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Abstract: Remote sensing data of canopy cover and leaf area index are used together with the
AquaCrop model to optimize irrigation water use efficiency for tomato and maize fields across Italy,
which differ in climate, soil types and irrigation technique. An optimization irrigation strategy, “SIM
strategy”, is developed based on crop stress thresholds and then applied to all the analyzed fields in
different crop seasons, evaluating the effect not only on irrigation volume and number of irrigations
but also on crop yield and canopy cover, and on the drainage flux which represents the main water
loss. Irrigation volume reduction is found to be between 200 and 1000 mm, mainly depending on
the different soil types within the climate, irrigation technique and crop type. This is directly related
to the drainage flux reduction which is of a similar entity. The SIM strategy efficiency has then
been quantified by different indicators, such as the irrigation water use efficiency (IWUE) which is
higher than with the observed irrigations (around 35% for tomato fields in Southern Italy, between
30 and 80% for maize in Northern Italy), and the percolation deficit and irrigation efficiency. The
AquaCrop model has been previously calibrated against canopy cover and leaf area index (LAI) data,
producing errors between 0.7 and 5%, while absolute mean errors (MAE) between 0.015 and 0.04 are
obtained for soil moisture (SM). The validation of the AquaCrop model has been performed against
evapotranspiration (ET) ground-measured data and crop yields producing MAE values ranging from
0.3 to 0.9 mm/day, and 0.9 ton/ha for maize and 10 ton/ha for tomatoes, respectively.

Keywords: irrigation water use efficiency; irrigation strategy; crop model; remote sensing

1. Introduction

The conflictual use of water is becoming more and more evident, even in regions
traditionally rich in water. With the world’s population projected to increase to 8.5 billion
by 2030, the simultaneous growth in income will imply a substantial increase in demand
for both water and food (expected to increase by 70% by 2050). The agricultural sector, the
biggest and least efficient water user, accounts for around 24% of total water use in Europe,
peaking at 80% in the southern regions, and is likely to face important challenges in order
to sustain food production and the parsimonious use of water [1,2]. Improving water
use efficiency in agriculture is an immediate requirement of human society for sustaining
global food security, to preserve quality and quantity of water resources and to reduce
causes of poverty, migrations and conflicts among states, which depend on trans-boundary
river basins [3].

The use of crop growth models is extremely helpful in optimizing irrigation prac-
tices, considering crop growth dynamics and yield response to meteorological conditions
and irrigation practices. Several models have been developed based on physical or semi-
empirical equations based on simplified or complex mechanisms, and hence many parame-
ters [4–8]. Among the existing crop models, the AquaCrop [5] model, developed by FAO
(Food and Agriculture Organization), has been widely used for estimating crop yields as
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well as crop water requirements and optimal irrigation scheduling for different crops in
different climatic environments owing to the balance between simplicity, accuracy and
robustness [9–14]. The calibration of model parameters has traditionally been performed
against observed ground punctual measurements of crop yield, soil moisture (SM), leaf
area index (LAI) or canopy cover (CC) [15].

In the last 30 years, and especially in the last 10 years, the rapid development and
availability of remotely sensed data at different spatial and temporal resolutions, have
encourage the use of crop grow models in combination with these satellite data. In
particular, LAI and CC are the most common vegetation parameters detected from satellites
which may be used for crop models’ parameters calibration [16–18] or may be assimilated
into crop models to improve yield accuracy [19–22].

The optimization of irrigation efficiency dates back to the 80s and is still an open
issue based on the combined use of ground information, hydrological and crop models
and satellite data starting from Hatfield, 1983 and the FAO Paper 56 based on the crop
coefficient [23], as well as water balance modeling and genetic algorithms for optimizing
off-farm irrigation scheduling [24–29] and different irrigation technologies [30]. Different
irrigation triggering techniques have been developed in literature based on the deficit
between potential and actual evapotranspiration or on a soil moisture threshold. The most
common approach based on potential evapotranspiration (ET) relies on the methodology
proposed by FAO in 1998 [23] which uses the Penman–Monteith equation and the crop
coefficient [25,27], while [31] others showed that even with a deficit irrigation (e.g., 50%
of the potential evapotranspiration), no changes in crop yield are obtained. Different
strategies have been implemented to use satellite data based only on vegetation biophysical
parameters [32], integrated with crop modeling [33], or on surface energy balance methods
based on land surface temperatures [24,26]. To quantify the impact of irrigation efficiency,
several indicators have been developed along the years, and a recent comprehensive review
by [34,35] who created a global database of water use efficiency (WUE) and irrigation
water use efficiency (IWUE) accounts for crop yields on evapotranspiration or irrigation
volumes, while other indicators consider the effect on water loss by drainage or soil
degradation [36–40].

In this context, the aim of this paper is to optimize the irrigation water use efficiency
for tomato and maize fields across Italy, based on a calibrated AquaCrop model with
canopy cover and LAI from remote sensing data. The test sites differ in crops type,
climate, irrigation strategy and technique, as well as soil types within the same climate
and crop. An optimization irrigation strategy, “SIM strategy” [37] (SIM project “Smart
Irrigation from Soil Moisture Forecast Using Satellite and Hydro-Meteorological Modelling”
(http://www.sim.polimi.it, accessed on 15 February 2017)), is applied based on crop stress
threshold to all the analyzed fields in different crop seasons evaluating the effect not only
on irrigation volumes and number of irrigations, but also on crop yield and canopy cover
and on the cumulated drainage flux which represents the main water loss (e.g., not used by
the plants to grow). SIM is an often used approach in irrigated cropping systems, especially
those where precision irrigation is carried out. However, this is not the case in the presented
cases studies, where sensibly high amounts of water are used for irrigations even in areas
where an efficient irrigation management is used (e.g., the Capitanata area).

Hence, the main innovative aspects of this study are the importance of demonstrating
the regional application and needs of improving the actual irrigation practices across
different Italian irrigation consortia, which to authors knowledge have not been compared
before, evaluating the effects of an optimized irrigation management on the minimization
of percolation losses and the maximization of crop yield for different soil types within the
same climate and crop on the irrigation strategies for timing and volume.

