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Abstract: Sound estimates of drought characteristics are very important for planning intervention
measures in drought-prone areas. Due to data scarcity, many studies are increasingly using less
data-intensive approaches, such as the evapotranspiration deficit index (ETDI), in estimations of
agricultural droughts. However, little is known about the sensitivity of this specific ETDI formula
to its parameters, and to data at different temporal scales. In this study, a general ETDI formula,
homologous to the specific ETDI formula, was introduced and used to test the sensitivity of the ETDI
to its parameters and to data at different temporal scales. The tests used time series of remotely
sensed evapotranspiration data in the Ruvu River basin in Tanzania. The parameter sensitivity tests
revealed that ETDI is sensitive to its parameters, and different parameter combinations resulted in
different drought characteristics. The temporal scale sensitivity test showed that drought charac-
teristics, such as the number of drought events and the total drought durations, decreased as the
temporal scale increased. Thus, an inappropriate temporal scale may lead to the misrepresentation
of drought characteristics. To reduce uncertainty and increase the accuracy of ETDI-based agricul-
tural drought characteristics, ETDI requires parameter calibration and the use of data with small
temporal scales, respectively. These findings are useful for improving estimations of ETDI-based
agricultural droughts.

Keywords: agricultural drought; drought characteristics; evapotranspiration deficit index; parameter
sensitivity; temporal scale sensitivity; water stress anomaly

1. Introduction

Drought is an environmental disaster that brings severe social, economic, and envi-
ronmental impacts around the world. Thus, drought is usually categorized into four main
operation-based types, namely, meteorological drought, hydrological drought, agricultural
drought, and socio-economic drought [1–5]. Since drought is often caused by a decrease
of precipitation below the normal amount, agricultural productivity is usually the most
affected due to its direct dependence on water resources, especially soil moisture. Drought
begins when the soil moisture available to plants drops to a level that adversely affects
the crop yield and, consequently, agricultural production [6,7]. The decline of agricultural
production indirectly causes critical issues such as food insecurity, which may eventually
lead to socio-economic consequences. For this reason, understanding agricultural drought
is vital for planning mitigation and adaptation measures in areas susceptible to drought.

Several indices have been developed to estimate agricultural drought using various
water balance parameters. Most of these indices use precipitation, temperature, actual
evapotranspiration (ET), and potential evapotranspiration (PET) data, and crop charac-
teristics, crop management practices, etc. [8–11]. One of the prominent drought indices
is the evapotranspiration deficit index (ETDI) [12]. The ETDI uses ET and PET data for
estimating short-term agricultural drought [12]. ETDI can be scaled between −2 and +2
to compare with the standardized precipitation index [13–17], or between −4 and +4 to
compare with the Palmer drought severity index [18]. Details about other drought indices
are found in the studies by Sivakumar, et al. [19] and Zargar, et al. [20].
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ETDI has been widely used to estimate drought in many parts of the world. Narasimhan
and Srinivasan [12] used ETDI for monitoring the agricultural drought of six watersheds
located in major river basins across Texas, United States. Trambauer, et al. [17] used ETDI
to analyze hydrological drought in the Limpopo River basin, southern Africa. Esfahanian,
et al. [21] used ETDI and other drought indices to develop a comprehensive drought
index in the Saginaw watershed in Michigan, United States. Bayissa, et al. [2] used ETDI
in comparisons of drought indices in the Upper Blue Nile Basin, Ethiopia. Wambura
and Dietrich [22] used ETDI to analyze spatio-temporal drought in the Kilombero catch-
ment, Tanzania. In all these studies, ETDI was computed using the specific ETDI formula.
Thus, the sensitivity of ETDI to its parameters and to data at different temporal scales is
hardly known.

Therefore, the objective of this study was to investigate the sensitivity of ETDI (1) to
its parameters, and (2) to data at different temporal scales. First, a general ETDI formula
homologous to the specific ETDI formula was introduced. Then the general ETDI formula
was used to test the sensitivity of ETDI to its different parameter combinations. Finally, the
sensitivity of ETDI to remotely sensed ET and PET data at different temporal scales (i.e.,
8-day, 16-day, and 1-month) was also tested under a constant parameter combination.

