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Abstract: Landslides are a common geologic hazard that disrupts the social and economic balance
of the affected society. Therefore, identifying zones prone to landslides is necessary for safe living
and the minimal disruption of economic activities in the event of the hazard. The factors causing
landslides are often a function of the local geo-environmental set-up and need a region-specific
study. This study evaluates the site characteristics primarily altered by anthropogenic activities to
understand and identify the various factors causing landslides in Coonoor Taluk of Uthagamandalam
District in Tamil Nadu, India. Studies on landslide susceptibility show that slope gradient, aspect,
relative relief, topographic wetness index, soil type, and land use of the region influence slope
instability. Rainfall characteristics have also played a significant role in causing landslides. Logistic
Regression, a popular statistical tool used for predictive analysis, is employed to assess the various
selected factors’ impact on landslide susceptibility. The factors are weighted and combined in a GIS
platform to develop the region’s landslide susceptibility map. This region has a direct link between
natural physical systems, hydrology, and humans from the socio-hydrological perspective. The
landslide susceptibility map derived using the watershed’s physical and environmental conditions
offers the best tool for planning the developmental activities and prioritizing areas for mitigation
activities in the region. The Coonoor region’s tourism and agriculture sectors can significantly benefit
from identifying zones prone to landslides for their economic stability and growth.

Keywords: landslides; logistic regression; slope gradient; land use; soil; Coonoor

1. Introduction

Landslides are a common geologic hazard in the hill and mountain terrains of the
world. The landslides impact the society and livelihoods of the affected communities.
Landslides can result in loss of lives and cause potential damage to infrastructure facilities,
agricultural land, public and private assets. UNESCO has also recognized landslides as a
significant geohazard globally and attributes 14% of total casualties from various natural
hazards like earthquakes, floods, etc. to landslides [1,2]. Global landslides cause nearly
1000 fatalities and a loss of approximately 4 million USD in a year [3]. They can impede
the region’s economic growth and development and hamper the region’s social set-up
by isolating the hill communities for long periods from the rest of the surrounding areas.
Landslides also lead to environmental degradation by the removal of soil and tree cover.
They have significant economic value and affect the environment adversely and hence are
a severe concern in mountainous terrains. Assessment of the regions prone to landslides is
therefore mandatory for any developmental, land use, and mitigation planning in the hill
and mountain communities.

Landslides have profound social and economic impacts. Landslides affect public and
private properties and cause both direct and indirect losses that can have either consequen-
tial or inconsequential economic impacts [4]. Linear infrastructure like roads or railroads
are often severely damaged by landslides causing disruption to normal traffic or completely
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cutting off the access to the affected areas. This directly affects the tourism industry in
the region. The direct economic impact which is consequential involves the repair of
damaged infrastructure which includes property and installations or its replacement and
clean-up activities. Fatal and non-fatal injuries or accident costs caused by landslide also
fall under this category. In cases of remote hamlets or villages, whose economy depends on
transporting their raw material or manufactured goods using the roads affected by land-
slides suffer economic losses due to traffic disruption caused by landslides, though indirect
losses are consequential [4]. Moreover, the decrease in tourist activity due to landslides or
even landslide vulnerability is an indirect consequential loss. Indirect losses also include
reduced real estate values, devaluation of tax revenues, loss of industrial/agriculture
revenue, loss of productivity of labor force due to injury, death, or trauma caused by
landslides, and the capital spent on prevention/mitigation measures [5]. Landslides can
significantly reduce the revenue of the affected regions causing a social set-back [6]. They
impose severe constraints to the affected population in terms of economic loss and social
set-back [7]. This significant impact of landslides on the socio-economic system of the
affected region mandates a thorough understanding of factors causing landslides in the
specific geo-environment.

Landslides are caused by several topographical, environmental, geological, hydro-
logical, and geotechnical factors such as terrain features, slope morphometry, drainage
pattern, land use and land cover in the region, geomorphological set-up, etc. These factors
are usually termed as causative factors [8,9]. Landslides are triggered by extreme rain-
fall events or snowmelt, seismic activity, and/or anthropogenic activities [2,10]. Climate
change and extreme rainfall events trigger landslides more frequently, causing considerable
losses to the society, particularly in areas with a large settlement [11–14]. Haque et al. [15]
investigated the human cost of global warming, focusing on deadly landslides and triggers
between 1995–2014. They reported that there was a significant increase in the number of
fatal landslides in the said period. Haque et al. [15] also demonstrated the linkage between
catastrophic landslides and extreme rainfall events in their study, particularly in densely
populated areas. The effect of various factors contributing to landslides in a region can be
perceived in a landslide susceptibility map that describes the spatial propensity of landslide
vulnerability in a selected geographic or geomorphic boundary.