2. Materials and Methods

The AquaCrop model will be first calibrated and validated against local ground-
measured data of crop yield, leaf area index or canopy cover, soil moisture and evapotran-
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spiration. The analyses are performed in two tomato fields in the Capitanata Irrigation
Consortium with different soil types, and in two maize fields for 3 years each, located in
the Muzza and Chiese Irrigation Consortia characterized by different soil types. Then, an
optimized irrigation strategy, “SIM strategy”, will be implemented and a series of water
indicators computed and compared among the cases studies.

2.1. Case Studies and Data

The analyzed case studies are several fields cultivated by tomatoes and maize across
Italy, inserted in the Chiese, Muzza and Capitanata Irrigation Consortia (Figure 1). These
areas are selected because they are representative of the Italian agriculture in terms of
crop types, irrigation schemes and water distribution rules, and they differ in climatic
conditions, water volume availability and soil types among the same crop.
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Figure 1. Case studies locations across Italy and the installed eddy covariance stations.

In all of the case studies, eddy covariance stations data are available (Figure 1). These
stations allow the measuring of the principal mass and energy fluxes, such as net radiation,
evapotranspiration and heat sensible flux and soil moisture. Turbulent energy fluxes have
been corrected, applying the whole range of correction procedures which are now well
assessed in the scientific community [41]. The data are analyzed with the PEC software
(Polimi Eddy Covariance) [42] which encompasses all the instrumental and physical cor-
rections. [42] compared corrected fluxes at high frequency data and at 30 min average
data show that low errors can be obtained with mean absolute daily differences equal to
6.1 W m−2 for H and 13.2 W m−2 for LE.

2.1.1. Capitanata Irrigation Consortium (Southern Italy)

The Capitanata Irrigation Consortium (www.consorzio.fg.it, accessed on June 2015) is
located in the Puglia region (Southern Italy), which is an intensive cultivation area mainly
devoted to wheat, tomatoes and fresh vegetable cultivation with hot summers and warm

www.consorzio.fg.it
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winters. Irrigation water is supplied by a pressurized water network from storage dams’
reservoirs. The role of irrigation is crucial, with a mean volume of about 600 mm for the
tomato fields, in the range of 5–35 mm per intervention at high frequency (one to three
days between the interventions). The irrigation timing and volume are provided by the
farmers. The most diffuse irrigation technique is drip irrigation, and water is available on
demand. Rainfall during the crop season is about 160 mm, with an average daily mean
temperature of 23.7 ± 2.8. The monthly total amounts of rain and ET0 and the minimum
and maximum air temperature monthly averages are 2.

Two eddy covariance stations are installed in tomato fields (Table 1). Station 1 in
field (CA1) was installed in May 2016 until October 2016 in a sandy soil field (Figure 1),
while Station 2 was installed in May 2016 until October 2016 in sandy soil field (CA2) [43].
Soil moisture is measured with TDR (time domain reflectometer CS616, Campbell Sci,
Logan, UT, USA) instruments at a 15 cm soil depth, which is representative of the tomatoes’
predominant rooting depths [43] and at which the drip irrigation pipes system is installed.
All the main meteorological variables (rainfall, air temperature and humidity, wind speed
and radiation) are measured at an hourly time step.

Table 1. Case studies fields, with soil type, planting/sowing and harvesting dates, crop type.

Short Name Soil Planting/Sowing Harvesting

Capitanata—tomatoes CA1 Silty clay 23 May 2016 8 September 2016

CA2 Sandy 12 May 2016 28 August 2016

Chiese—maize CH1
Sandy
loam

4 May 2016 7 September 2016

CH2 15 April 2017 23 August 2017

CH3 6 April 2018 1 September 2018

Muzza—maize
MU1

Clay loam

26 April 2010 11 September 2010

MU2 10 April 2011 20 August 2011

MU3 21 April 2012 25 August 2012

The planting and sowing dates of the crops are reported in Table 1.

2.1.2. Chiese Irrigation Consortium (Northern Italy)

The Chiese Irrigation Consortium (www.consorziodibonificachiese.it, accessed on
June 2015), down valley of the Lake Idro (Northern Italy), covers an area of 20,000 ha and
is intensively cultivated with summer crops (i.e., corn, forage) and winter wheat, which
cover about 68% and 8% of the agricultural land, respectively. The irrigation practice is
based on fixed irrigation turns between every 7 1/2 and 8 1/2 days, which are defined a
priori before the beginning of the irrigation season from April to September. The irrigation
is provided to each field with a channel network of 1400 km covering an area of 18,000
ha. The irrigation is mainly flooding irrigation, with a fixed volume of 76 or 133 mm per
each intervention, according to the irrigation schedule. Rainfall during the crop season is
about 355 mm. The average of daily mean temperature throughout the growing season is
23.1 ± 3.8 ◦C. The monthly total amounts of rain and ET0 and the minimum and maximum
air temperature monthly averages are shown in Figure 2.

www.consorziodibonificachiese.it
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An eddy covariance station has been installed in the same maize field between April
and September in 2016 (CH1), in 2017 (CH2) and in 2018 (CH3) (Table 1) [36]. Soil moisture
is measured with TDR instruments (CS616, Campbell Sci, Logan, UT, USA) at 35 cm soil
depth, which is representative of the maize maximum density of roots [44]. All the main
meteorological variables (rainfall, air temperature and humidity, wind speed and radiation)
are measured at an hourly time step.

The planting and sowing dates of the crops are reported in Table 1.
According to ISTAT, for Brescia province, the production is equal to 12.5 ton/ha of

maize grains (http://dati.istat.it/, accessed on 15 June 2020).

2.1.3. Muzza Irrigation Consortium (Northern Italy)

The Muzza Bassa Lodigiana irrigation consortium is located in the middle of the Po
Valley (Northern Italy), with an area of 740 km2 which is divided into over 150 irrigation
basins. The Muzza canal, the largest irrigation canal in Italy, derives water from the
Adda river. Average annual rainfall in the consortium ranges between 800 (southern area)
and 1000 mm (northern area) with two peaks in spring and autumn. Flood irrigation
is scheduled by the consortium so that farmers can irrigate once every 2 weeks. In the
period 2010–2012, an eddy covariance station was installed in the same maize field in
Livraga town (MU1-MU2-MU3), characterized by a clay loam soil [45]. Soil moisture is
measured with TDR instruments (CS616, Campbell Sci, Logan, UT, USA) at a 35 cm soil
depth, which is representative of the maximum density of roots (Lundstrom, 1988). All
the main meteorological variables (rainfall, air temperature and humidity, wind speed and
radiation) are measured at an hourly time step. The monthly total amounts of rain and ET0
and the minimum and maximum air temperature monthly averages are shown in Figure 2.

http://dati.istat.it/
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The planting and sowing dates of the crops are reported in Table 1.
According to ISTAT, for Lodi province, the production is equal to 12 ton/ha of maize

grains (http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZ#, accessed on 15
June 2020).