2. Materials and Methods
2.1. Case Study

The study area was the Ruvu River basin located between 6◦18′ S–7◦46′ S and 37◦15′

E–38◦58′ E in eastern Tanzania (Figure 1). Its headwaters originate on the eastern slopes of
the Uluguru Mountains and descend northeast towards the coast in a swampy estuary at
the Indian Ocean. The basin area is approximately 17,693 km2, and its elevation ranges
between 4 and 2636 m above sea level (Figure 1) [23].
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Figure 1. The Ruvu River basin showing elevation [23] and the points (P1 to P12) used to extract the
time series of evapotranspiration and potential evapotranspiration from remote sensing images.

The average air temperature in the basin is between 18 ◦C in August and 32 ◦C in
February, whereas the mean annual rainfall ranges from 800 mm to 2000 mm [24]. This
region of coastal Tanzania is also known to have frequent and intense drought episodes [25].
Thus, the river basin has a very dynamic weather system. The Ruvu River basin was
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selected because of these dynamic weather systems, which are often very sensitive to even
small changes in the western Indian Ocean sea surface temperature.

2.2. Main Datasets Used

Due to data scarcity in this region, ET and PET data used in this study were obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery program [26].
The remotely sensed ET and PET products from the MODIS program were MOD16A2-v5
(from now on MODIS ET), and were available at a spatial resolution of 1 km and tem-
poral resolution of 8 days and 1 month. The first dataset consisting of 690 images of
8-day MODIS ET covering the Ruvu River basin was downloaded from the MODIS repos-
itory (http://files.ntsg.umt.edu/data/NTSG_Products/, accessed on 15 October 2017).
Another dataset consisting of 180 images of 1 month MODIS ET covering the river basin
was also downloaded from the same repository (accessed on 10 July 2019). The two MODIS
ET datasets spanned between the years 2000 and 2014.

Each of the twelve points (P1 to P12) spatially distributed in the Ruvu River basin
(Figure 1) was used to extract two pairs of time series from the MODIS ET datasets. First,
the twelve points extracted ET and PET time series from the 8-day MODIS ET dataset.
Then the 8-day time series of ET and PET were aggregated to form a 16-day time series.
The conversion to a 16-day timestep was necessary because MODIS ET products are
only available at 8-day and 1-month timesteps. Finally, the twelve points were also used
to extract monthly ET and PET time series from the monthly MODIS ET dataset. For
illustration purposes, Figure 2a–c shows the 8-day, 16-day, and monthly ET and PET at
point P1.

2.3. Evapotranspiration Deficit Index Approach

The ETDI approach involves three steps, first, the estimation of water stress (WS),
then, the estimation of the water stress anomaly (WSA), and finally, the estimation of ETDI.
The estimation of WS at a point uses Equation (1) [2,12].

WSi,j =
PETi,j − ETi,j

PETi,j
(1)

where i represents a period (e.g., month i) in a given year, j. The years range between
2000 and 2014 with a timestep of one year. WS ranges from 0 (ET is the same as PET) to 1
(no ET).

The estimation of WSA at a point uses Equation (2) [12]. Equation (2) removes the
seasonality inherent in the time series of WS.

WSAi,j =


med WSi − WSi,j

med WSi − min WSi
i f WSi,j ≤ med WSi

med WSi − WSi,j
max WSi − med WSi

i f WSi,j > med WSi
(2)

where min WS, med WS, and max WS are long-term minimum, median, and maximum
WS values at time i from all years in the time series. WSA ranges from −1 to +1 indicating
extremely dry to extremely wet conditions, respectively.

The estimation of ETDI at a point uses a cumulating procedure similar to that of the
soil moisture deficit index [12]. In analogy to the original formulation of the soil moisture
deficit index, the change in ETDI is equal to the difference between two consecutive ETDIs
(Equation (3)) [12].

∆ETDIt = ETDIt − ETDIt−1 (3)

where ∆ETDI represents a change in ETDI. The subscripts t and t− 1 represent consecu-
tive periods (e.g., month t and month t− 1, respectively) continuously ranging from the
beginning to the end of the record.

http://files.ntsg.umt.edu/data/NTSG_Products/
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Figure 2. Typical Moderate Resolution Imaging Spectroradiometer (MODIS) evapotranspiration (ET) and potential evap-
otranspiration (PET) time series at (a) 8-day, (b) 16-day, and (c) 1-month temporal scales [26] at point P1 in the Ruvu
River basin.

