scale, reinforcing this conclusion.

However, coherence spectra have an interesting property that might provide a useful tool better to
identify deterministic causality relationships in the data: coherence spectra magnify the coincidences
of spectral power of the series, as it is patent in our results of discharge-sodium and discharge-sulfate
coherence spectra. The existence of significant areas in the WCSs provides evidence of the existence
of a deterministic cause-effect relationship (i.e., if they show a significant coherence, both series may
be independent but, in this case, they should still have a common deterministic cause). Consider,
for instance, discharge and sodium concentrations in the Porte du Scex catchment. Taken in isolation,
both series WPSs are mostly stochastic (Figures 3 and 4) but the coherence spectrum is strongly
significant practically at each scale (Figure 5). Obviously, we cannot go further and conclude that
there is a causal relationship without additional knowledge on the variables related but, at the
same time, it is clear that a deterministic effect of discharge on sodium is present. In fact, a strong
dilution effect is observed when we plot the original sodium series against discharge, which means
that a strong relationship between sodium and discharge exists at this temporal scale (two weeks)
(Figure 7). This effect also exists in the case of sulfate, and the coherence spectrum and the global
coherence discharge-sulfate are significant at scales of less than four years, but, contrary to the case
of sodium, no significant coherence exists at longer time scales. Sulfate and sodium show a similar
global coherence compared to discharge and sulfate, which suggest a common deterministic cause,
most probably discharge.

These observations suggest that a stochastic variable (e.g., discharge) can exert a deterministic
effect on another stochastic variable (e.g., sodium concentration), and this is revealed in the coherence
spectrum. Therefore, a significant area of coherence does not guarantee a deterministic feature in the
wavelet spectra of the two series separately but does imply a deterministic relationship of sodium with
discharge. Thus, WCS spectra reveal cause-effect relationships between “coherent” variables and/or the
existence of a common effect on both variables [22]. Strictly speaking, two coherent time series (that is,
with coherence above the ARMA coherence) are deterministically “associated”, that is, we do not know
which series is the cause and which is the effect, and we do not know if the association is caused by a
third series which has a deterministic influence in both original series. In our case, the knowledge of
the physical system (concentrations and discharges) allows us to identify cause and effect. Granger’s or
Eichler’s methods should be used in the case of complicated or not obvious cause-effects are apparent.

5. Conclusions

Wavelet analysis is a powerful tool or studying fluctuations in time series largely used in hydrology
and environmental sciences. However, the application of this type of analysis often neglects the
consequences of the blind use of reference stochastic processes as AR (1) and white noise. Our results
show that this might have led to the widespread overestimation of the existence of statistically significant
effects in published studies. Concerning the multiple testing problem, we suggest using the global
wavelet and coherence spectra to avoid the “false positives” associated with considering a random
feature significant at the price of losing the time-resolved spectral power determination characteristic
of wavelets. This is obviously not really a satisfactory method [23,30]. A better understanding of the
caveats of significance assessment opens the possibility of extending the use of coherence spectra to
the identification of cause-effect relationships between “coherent” variables as it was the case in our
discharge, sodium, and sulfate datasets.
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