2.1.4. Remote Sensing Data

For the Capitanata Irrigation Consortium case study, vegetation indices are obtained
from Sentinel-2 and Landsat8 data at a high spatial resolution (30 m) which is suitable to
correctly follow the fields’ dimension [43,46]. The vegetation fraction (CC) is computed as:

CC =
NDVI−NDVIs

NDVIv−NDVIs
(1)

where NDVIs and NDVIv are representative NDVI values for bare areas (0.15) and green
vegetation (0.9), respectively. LAI is then calculated as:

LAI =
− ln(1−CC)

k(θ)
(2)

Here, k(θ) is the light extinction coefficient for a given solar zenith angle. The solar
zenith angle (θ) depends on terrain geometry, solar declination, solar elevation angle,
latitudinal location and day of the year. The light extinction coefficient is a measure of
attenuation of radiation in the canopy, usually equal to 0.5.

The MODIS sensor on board the operative satellites Terra and Aqua is used to retrieved
vegetation parameters (https://lpdaac.usgs.gov/, accessed on 15 January 2020). Leaf area
index (LAI), defined as one-sided green leaf area per unit ground area, was retrieved from
the MODIS LAI products (MOD15A2–leaf area index) generated over an 8-day compositing
period with a spatial resolution of 1 km. MODIS data are used for the Northern Italy case
studies, where a low spatial resolution has been proved to be able to correctly reproduce
the vegetation dynamic of the area due to its homogeneity [45].

2.2. The AquaCrop Model and Water Efficiency Indicators

AquaCrop (http://www.fao.org/nr/water/aquacrop.html, accessed on 15 March
2018) is an agronomic model for crop production and irrigation water needs optimization,
which has been developed by the Land and Water Division of FAO [5].

Canopy cover (CC), biomass (B) and Yyields (Y) of a crop are the main model variables
which are computed as a function of water productivity, i.e., the biomass produced per
unit of water transpired by the vegetation under the present climate conditions [47]. Stress
coefficients which account for available water, air temperature, soil fertility and salinity
may reduce the final crop productivity as they influence the canopy expansion processes,
stomata control of transpiration, canopy senescence and Harvest Index (HI).

The AquaCrop model solves a complete water balance, where crop evapotranspiration
is computed according to the crop coefficient of each crop [23] multiplied by the reference
evapotranspiration ET0 [48] and its a function of CC. HI, along with CC, determines the
amount of produced biomass (B) and yield (Y) [6]. Cumulative biomass production is
obtained as the sum of the daily ratio between crop transpiration and ET0 for each day
of the crop cycle, and the crop yield is calculated by multiplying the final biomass by a
specific crop HI. The coefficient of transformation between dry biomass and fresh yield is
set as equal to 0.055 for tomatoes [49].

A detailed description of the AquaCrop model may be found in [5,47].
In this paper, meteorological variables measured at the fields’ sites, such as the min-

imum and maximum air temperatures, wind speed, air humidity and incoming solar
radiation, are used to estimate ET0. Measured rainfall and irrigation are also used as input
data. The initial soil moisture condition for each field is set equal as to the observed value
at the time of the initialization.

http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZ#
https://lpdaac.usgs.gov/
http://www.fao.org/nr/water/aquacrop.html
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The AquaCrop model is based on several parameters for crop, soil and environmental
calculations. Some of these parameters have been proved to remain almost constant over
the computation time [47], while others need a specific calibration. In this paper, the
calibration of soil hydraulic and crop parameters is performed through the comparison
between estimated and observed ground soil moisture and satellite LAI and CC. The model
is then validated against ground measurements of evapotranspiration and crop yield. The
model is run with different parameters configurations and with a trial and error approach;
the parameters are modified from the original values minimizing the difference between
observed and simulated variables. The soil parameters are set according to [50], assigning
to each field of the analysed area its respective value. The parameters values are modified,
keeping their values in their physical ranges. The main considered soil parameters are:
ksat as saturated hydraulic conductivity, fc as field capacity, wp as wilting point, SMsat
as soil moisture value at saturation, CN as curve number. Another important parameter
to be defined is soil depth, considered the predominant growing zone of fresh vegetable
roots, relevant for the evapotranspiration process. The crop parameters are set as the
standard values from AquaCrop and then calibrated.In Table 2, the values of the main soil
parameters which have been calibrated are shown for each field, while in Table 3 the crop
parameters are reported for the two crops (maize and tomatoes).

Table 2. Main calibration soil parameters for all the fields from the literature values and after the calibration process.

CA1 CA2 MU CH

From
Literature

After
Calibration

From
Literature

After
Calibration

From
Literature

After
Calibration

From
Literature

After
Calibration

ksat (mm/day) 100 150 225 225 200 200 1200 500

fc 0.5 0.38 0.32 0.318 0.36 0.33 0.22 0.19

wp 0.32 0.272 0.2 0.197 0.16 0.13 0.1 0.1

SMsat 0.54 0.54 0.47 0.47 0.46 0.46 0.41 0.28

CN 72 72 72 72 72 61 72 77

Irrigation
efficiency 90 drip 90 drip 60 flooding 60 flooding

Groundwater
table depth 70–90 m 70–90 m 10–15 m 40 m

2.2.1. The Optimized Irrigation Strategy

The optimized irrigation strategy [36,37] allows one to keep the present and forecasted
soil moisture between two soil moisture thresholds: the higher one relative to soil moisture
content for which the percolation flux in the soil starts to be significant (field capacity)
and a lower one where the crop begins to suffer for lack of soil water (crop stress). This
criterion supports the correct timing of irrigation and the amount of water for each irri-
gation, allowing one to reduce the passages over the field capacity threshold reducing
the percolation flux with a saving of irrigation volume, while evapotranspiration remains
almost the same. The optimized irrigation strategy allows one to increase the irrigation
efficiency (ton/mc) and water productivity (€/mc), saving an important percentage of
water, but also of fertilizer and energy, as compared to today’s irrigation practices.