On the basis of the contribution of the previous drought severity, the change of the
current ETDI depends on a weighted contribution of the previous ETDI, and the full
contribution of the current WSA (Equation (4)) [12].

∆ETDIt = c ETDIt−1 +
WSAt

50
(4)

where c controls the contribution of the previous ETDI. In Equation (4), Narasimhan and
Srinivasan [12] scaled WSA between −100 and +100 (percentages). Thus, the value of 50
in this equation reduces WSA from ±100 to ±2, so that the ETDI of consecutive extreme
drought events lies between −4 and +4.

By combining Equations (3) and (4), Narasimhan and Srinivasan [12] created the spe-
cific ETDI formula which states that the current ETDI is the sum of half of the previous ETDI
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and the current WSA (Equations (A1) and (A2) in Appendix A). The specific ETDI formula
is a linear equation, and the coefficient of WSA was assumed to be one. Moreover, a resid-
ual term was also not addressed by the specific ETDI formula (Equations (A1) and (A2) in
Appendix A).

From Equation (4) it is apparent that the importance of the previous ETDI or drought
memory with respect to WSA cannot always be the same at different land cover types or
climatic regions [27–30]. Therefore, this study modified Equation (4) to include a coefficient
β to the WSA term, in order to facilitate the calibration of both drought memory and WSA
at different places (Equation (5)). With regard to Equation (2), here WSA was considered
to range between −1 and +1, so that the ETDI of consecutive extreme drought events
does not exceed −2 and +2 [2,17]. In addition, a residual term, γ, was introduced because
Equation (4) resembles a linear equation (Equation (5)).

∆ETDIt = c ETDIt−1 + β WSAt + γ (5)

By combining Equations (3) and (5), this study obtained the ETDI formula that incorpo-
rates weighted contributions of both the previous ETDI and the current WSA (Equation (6)).

ETDIt = (1 + c) ETDIt−1 + β WSAt + γ (6)

The general ETDI formula (Equation (7)) was obtained by replacing (1 + c) in Equa-
tion (6) with an α. The general ETDI formula has three variables and three unknown
coefficients, including the constant term. The general ETDI formula is homologous to the
specific ETDI formula. Therefore, the specific ETDI formula (Equation (A2) in Appendix A)
is a special case of the general ETDI formula (Equation (7)).

ETDIt = α ETDIt−1 + β WSAt + γ (7)

where α modulates the long-term memory of ETDI.
At an extremely dry boundary condition, consecutive dry periods have WSAt equal

to −1, and ETDIt and ETDIt−1 equal to −2. Likewise, at an extremely wet boundary
condition, consecutive wet periods have WSAt equal to +1, and ETDIt and ETDIt−1 equal
to +2. By substituting these two boundary conditions in Equation (7), the γ-parameter
becomes 0. Therefore, the general ETDI formula (Equation (7)) becomes Equation (8).

ETDIt = α ETDIt−1 + β WSAt (8)

Again, by substituting either of the two boundary conditions (i.e., extremely dry or
extremely wet), Equation (8) turns into a parameter equation that governs the relationship
between α and β parameters (Equation (9)). Figure 3 shows the straight line of Equation (9).

β = − 2α + 2 (9)

Equation (9) indicates the presence of a large number of parameter combinations along
the straight line. Table 1 shows the ranges of those parameter combinations at consecutive
extremely dry and wet boundary conditions. Thus, for values of ETDI in Equation (8) to
span between −2 and +2, values of α should range between 0 and 1, and values of β should
range between 0 and 2 (Equation (9), Figure 3, Table 1). Therefore, the estimation of the
ETDI time series at a point should use Equation (8), where parameters are governed by
Equation (9), and at an initial condition, ETDI equals zero. In this study, an ETDI time
series derived using (α, β)-parameters is hereafter referred to as an ETDI(α, β) time series
or curve.
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coefficients of the previous evapotranspiration deficit index and the current water stress anomaly,
respectively.

Table 1. Evapotranspiration deficit index (ETDI) of a point in time (t) at consecutive extremely dry and wet boundary
conditions for three different ranges of (α,β)-parameter combinations. WSA represents water stress anomaly.