Landslide susceptibility assessment is a complex process and involves determining
the spatial association between various factors causing landslides and its location. Sev-
eral statistical, deterministic, and heuristic methods are employed to evaluate landslide
susceptibility [13,15–24]. Data-driven statistical models are widely favored for their sim-
plicity and ease of application, while the limitations can come from a lack of local data
including temperature and precipitation [25]. Popular statistical methods used to assess
landslide susceptibility are bivariate methods [26,27], multivariate regression [28,29], and
logistic regression [19,20,30–32]. Bivariate models like frequency ratio, weights of evidence,
information value, and yule coefficient assess the spatial association between landslide
occurrence and each causative factor using a set of observations. Bivariate models are
simple and straightforward, but the relative importance of the factors influencing land-
slides cannot be determined using bivariate methods. Multiple regression models attempt
to evaluate the relationship between landslides and numerous causative factors. They
also estimate the importance of these factors in causing landslides and can also identify
outliers. However, the multiple regression model’s success depends on the data used,
and the results are too difficult to interpret. Logistic Regression is a statistical modelling
approach used to parameterize a non-linear relationship between dependent and inde-
pendent variables [31,33,34], particularly when the dependent variable has a binary or
dichotomous output. Logistic regression, like linear regression, evaluates the relationship
between several predictor variables and the dependent variable. Unlike linear regression,
which requires continuous variables, logistic regression can use any type of independent
variables—continuous and categorical. It is also not mandatory for independent variables
to have a normal distribution and evaluate multiple independent variables. The logistic
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regression model features make it an ideal choice for modelling landslide susceptibility in
this study. However, it should be noted that this method requires a large dataset and is
sensitive to the large variance in the dataset used.

Landslide susceptibility models are region-specific and are, to a large extent, dictated
by the local geo-environmental set-up.

Coonoor is a popular hill-station in Tamil Nadu, India and is located in the western
ghats, a zone prone to intense slope stability problems. Tourism and tourism-related
activities such as flower shows, vegetable shows, hiking, special events in botanical gardens,
eco-tourism, etc. are prevalent throughout the year. People witness landslides every year,
particularly in the months between October and December due to intense and prolonged
monsoonal rainfall. These landslides cause severe distress to the hill community in terms
of social and economic losses [10]. Therefore, it is necessary to study the factors causing
landslides in the Coonoor Taluk to map the regions susceptible to landslides.

This study evaluates the factors that contribute to landslide occurrences, understands
their spatial association with the landslide, and map landslide susceptibility using a logistic
regression model for Coonoor Taluk, India. The objective of the study is to throw light on
the relation between landslide susceptibility and anthropogenic activities in this region.
Geo-environmental factors are used to build the landslide susceptibility map and are
compared with the most significant anthropogenic activities that have modified the natural
setting in the region.

2. Methodology
2.1. Study Area: Coonoor Taluk, Tamil Nadu

Coonoor, a popular hill station in the Western Ghats, is a sensitive eco-system in
South India (Figure 1). It covers approximately 230 square kilometers and is bound
on the southeastern flank by Doddabetta ranges, Hulikal ravine on the southwest, and
Kothagiri ridges on the northeast. It has a well-connected road and rail network through
Mettupalayam. The region falls under a tropical zone on account of its elevation and
experiences a subtropical highland climate. Its altitude ranges between 394 m and 2033
m, and the average altitude can be described as 1800 to 2000 m above mean sea level. The
annual average temperature is 17 ◦C, with the highest temperature records in May and the
lowest temperature in January. The average yearly rainfall is 1335 mm [35]. Precipitation
is minimum in the winter months between January and March and maximum in the
north-east monsoon season, between October and December. The relative humidity is high
almost throughout the year. Bedrock geology consists predominantly of the charnockite
rock group with Satyamangalam schist enclaves [36,37]. They are acidic, deeply weathered,
and capped with aluminous laterite in several places forming an irregular soil horizon [37].