The decision criteria for planning whether or not to irrigate are based on the com-
parison between the soil moisture and a water stress threshold (θcrit), below which the
crop begins to suffer for lack of water. This criterion will determine the correct timing of
irrigation and the amount of water.



Hydrology 2021, 8, 39 8 of 23

Table 3. Main calibration crop parameters for all the fields from the literature values and after the calibration process.

Parameter Name Meaning Maize Tomato

Standard Value Calibrated Value Standard Value Calibrated Value

p Coefficient stress factor 0.55 0.495 0.4 0.36

Kcb Crop coefficient for fully
developed canopy 1.05 1.05 1.10 1.0

Emergence GDD from sowing to
emergence/transplant 80 98 (±10) 43 1

Senescence GDD from sowing to
senescence 1400 1248 (±30) 1553 1278 (±25)

Maturity GDD from sowing to
maturity 1700 1642 (±50) 1933 1590 (±30)

Yield start GDD from sowing to
start yield formation 880 690 525 787 (±25)

Flowering Duration of flowering in
GDD 180 197 (±8) 750 508 (±2)

Plant density Plants/m2 6.5 7.5 6.5 12

CCmax Maximum canopy cover 0.96 0.96 (±0.03) 0.75 0.65 (±0.1)

WP
Water productivity

normalized for ET0 and
CO2

33.7 33.7 18 20.5 (±1)

HI harvest index 0.48 0.48 0.63 0.65

Tb Lower threshold
temperature (◦C) 8 8 8 8

Tu Upper threshold
temperature (◦C) 30 33 30 33

This stress threshold is a function of the different types of soils and crops, but also of
the vegetation growth stage and of the climatology of the area of study. The implemented
procedure relies on a θcrit which is computed following the methodology of [23] based on:

RAW = p TAW (3)

where RAW is the readily available water, defined as field capacity minus stress threshold;
TAW is the total available water, defined as field capacity minus wilting point; and p is a
reduction coefficient depending on the crop and climatic parameters. p is defined by [23]
for several crops, which is then corrected for climatic data. The factor p normally varies
from 0.30 for shallow-rooted plants at high rates of ETc (>8 mm d−1) to 0.70 for deep-rooted
plants at low rates of ETc (<3 mm d−1). The p coefficient tabulated according to [23] applies
for ET of about 5 mm/day. The value for p is adjusted for different ET according to

pnew = p + (0.04× (5− ET)) (4)

where ET is mm/day.
Then, θcit is computed to be equal:

θcrit = field capacity − p × (field capacity − wilting point) (5)

A surplus threshold can also be identified equal to the field capacity of the soil.
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2.2.2. Water Efficiency Indicators

A series of water indicators are computed for the summarized the effect of irrigation
optimization of yield production and water use, but also for the general impact on water
fluxes (e.g., drainage flux). These are computed as:

• Water use efficiency [ton/m3]:

WUE =
yield
ETm

(6)

• Irrigation water use efficiency [ton/m3]:

IWUE =
yield

Im
(7)

• Percolation deficit:

PerD =
(P + I)− Per

P + I
(8)

• Irrigation efficiency:

IE =
ET

P + I
(9)

where yield is the crop yield (ton ha−1), ETm is the evapotranspiration (m3 ha−1), Im is the
observed or modelled irrigation volume (m3 ha−1), P is rainfall (mm), I is irrigation (mm),
Perc is the drainage flux (mm) and ET is the evapotranspiration (mm).

2.2.3. Evaluation of the Model’s Performance

The reliability of the different estimates will be evaluated using different statistical
indexes which are the absolute mean error (MAE), the root mean square error (RMSE), the
modelling efficiency index (EI) and the average relative error (ARE), computed as follows:

MAE =
∑n

i=1|Pi −Oi|
n

(10)

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(11)

EI =
∑n

i=1
(
Oi − O

)2 −∑n
i=1(Pi −Oi)

2

∑n
i=1 (Oi − O)

2 (12)

ARE =
100
n

n

∑
i=1

∣∣∣∣Pi −Oi

Oi

∣∣∣∣ (13)

where Pi is the ith simulated variable, Oi is the ith measured variable, n the sample size
and O the average observed variable. EI can range from −∞ to 1, and the closer the model
efficiency is to 1, the more accurate the model is, while for MAE, RMSE and ARE, the best
value is 0.

3. Results
3.1. Model Calibration
3.1.1. Tomato Fields: Capitanata Irrigation Consortium

The AquaCrop model is calibrated for the two tomato fields using the observed
irrigations as provided by the farmers. In the first field (CA1), soil moisture is sensibly
underestimated before calibration with a negative EI (−0.78) and an MAE of 0.045, while
after the calibration a good agreement is found with an EI of 0.48 and an MAE of 0.026. In
Figure 3, the soil moisture series after the calibration are reported against observed data,
showing the goodness of the model after the calibration procedure. Evapotranspiration is
simulated with an MAE of 0.6 mm/day with the calibrated parameters.



Hydrology 2021, 8, 39 10 of 23Hydrology 2021, 8, 39 10 of 23 
 

 

 

Figure 3. Model calibration for Capitanata fields against ground-observed soil moisture and satellite canopy cover for the 

first field (CA1) and second field (CA2). 

Table 4. Statistical indices results for model calibration in the Capitanata Irrigation Consortium. 

Capitanata—Tomatoes   SM Obs-Mod  ET Obs-Mod  Yield Obs-Mod  CC Obs-Mod  

MAE CA1 0.03 0.6 mm/day 10 ton ha−1 1.3% 

 CA2 0.015 0.4 mm/day 1 ton ha−1 13.6% 

RMSE CA1 0.035 0.63 mm/day 0.73 ton ha−1 4.6% 

 CA2 0.025 0.64 mm/day 0.219 ton ha−1 14.9% 

EI CA1 0.48 0.52 - 0.78 

 CA2 0.24 0.43 - 0.45 

ARE CA1 8.3% 11% 10% 6.2% 

 CA2 5.2% 7.3% 1% 9.4% 

3.1.2. Maize Fields: Chiese and Muzza Irrigation Consortia 

The results from these two irrigation consortia are presented together due to the fact 

that in both analysed fields, the cultivated crop is maize with a similar climate, but the soil 

composition is very different with sandy soil in the Calcinato field and clay loam in the 

Livraga field. 