Extreme ETDIt−1 WSAt ETDIt at (α < 0, β > 2) ETDIt at (0 ≤ α ≤ 1, 2 ≥ β ≥ 0) ETDIt at (α > 1, β < 0)

Dry–Dry −2 −1 −2 −2 −2
Wet–Wet +2 +1 +2 +2 +2
Dry–Wet −2 +1 >+2 −2 to +2 <−2
Wet–Dry +2 −1 <−2 −2 to +2 >+2

2.3.1. Parameter Sensitivity Test

The parameter sensitivity test used 8-day ET and PET data at point P1 in the Ruvu
River basin (Figures 1 and 2). Prior to the parameter sensitivity test, Equations (1) and (2)
were used to estimate WS and WSA, respectively. Since the parameter sensitivity test
intended to investigate how ETDI values from Equation (8) change relative to various
α and β parameter combinations, a sample of eleven α-parameters from 0.0 to 1.0 at an
interval of 0.1 was selected and used to obtain corresponding β values using Equation (9).
Then by using Equation (8), WSA values at point P1 were used to generate an ETDI curve
for each parameter combination.

ETDI curves for all parameter combinations at point P1 were finally used in a correla-
tion analysis in order to investigate parameter combinations that have more or less similar
ETDI curves. Estimations of drought events and total drought durations from ETDI curves
at point P1 were also conducted in order to compare ETDI curves of different parameter
combinations in terms of drought characteristics. A drought event was identified by the
start and the end of a drought. The start of a drought event was the time when the ETDI was
less or equal to −1.00 for at least eight consecutive, 8-day periods (approx. 2 months) [31].
The end of a drought event was the time when the ETDI returns to zero [32]. Total drought
durations were the sum of all periods from all drought events in a time series.

2.3.2. Temporal Scale Sensitivity Test

The sensitivity of the ETDI to data at different temporal scales used 8-day, 16-day, 1-
month ET, and PET data at all twelve points in the Ruvu River basin (Figure 1). Equations (1)
and (2) were used to estimate WSs and WSAs at the points, respectively. Prior to the
temporal scale sensitivity test, values of α and β equal to 0.5 and 1, respectively, were
selected as the appropriate constant parameter combination, because they are in the middle
of both parameter ranges. Moreover, this parameter combination is also commonly used in
estimations of ETDI [2,12]. By using the constant parameter combination in Equation (8),
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the sensitivity of the ETDI to the three different temporal scales was investigated by
estimating ETDI curves of 8-day, 16-day, and 1-month timesteps at each of the twelve
points (P1 to P12) in the river basin.

Then drought events and total drought durations at each point were computed in order
to compare ETDI curves at different temporal scales in terms of drought characteristics.
Here, drought events for 8-day, 16-day, and 1-month timesteps had at least eight consecutive
8-day periods, four consecutive 16-day periods, and two consecutive months, respectively.

3. Results and Discussion
3.1. Parameter Sensitivity

In the parameter sensitivity test, eleven parameter combinations resulted in eleven
ETDI(α,β) time series. For illustration purposes, Figure 4 shows only five of the eleven
ETDI(α,β) time series. The ETDI(0.0,2.0) curve was the widest in both dry (negative ETDI)
and wet (positive ETDI) axes. The peaks of ETDI(0.1,1.8) and ETDI(0.5,1.0) curves were
smaller than those of the ETDI(0.0,2.0) curve. However, these three curves had similar
patterns. On the other hand, the ETDI(0.9,0.2) curve was very different from other curves
due to its shorter and smoother peaks (Figure 4). This is because the β-parameter of the
curve was very small (β = 0.2), therefore, it diminished the influence of WSAt (Equation (8)).

Hydrology 2021, 8, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. The 8-day evapotranspiration deficit index (ETDI) for five different (α,β)-parameter com-

binations at point P1 in the Ruvu River basin. 

Unlike the curves of other parameter combinations, the 𝐸𝑇𝐷𝐼(1.0,0.0) time series had 

zero values throughout the record length, thus coinciding with the time axis (Figure 4). 

Zero values occurred because 𝑊𝑆𝐴𝑡 was nullified by the 𝛽-parameter, which was equal 

to 0.0, thus the 𝐸𝑇𝐷𝐼(1.0,0.0) time series depended only on 𝐸𝑇𝐷𝐼𝑡−1, which was initially 

assumed to be zero. In that case the 𝐸𝑇𝐷𝐼(1.0,0.0) time series was excluded in both correla-

tion analysis and drought characterization. 