Chiese Irrigation Consortium 

The model is calibrated for the year 2016 and then validated during 2017 and 2018, 

the station being installed in the same field. A clear improvement is obtained after the 

calibration process in the 2016 crop season (Table 5), with an MAE of soil moisture which 

reaches 0.03 and an MAE of 0.6 mm/day on ET. In Figure 4, the soil moisture series after 

calibration are reported against the observed data, showing their good agreement for ei-

ther low or high values. 

The error of yield is less than 2 ton/ha, while an MAE and an RMSE of 1.3 and 0.4%, 

respectively, are obtained for canopy cover. The ability of the model to reproduce the tem-

poral dynamic of crop grow coverage is shown in Figure 5 against the satellite data. Dur-

ing the validation phase, a high accuracy is also obtained for 2017 soil moisture estimates, 

with an MAE of 0.021 and an RMSE of 0.4 (Figure 4), while the production is slightly less 

than the observed one, with an error of 1 ton/ha. An error of 1.5 ton/ha is obtained for 
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first field (CA1) and second field (CA2).

The simulated fresh yield is then compared to the observed one, showing a good
agreement after all the calibration process with an observed yield of 110 ton ha−1 and a
simulated one of 99.8 ton ha−1, leading to an error of 9%. Canopy cover has then been
compared with Landsat8 data, and a good agreement is observable with a relative error
of 1%. In Table 4, the statistical indices RMSE and MAE are reported after the calibration
procedure showing good agreement between observed and simulated variables.

Table 4. Statistical indices results for model calibration in the Capitanata Irrigation Consortium.

Capitanata—Tomatoes SM
Obs-Mod ET Obs-Mod Yield

Obs-Mod
CC

Obs-Mod

MAE CA1 0.03 0.6 mm/day 10 ton ha−1 1.3%

CA2 0.015 0.4 mm/day 1 ton ha−1 13.6%

RMSE CA1 0.035 0.63 mm/day 0.73 ton ha−1 4.6%

CA2 0.025 0.64 mm/day 0.219 ton ha−1 14.9%

EI CA1 0.48 0.52 - 0.78

CA2 0.24 0.43 - 0.45

ARE CA1 8.3% 11% 10% 6.2%

CA2 5.2% 7.3% 1% 9.4%

Good performances are also obtained for the second tomato field (CA2), showing
a clear improvement before and after the calibration process. This is confirmed by the
statistical indices with an MAE of soil moisture that ranges from 0.084 to 0.015 and an EI
from −0.15 to 0.24, while an MAE of 0.4 mm/day is found for ET. The error of yield is less
than 1% with a modelled value at the end of the season of 111.1 ton/ha and an observed
one of 110 ton/ha. The error of canopy cover estimates with respect to satellite data is
equal to 4%.
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3.1.2. Maize Fields: Chiese and Muzza Irrigation Consortia

The results from these two irrigation consortia are presented together due to the fact
that in both analysed fields, the cultivated crop is maize with a similar climate, but the soil
composition is very different with sandy soil in the Calcinato field and clay loam in the
Livraga field.

Chiese Irrigation Consortium

The model is calibrated for the year 2016 and then validated during 2017 and 2018,
the station being installed in the same field. A clear improvement is obtained after the
calibration process in the 2016 crop season (Table 5), with an MAE of soil moisture which
reaches 0.03 and an MAE of 0.6 mm/day on ET. In Figure 4, the soil moisture series after
calibration are reported against the observed data, showing their good agreement for either
low or high values.

Table 5. Statistical indices results for the model calibration in the Chiese and Muzza Irrigation
Consortia.

Chiese—Maize SM ET Yield CC

MAE CH1 0.03 0.6 mm/day 2.1 ton/ha 1.3%

CH2 0.021 0.4 mm/day 1 ton/ha 3.6%

CH3 0.04 0.3 mm/day 1.5 ton/ha 7%

RMSE CH1 0.42 0.33 mm/day 1.1 ton/ha 4%

CH2 0.42 1.1 mm/day 0.64 ton/ha 3%

CH3 0.03 0 mm/day 0.9 ton/ha 6%

EI CH1 0.64 0.51 - 0.7

CH2 0.35 0.63 - 0.72

CH3 0.42 0.78 - 0.8

ARE CH1 11% 11.5% 1.8% 2.3%

CH2 7.9% 10.4% 1% 2.1%

CH3 13% 3.3% 1% 2%

Muzza—maize SM [-] ET Yield CC

MAE MU1 0.022 0.97 mm/day 3.6 ton/ha 4%

MU2 0.02 1 mm/day 1 ton/ha 3.5%

MU3 0.02 0.93 mm/day 0.9 ton/ha 5%

RMSE MU1 0.02 1.2 mm/day 4.3 ton/ha 4.1%

MU2 0.21 1.5 mm/day 1.1 ton/ha 3.6%

MU3 0.19 0.98 mm/day 1 ton/ha 5.4%

EI MU1 0.76 0.48 - 0.82

MU2 0.65 0.38 - 0.75

MU3 0.6 0.59 - 0.89

ARE MU1 5.8% 9.7% 6.7% 1.8%

MU2 6.1% 10% 1.2% 2.3%

MU3 6.2% 8.5% 1% 1.7%
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The error of yield is less than 2 ton/ha, while an MAE and an RMSE of 1.3 and
0.4%, respectively, are obtained for canopy cover. The ability of the model to reproduce
the temporal dynamic of crop grow coverage is shown in Figure 5 against the satellite
data. During the validation phase, a high accuracy is also obtained for 2017 soil moisture
estimates, with an MAE of 0.021 and an RMSE of 0.4 (Figure 4), while the production
is slightly less than the observed one, with an error of 1 ton/ha. An error of 1.5 ton/ha
is obtained for 2018. The canopy cover dynamic is well reproduced (Figure 5) both in
2017 and 2018, with an MAE of 3.6 and 7%, respectively. Evapotranspiration is also well
simulated, with an MAE of 0.4 mm/day during the 2017 crop season and 0.3 mm/day
during 2018.
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Figure 5. Modeled canopy cover for the Chiese and Muzza stations against satellite canopy cover.

Muzza Irrigation Consortium

The model is calibrated for the Muzza maize fields in the year 2010 and then validated
during 2011 and 2012, the station being installed in the same field. During the 2010 growing
season, soil moisture values are simulated with good accuracy, with an MAE of 0.02 and a
similar RMSE. Figure 4 shows the comparison between observed and simulated soil after
the calibration process. Evapotranspiration shows also an agreement with observed data,
with an MAE of 0.97 mm/day and an RMSE of 1.2 mm/day (Table 5). The fresh crop yield
is equal to 14.6 ton/ha, which slightly overestimates the observed statistical values of 21%.
A higher accuracy is obtained for canopy cover, with the model and the remote sensing
data differing by 4% (Figure 5).

Similar results are obtained during the validation periods, the MAE of soil moisture be-
ing 0.02 for both 2011 and 2012 (Figure 4), and the MAE of ET 1 mm/day and 0.93 mm/day
for 2011 and 2012, respectively. During the 2011 crop season, the maize yield reaches
11.88 ton/ha of fresh products, which is 0.9% less than the observed statistical values, while
during 2012 similar yield values are obtained (11.2 ton/ha) with an error of 6.2% in respect
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to observed data. Differences of the modeled and remotely observed canopy cover are
found to be 3.5 and 5% during 2011 and 2012, respectively.

3.2. The Optimized Irrigation Strategy

The optimization irrigation strategy is then applied to all the analyzed fields in the
different crops’ seasons evaluating the effect not only on irrigation volumes and number
of irrigations, but also on crop yield and on the total cumulated drainage flux which
represents the main water loss (e.g., not used by the plants to grow).

3.2.1. Tomato Fields: Capitanata Irrigation Consortium

In Figure 6, the results of the SIM irrigation strategy are shown for the tomato fields.
Two simulations are compared: “SM with observed irrigation” (e.g., using as input data the
irrigations provided by the farmers) and the “SM with SIM irrigation” (e.g., triggering the
irrigation when the stress threshold is reached). The two simulations are then compared
with the measured SM in each field. For CA1, the differences in soil moisture behaviour
between the modelled values with observed and SIM irrigations are clearly visible between
the two lines showing the different strategy ideas, especially on the high peaks and the
irrigation timing. This is reflected in the reduction in the irrigation volume by 37.6%: the
observed one is equal to 516 mm, while the SIM one is equal to 322 mm (Table 6). A
decrease in the irrigation events by 15 is also observable between the two strategies.
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Table 6. SIM strategy application in the Capitanata Irrigation Consortium.

Field Rainfall
(Mm)

Observed
Irrigation

Volume (Mm)

Observed
Number of
Irrigations

SIM Irrigation
Volume (Mm)

SIM Number of
Irrigations

CA1 228 516 25 322 10

CA2 228 644 43 590 16
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Then, a considerable difference is also observable when all the modelled water bal-
ance fluxes are compared when using the two different irrigation strategies (Figure 6). In
particular, with the SIM irrigation, the percolation flux is sensibly reduced, allowing the
saving of a considerable amount of water, while evapotranspiration remains almost the
same, as expected. The yield with the SIM strategy is slightly reduced to 92.9 ton/ha with
a loss of 7% of productivity.

For field CA2, using the SIM strategy the irrigation water volume would go from
644 mm to 590 mm with a saving of 8.7%, which would lead to a production gain of 2.7%
(yield with SIM strategy equal to 113.2 ton/ha). Similar to CA1, ET remains almost similar
between the two irrigation strategies, while a significant improvement is observable in the
reduction in the drainage flux with the SIM strategy by about 50 mm.

Comparing the two tomato fields, the irrigation volume reduction with the implemen-
tation of the SIM strategy for CA2 is lower than for CA1, due to the different soil types of
the two fields (Table 1). In fact, CA2 field has a sandy soil with a higher infiltration capacity
(higher hydraulic conductivity) as compared to the silty clay soil of field CA2. However,
the reduction in irrigation events is higher (27) in CA2 than in CA1 (15), which may be also
as important as the irrigation volume reduction, especially in terms of economic savings
(e.g., electricity, labour).

3.2.2. Maize Fields: Chiese and Muzza Irrigation Consortia

For the Chiese consortium, if the SIM strategy is applied to field CH1, the irrigation
water volume saved would have been of about 1000 mm which could lead to a significant
reduction in the drainage flux by about 200 mm and in the runoff flux by the remaining
800 m, while the evaporation flux remains almost constant. This last one is one of the
main reasons for an unchanged production between the two irrigation strategies, which
is around 9 ton/ha. Soil moisture behaviour is modified when applying the SIM strategy
(Figure 7), and it is especially visible in the SM peaks which do not surpass the FC value.
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For CH2, similar results are obtained when the SIM irrigation strategy is applied,
showing a difference on soil moisture behaviour, especially on the high peaks and in the
irrigation timing. The reduction in the irrigation volume between the observed and SIM
strategies (Table 7) would be remarkable and equal to more than 1000 mm together with a
reduction of 8 irrigation events. As expected also during 2017, a considerable difference is
observable in the percolation flux which is reduced by 200 mm in addition to the runoff by
about 800 mm. The yield, in this case, is sensibly increased from 7 to 9 ton/ha due to the
excess of water provided with the observed irrigation strategy, which leads to SM values
almost always above the FC.

Table 7. SIM strategy application in the Chiese and Muzza Irrigation Consortia.

Short
Name

Rainfall
(Mm)

Observed
Irrigation

Volume (Mm)

Observed
Number of
Irrigations

SIM Irrigation
Volume (Mm)

SIM Number
of Irrigations

Chiese—
maize CH1 633 1303 11 232 9

CH2 201 1355 17 210 9

CH3 374.6 1349 11 164 5

Muzza—
maize MU1 337 400 4 240 3

MU2 183.4 400 4 113 2

MU3 79.2 300 3 250 3

The same results (Table 7) are also obtained for CH3 during the 2018 crop season,
where the implementation of the SIM strategy would lead to a similar reduction in the
irrigation volume (about 1000 mm less) and number of irrigation events, as well as in the
drainage flux. A similar crop yield is also obtained between the two irrigation strategies,
confirming the optimization of the SIM one.