The 𝐸𝑇𝐷𝐼(0.0,2.0) curve correlated highly with the 𝐸𝑇𝐷𝐼(0.1,1.8) curve (Figure 5), they 

both show the highest number of drought events, and the lowest duration per event (4 

months per event, Table 2). This means that the small 𝛼-parameters of these two curves 

reduced the influence of 𝐸𝑇𝐷𝐼𝑡−1, while large 𝛽-parameters allowed the dominance of 

𝑊𝑆𝐴𝑡 (Equation (8)). This is inversely demonstrated by the 𝐸𝑇𝐷𝐼(0.9,0.2) curve which had 

the lowest number of drought events and the highest duration per event (10 months per 

event, Table 2). Here, a large α-parameter allowed the dominance of 𝐸𝑇𝐷𝐼𝑡−1, but the 

small 𝛽-parameter had already smoothened peaks of 𝑊𝑆𝐴𝑡 (Equation (8)), thus causing 

wide, but few, peaks (cf. Figure 4).  

Table 2. Drought events, total drought durations, and duration per event at point P1 for various 

(α,β)-parameter combinations. 

Parameter Events Total Duration (Month) Duration Per Event (Month) 

ETDI(0.0,2.0) 11 42 4 

ETDI(0.1,1.8) 10 38 4 

ETDI(0.2,1.6) 8 39 5 

ETDI(0.3,1.4) 8 41 5 

ETDI(0.4,1.2) 10 47 5 

ETDI(0.5,1.0) 10 51 5 

ETDI(0.6,0.8) 10 51 5 

ETDI(0.7,0.6) 9 50 6 

ETDI(0.8,0.4) 9 54 6 

ETDI(0.9,0.2) 4 40 10 

Figure 4. The 8-day evapotranspiration deficit index (ETDI) for five different (α,β)-parameter combinations at point P1 in
the Ruvu River basin.

Unlike the curves of other parameter combinations, the ETDI(1.0,0.0) time series had
zero values throughout the record length, thus coinciding with the time axis (Figure 4). Zero
values occurred because WSAt was nullified by the β-parameter, which was equal to 0.0,
thus the ETDI(1.0,0.0) time series depended only on ETDIt−1, which was initially assumed
to be zero. In that case the ETDI(1.0,0.0) time series was excluded in both correlation analysis
and drought characterization.

The ETDI(0.0,2.0) curve correlated highly with the ETDI(0.1,1.8) curve (Figure 5), they
both show the highest number of drought events, and the lowest duration per event
(4 months per event, Table 2). This means that the small α-parameters of these two curves
reduced the influence of ETDIt−1, while large β-parameters allowed the dominance of
WSAt (Equation (8)). This is inversely demonstrated by the ETDI(0.9,0.2) curve which had
the lowest number of drought events and the highest duration per event (10 months per
event, Table 2). Here, a large α-parameter allowed the dominance of ETDIt−1, but the
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small β-parameter had already smoothened peaks of WSAt (Equation (8)), thus causing
wide, but few, peaks (cf. Figure 4).
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β)-parameter combinations.

Table 2. Drought events, total drought durations, and duration per event at point P1 for various
(α,β)-parameter combinations.

Parameter Events Total Duration (Month) Duration per Event (Month)

ETDI(0.0,2.0) 11 42 4
ETDI(0.1,1.8) 10 38 4
ETDI(0.2,1.6) 8 39 5
ETDI(0.3,1.4) 8 41 5
ETDI(0.4,1.2) 10 47 5
ETDI(0.5,1.0) 10 51 5
ETDI(0.6,0.8) 10 51 5
ETDI(0.7,0.6) 9 50 6
ETDI(0.8,0.4) 9 54 6
ETDI(0.9,0.2) 4 40 10

In addition, the ETDI(0.9,0.2) and ETDI(0.8,0.4) curves highly correlated (Figure 5), but
they had a substantially different number of drought events and total drought durations
(Table 2). A high correlation between the two curves was due to the similarity of their
patterns, which were not affected by minor parameter differences. However, the differences
in drought characteristics were mainly due to the β-parameter, because it substantially
reduced the WSAt of the ETDI(0.9,0.2) curve more than that of the ETDI(0.8,0.4) curve. The
ETDI(0.4,1.2), and ETDI(0.6,0.8) curves also highly correlated with the ETDI(0.5,1.0) curve,
and had an equal number of drought events (Figure 5, Table 2); this is because the influence
of their ETDIt−1 and WSAt were reduced to almost half by α-parameters, and were almost
fully allowed by β-parameters (Equation (8)), respectively.