It is interesting to note that during the different crop seasons from 2006 to 2008 in
the maize field of the Chiese Irrigation Consoritum, the same irrigation volume has been
provided even though significantly different rainfall volumes are observed (from 200 to
600 mm). The SIM strategy allows the sensible improvement of the irrigation volume,
considering also the rainfall as a water balance input.

For MU fields in the Muzza Irrigation Consortium, the same analysis is performed. In
general, the modeled soil moisture with the observed irrigations has a similar behavior
to that obtained by applying the SIM strategy, except for the peaks where the SM with
observed irrigations far surpasses the FC threshold (Figure 7). This would lead to a mean
reduction by 150 mm of the percolation flux with SIM irrigations, compared to the one
computed with observed irrigations. This is related to the reduction in irrigation volume
which is visible during the three analysed years. For MU1, the observed irrigation volume
is equal to 400 mm, while the SIM one is equal to 240 mm, with a reduction of 40% (Table 7).
One irrigation event less is also obtained with the SIM strategy. The evapotranspiration flux
remains almost the same when applying the two irrigation strategies. A similar behaviour
is observed for crop yield. For field MU2, the highest reduction in irrigation water volumes
is observable from 400 mm to 113 mm if the SIM strategy is applied. The same yield
production is kept, as well as ET. Similar to MU1 and also MU3, the irrigation volume is
slightly reduced and ET remains almost similar between the two irrigation strategies, as
well as the yield.

Comparing the two maize fields in the Muzza and Chiese Irrigation Consortia, the
differences are clearly visible between the two sites of the effect of the SIM strategy applica-
tion on irrigation water saving, water fluxes and crop yield production. In fact, irrigation
volume reduction with the SIM strategy for MU is significantly lower than for CH fields
(70% and 40%, respectively), which is mainly due to the different soil types of the two areas
(Table 1) for a similar rainfall. In fact, the MU field has a sandy soil with a higher infiltration
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capacity than the silty clay soil of the CH field. This is reflected mainly in the reduction in
water losses for percolation. Moreover, usually in the Chiese Consortium 13 irrigations are
performed while only four are in the Muzza Consortium, which may also be as important
as the irrigation volume reduction in terms of economic savings (e.g., electricity, labour).

3.2.3. Stress Threshold Sensitivity Analysis

The evaluation of the sensitivity to the stress threshold is performed applying the SIM
irrigation strategy with the fixed calibrated parameters for each field, then the p value is
changed to between +10% and −10% in steps of 5%. The results of the sensitivity analysis
to this stress parameter are provided in Figure 8 in respect to soil moisture for the two
tomato fields (CA1 and CA2) and for two maize fields (MU2 and CH1). The yellow line
represents the simulated value with the SIM strategy with the original p value from [23],
while the additional simulations, obtained by varying the p values, are represented in a
gray color scale. The uncertainties linked to p considerably affect the soil moisture behavior
and hence the irrigation triggering timing. Table 8 represents the effect of soil moisture
stress threshold on total irrigation volume used in the two farms. The effect is shown in
percentage of change; as expected, a considerable volume increase is obtained with a higher
stress threshold and a volume decrease with a lower stress threshold.
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Figure 8. Sensitivity analysis to p value in respect to soil moisture for the two tomato fields (CA1 and CA2) and for the two
maize fields (MU2 and CH1).

These changes are directly reflected in crop yield and hence crop productivity. In
Table 8, the total yields (ton/ha) are finally compared at varying the stress thresholds,
and as expected, the values remain almost constant. In general, a similar production
to the original p value is found if the stress threshold is increased by 5 and 10% which,
however, corresponds to higher irrigation volumes. Slightly lower crop yields (1%) are
obtained with the decrease in the stress threshold, which correspond to a considerable
decrease in the irrigation volume (5–15%). Similar results are obtained for the different
crops and the different soil types (Table 1), suggesting that for these case studies the values
identified by [23] are suitable, while a high importance of the p value definition is of
extreme importance in water saving analysis.
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Table 8. Effect of SM stress threshold on irrigation amount and crop yield.

CA1
Original

Stress
Threshold

Threshold
(+5%)

Threshold
(−5%)

Threshold
(+10%)

Threshold
(−10%)

SIM Irrigation (mm) 306 324.8 296.6 353 278

Change (%) 0% 10.53 −5.26 26.32 −10

Yield (ton/ha) 1001 1001 990.2 1001 990.5

Change (%) 0% 0 −1.07 0 −1.04

CA2 Threshold Threshold
(+5%)

Threshold
(−5%)

Threshold
(+10%)

Threshold
(−10%)

SIM Irrigation (mm) 454 469.9 347.79 535.79 300.79

Change (%) 0% 8.93% −19.39% 24.18% −30.28%

Yield (ton/ha) 1011 1011 1000 1011 999.8

Change (%) 0% 0 −1 0 −1.1

MU2
Original

stress
threshold

Threshold
(+5%)

Threshold
(−5%)

Threshold
(+10%)

Threshold
(−10%)

SIM Irrigation (mm) 113.00 150.00 75.00 225.00 75.00

Change (%) 0% 32.7 −33.6 99.1 −33.6

Yield (ton/ha) 9.2 9.2 9.153 9.153 9.156

Change (%) 0% −0.011 0.000 0.000 0.033

CH1 Threshold Threshold
(+5%)

Threshold
(−5%)

Threshold
(+10%)

Threshold
(−10%)

SIM Irrigation (mm) 232 230 227 247 225

Change (%) 0% −5.0 −6.2 2.1 −7.0

Yield (ton/ha) 8.8 8.8 8.836 8.836 8.836

Change (%) 0% 0 0 0 0

3.3. Water Efficiency Indicators

The optimization irrigation strategy has been applied to all the analyzed fields in the
different crops seasons evaluating the effect not only on irrigation volumes and number of
irrigations, but also on crop yield and canopy cover, and on the cumulated drainage flux
which represents the main water loss (e.g., not used by the plants to grow). To summarize
the effect of the SIM irrigation strategy and to quantify its efficiency, a series of water
indicators is computed (Figure 9).