Generally, as the (α, β)-parameters deviated from the midpoint (0.5, 1.0) towards the
endpoint (0.0, 2.0), ETDIt depended mostly on WSAt, while ETDIt−1 became substan-
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tially diminished (Equation (8)). However, when (α, β)-parameters equaled (0.0, 2.0), the
ETDI(0.0,2.0) curve did not substantially differ from the ETDI curve of the mid-point. That
is why the correlation coefficient between the ETDI(0.0,2.0) curve and the ETDI curve of the
mid-point was still very high (94%, Figure 5), and drought durations per event had minor
differences (Table 2). As (α, β)-parameters approached (0.9, 0.2), the ETDI(0.9, 0.2) curve
deviated substantially from the ETDI curve of the mid-point. That is why their correlation
coefficient was very small, (66%, Figure 5) and drought durations per event differed by
5 months (Table 2). This deviation was caused by diminishing WSAt due to a declining
β-parameter (Equation (8)). Thus the β-parameter is more influential than the α-parameter
because it controls strong signals from WSAt, whereas the latter modulates the long-term
memory of ETDIt−1.

Therefore, an arbitrary choice of parameter combination has drastic effects on drought
characteristics. As a result, information about drought frequency, severity, and intensity can
be misrepresented, leading to inappropriate intervention measures for mitigation or adap-
tation to drought. This uncertainty in the selection of an optimal parameter combination is
enormous, because the range between the endpoints (see Figure 3) can be sub-divided into
many parameter combinations depending on the required level of accuracy, i.e., decimal
places. Despite its wide application, the mid-point is still not a universal parameter combi-
nation, because the contributions of ETDIt−1 and WSAt might vary from place to place.
On the other hand, the endpoints, i.e., (0.0, 2.0) and (1.0, 0.0) are also not realistic because
they neglect the contributions of ETDIt−1 and WSAt, respectively.

Like coefficients of the Palmer drought severity index, parameters of the ETDI might
also be derived from local crop characteristics or land cover types in an area [19,33,34].
Apart from this, comparisons of ETDIs with other drought information could also be used
to locally calibrate ETDI parameters [18]. This would involve testing of different parameter
combinations to identify a pair that gives a satisfactory match between the time series of
the ETDI and other drought indices, or between durations of the ETDI and historically
severe drought events in an area. Locally calibrated ETDIs from different areas can be
compared as long as they are scaled using the same range [35,36].

3.2. Temporal Scale Sensitivity

For illustration purposes, only ETDI curves of points P1 to P6 are graphically presented
(Figures 6 and 7), the rest of the points are summarized in Table 3. The 8-day, 16-day, and
1-month temporal scales caused substantially different ETDI curves at the points in the
Ruvu River basin.

Figures 6 and 7 show that 8-day ETDI curves were the widest in both dry (negative
ETDI) and wet (positive ETDI) axes. Thus, 16-day ETDI curves were enclosed by 8-day
ETDI curves throughout the time series. Similarly, monthly ETDI curves were also enclosed
by both 8-day ETDI and 16-day ETDI curves. These ETDI curves showed that the effects
of the aggregation of ET and PET from small to large temporal scales were propagated to
ETDI values (cf. Figures 2, 6 and 7).

Table 3 shows that at all twelve points in the river basin, the number of drought events
decreased as the size of the temporal scale increased. The difference in the number of
drought events between consecutive temporal scales was mainly between 1 and 2, except
at points P4 and P11, where the differences between 16-day and 1-month temporal scales
were relatively large (about 5 drought events). The large differences in the number of
drought events at these two points could be attributed to local effects, because they are
both found in the northern part of the river basin (cf. Figure 1).



Hydrology 2021, 8, 26 10 of 14Hydrology 2021, 8, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 6. Evapotranspiration deficit index (ETDI) at 8-day, 16-day, and 1-month temporal scales at 

points P1 to P3 in the Ruvu River basin. 

Figure 6. Evapotranspiration deficit index (ETDI) at 8-day, 16-day, and 1-month temporal scales at points P1 to P3 in the
Ruvu River basin.

Although differences between the numbers of drought events at many points in the
river basin were not large, their corresponding total drought durations differed by many
months (Table 3). The total drought durations of 8-day ETDI curves were almost twice
and thrice those of 16-day ETDI curves and monthly ETDI curves, respectively. Thus, total
drought durations also decreased as the temporal scale increased. Moreover, almost all
points in the river basin had durations per event ranging from 5 months for 8-day ETDI
curves, to 2 months for monthly ETDI curves (Table 3).
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Figure 7. Evapotranspiration deficit index (ETDI) at 8-day, 16-day, and 1-month temporal scales at points P4 to P6 in the
Ruvu River basin.

Since different numbers of drought events and drought durations usually lead to
different drought severities and drought intensities [8,25,31], therefore, different temporal
scales of ET and PET data lead to different ETDIs, and consequently different drought
characteristics. By using the standardized precipitation index and effective drought index,
Jain, et al. [37] also found that drought characteristics vary greatly with different temporal
scales. Moreover, Ntale and Gan [27] argued that there are no objective rules for selecting an
appropriate temporal scale. However, the largest number of drought events being captured
by the 8-day temporal scale in this study (Table 3) indicates that small temporal scales can
be useful because a region suffering from drought can return to a normal condition with
only a few days’ rainfall [27,38].
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Table 3. Drought events, total drought durations, and duration per event at points P1 to P12 at 8-day,
16-day, and 1-month temporal scales in the Ruvu River basin.

Point Time Series Events Total Duration (Months) Duration per Event (Months)

P1
8-day 10 51 5

16-day 9 29 3
1-month 8 17 2

P2
8-day 7 33 5

16-day 5 16 3
1-month 5 9 2

P3
8-day 10 59 6

16-day 9 31 3
1-month 8 16 2

P4
8-day 7 51 7

16-day 7 31 4
1-month 2 15 7

P5
8-day 9 46 5

16-day 10 29 3
1-month 9 15 2

P6
8-day 11 54 5

16-day 11 29 3
1-month 8 12 2

P7
8-day 11 59 5

16-day 9 30 3
1-month 7 13 2

P8
8-day 9 59 7

16-day 7 30 4
1-month 6 15 3

P9
8-day 8 63 8

16-day 8 30 4
1-month 5 14 3

P10
8-day 9 54 6

16-day 7 26 4
1-month 8 14 2

P11
8-day 14 52 4

16-day 12 30 3
1-month 7 17 2

P12
8-day 15 54 4

16-day 11 32 3
1-month 9 17 2

4. Conclusions

This study used the general ETDI formula to test the sensitivity of the ETDI to its
parameters and to data at different temporal scales. Data used were the MODIS ET time
series for twelve points spatially distributed in the Ruvu River basin, Tanzania. The
parameter sensitivity test revealed that ETDI is less sensitive when the (α, β)-parameters
range from (0.1, 1.8) to (0.5, 1.0) inclusive, and more sensitive when they approach (0.9, 0.2).
Since the ETDI is sensitive to different parameter combinations, the selection of an optimal
parameter combination might rely on information from specific locations. Moreover, an
optimal parameter combination can also be obtained when ETDI is calibrated against other
drought indices or durations of historically severe drought events. The temporal scale
sensitivity test at the twelve points in the river basin showed that the number of drought
events, the total drought durations, and durations per event decreases as the temporal
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scale increases. Therefore, small temporal scale ET data are highly recommended in order
to increase the accuracy of ETDI-based drought characteristics.
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Appendix A

The specific evapotranspiration deficit index (ETDI) formula derived by Narasimhan
and Srinivasan [12] is given by Equation (A1) below.

ETDIt = (1 + c) ETDIt−1 + WSAt (A1)

where a subscript, t, represents a continuous timestep. c controls the amount of ETDIt−1
that contributes to ETDIt. WSAt is scaled between −1 and +1.

At a boundary condition (i.e., extremely dry condition), WSAt equals −1, and ETDIt
and ETDIt−1 equal−2. By substituting WSA and ETDI values in Equation (A1), c becomes
equal to −0.5. Therefore, the final specific ETDI formula is shown in Equation (A2).

ETDIt = 0.5 ETDIt−1 + WSAt (A2)

The endpoints of the ETDI range, i.e., −2 and +2 indicate extremely dry and wet
conditions, respectively.
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