In general, the SIM strategy leads to higher IWUE than with the observed irrigations,
and also to a higher percolation deficit and irrigation efficiency confirming the SIM strategy
objective and potentiality, keeping constant the WUE indicators (e.g., almost unchanged
crop yield and evapotranspiration).

The highest improvements of IWUE (around 0.04 ton/m3) are obtained for the two
irrigation consortia in Northern Italy, where high amounts of irrigation water are tradi-
tionally used in excess, which the SIM strategy may help in reducing. The amount of used
irrigation water is quite similar every year, but with significantly different rainfall volumes.
This results from the ancient water rate concessions where water is paid at a fixed amount
per year, and not as the real used water.

In any case, even in the Capitanata area generally characterized by less water availability
which over the years has led farmers to pay greater attention to the use of irrigation water,
improvement of IWUE may be obtained following the SIM strategy (around 0.02 ton/m3).
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The IE index, following the IWUE behavior, shows a great improvement in the two
Northern Italy consortia when the SIM methodology is implemented (about 0.7 in the
Chiese area and 0.3 in the Muzza area).

In general, the PerD index tends to 1 in the case where the deep percolation flux is
null, a situation which may be reached by applying the SIM strategy. This is reached in
most of the situations, except in field CA2 which, as previously noted, is characterized by a
high permeable soil leading to minimum water loss even when applying the SIM strategy.

4. Discussion

In this paper, the effect of the SIM optimization irrigation strategy based on crop
stress thresholds has been implemented, showing the possibility of enhancing the actual
irrigation practices in real applications across two Italian irrigation consortia for tomato
and maize fields which differ in climate, soil types and irrigation technique. This can lead
not only to a reduction in irrigation volumes and number of irrigations, but also in the
drainage flux which represents the main water loss, keeping the crop yield and canopy
cover constant.

SIM is an often used approach in irrigated cropping systems, especially those where
precision irrigation is carried out. It is an effective system in cases where the capillary rise
is negligible and irrigation rates are not excessive, if applied on soils with good drainage.
However, this is not the case in the presented cases studies, where the analyses confirm
the significantly high amounts of water used for irrigation which can be reduced even
in areas where efficient irrigation management is used (e.g., the Capitanata area). The
results are even more relevant for Northern Italy in the case studies of Chiese and Muzza
characterized by a high waste of water with inefficient irrigation techniques.
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The performed analysis relies on a calibrated AquaCrop model which has been able
to correctly reproduce the crop yield and also other output variables such as ET, SM
and CC. In fact, some previous studies calibrated the AquaCrop model only on crop
yield, assuming then that the model was able to correctly reproduce also soil moisture or
evapotranspiration [10,49,51]. However, this is not always verified as reported by [52], who
showed differences in performances depending on crop types, water stress and output
variables (ET, SM, yield, CC). For example, [52] reported ET underestimation when maize
and tomatoes are stressed, while [53] found a better ET agreement for cotton under water
stress than not stressed. Moreover, the AquaCrop ET computation methodology based
on ET0 and Kc has been criticized for its application, especially in the Mediterranean
area [54,55]. The correctness of all output variables is of extreme importance when the
AquaCrop model is used as a tool for irrigation scheduling based on daily ET [53,54,56],
SM [57] or IWUE [28].

Moreover, several studies on irrigation management did not compute water efficiency
indicators as WUE or IWUE [58–60].

The results obtained in this paper in terms of IWUE are in line with literature values. In
fact, for example [61] found that for tomatoes, the IWUE ranges from 0.357 to 0.876 kg/m3

for the different irrigation water levels, with IWUE increasing with irrigation volume. They
also reported a saving up to 35% of tomato irrigation volume without significant reduction
in fruit yield. This confirming also the findings of [62]. The study in [63] found that the
IWUE of tomatoes can be significantly reduced with less irrigation water volume. For
maize fields, [64] found that decreasing irrigation volume of 10% maintained similar grain
yield, while decreasing evapotranspiration and increasing WUE (4.61–6.66%). The study
in [65] found that in the middle Heihe river basin, a reduction of 23% of irrigation water
did not reduce yield.

Nevertheless, the comparison of WUE among different locations is challenging due to
the different climatic conditions, water and soil management [35].

Another point of discussion may be related to the annulment of the percolation
flux, which may cause a problem for some soils characterized by a high salt or fertilizer
concentration [40,66], which need a more comprehensive control of irrigation.

Finally, the importance of the p value definition is of extreme importance in water
saving analyses, which can lead to a significant variation in irrigation volumes. The
definition of a variable stress threshold during the crop growing can better allow a more
precise irrigation triggering.

5. Conclusions

In this paper, the AquaCrop model has been used for optimizing the irrigation water
use efficiency for tomato and maize fields across Italy, based on the operative SIM strategy
which accounts for crop stress thresholds evaluating the effect not only on irrigation
volumes and number of irrigations but also on crop yield and canopy cover, and on the
cumulated drainage flux which represents the main water loss (e.g., not used by the plants
to grow). The results provide irrigation management suggestions for a single farmer who
seems to use too much water, but also for consortia to review their management among the
associated farmers.

In fact, irrigation volume reductions are found to be between 200 and 1000 mm when
applying the SIM strategy, mainly depending on the different soil types more than on the
climate, irrigation technique or crop. This is directly related to the drainage flux reduction
which is of a similar entity.

The SIM strategy efficiency has then been summarized by different indicators: the
IWUE, which is higher than with the observed irrigations (around 35% for tomato fields
in Southern Italy and between 30 and 80% for maize in Northern Italy), and also a
higher percolation deficit and irrigation efficiency confirming the SIM strategy objective
and potentiality.
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The AquaCrop model has been previously calibrated against canopy cover and LAI
from remote sensing data, producing MAE errors between 1 and 15%, while MAE between
0.015 and 0.04 are obtained for SM. The validation of the AquaCrop model has been
performed against ET ground-measured data and crop yields, producing MAE values
ranging from 0.3 to 0.9 mm/day, and 0.9 ton/ha for maize and 10 ton/ha for tomatoes,
respectively.
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