The most common landforms observed in the region are gentle mounds with thick
soil cover and high peaks with steep escarpment. The area is characterized by crests,
valleys, deep gorges, cascades, and high-velocity streams [37]. It is drained by numer-
ous streams of the first order that originate from the peaks, and the drainage pattern is
predominantly dendritic.

Coonoor Taluk has a population of 157,754, according to the 2011 census. The rural
and urban population is 27,128 and 130,626 respectively, i.e., nearly 82.8% of the population
are urban dwellers. The metropolitan region is densely populated. It is also home to native
tribes like Badugas and Todas, who constitute about 1.5% of the Taluk population. The
literacy rate in the Coonoor Taluk is nearly 88%. The economy is dependent on tourism-
related activities and the tea industry. Almost 24% of the tea plantations and factories
of Nilgiris District, Tamil Nadu, are located in Coonoor. Coonoor being a hill station,
has a massive tourist influx all through the year. In 2016, the tourist population visiting
Coonoor was 2,463,779, of which nearly 98% were domestic tourists. While this study does
not consider the human footprint on landslides, the factors considered in identifying the
susceptible zones, including the inhabitants of those regions, will have a direct bearing on
broader conclusions in making them more resilient to these landslide disasters.
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Figure 1. Location map of the study area showing the Digital Elevation Model of Coonoor Taluk,
Tamil Nadu, India.

2.2. Data Sources

Data sources include both analogue and digital formats of data. Landslide inven-
tory was collected from the National Highway Authority, Southern Railways Coonoor
Division, State Highway Department, Coonoor, Office of the District Collector, Nilgiris,
and from various literature sources [10,37,38]. Freely downloadable digital data products
like ASTERDEM (30 m × 30 m), LANDSAT 8 OLI, and analogue maps like Survey of
India (SOI) topographic maps 58 A11 and 58 A15 of 1:50,000 scale obtained from GSI,
India were used to derive the various thematic layers. The soil map was adopted from the
Tamil Nadu Agriculture University (TNAU), Coimbatore, India. Limited soil samples were
also collected from selected locations for geotechnical analysis and cross-verified with the
TNAU soil map. Daily rainfall data for the various rainfall stations in Coonoor Taluk and
Uthagamandalam were obtained from Tamil Nadu Statistical Department, Chennai, India,
for the years 2007–2017.

2.3. Landslide Characterization

Landslide inventory is a vital dataset required for modelling landslide susceptibility.
Scientific records of landslide incidences, including their spatial and temporal attributes,
are rare in the region. The inventory has been constructed for the period between 1992
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and 2018 based on available records from Government departments, literature, and field
survey of known locations. Landslide data collected from the records of the Geological
Society of India (GSI) shows that nearly 367 landslides have occurred in the period of
study (1992–2018) and includes landslides of small, medium, and large volumes. The
information on the length, width, and depth of the recorded landslides is available for
only 270 landslides. The volume of these landslides ranges from 3.925 m3 to 2,512,000 m3.
Nearly 38% of the landslides have a volume less than 100 m3 and 31% above 1000 m3.
Landslides have primarily occurred due to cut slopes’ failure, toe erosion in road cuts or
natural slopes, removal of material from the toe, and failure of steep cuts. Approximately
74% of the landslides have occurred due to road cutting activity. The slope failures are
shallow in nature, and rainfall is observed to be the triggering factor most often. Hence
the landslides triggered by rains alone are considered for this study. Nearly 57% of the
landslides recorded are earth slides, slumps, and soil slides, and about 40% of the landslides
fall in the category of debris and debris slides. Slope failures like subsidence, boulder fall,
and rock toppling are also observed in the region but rare. Figure 2 shows the location of
the landslides used for the training of the logistic regression model.
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2.4. Spatial Database of Causative Factors

Numerous factors, including topographical, geotechnical, geological, environmental,
hydrologic, and climatic factors, contribute to landslides occurrences. The factors are often
a function of the local geo-environmental set-up. Therefore, it is necessary to assess each
factor’s influence with respect to its local geo-environment based on the landslide occur-
rences. Table 1 presents the various factors commonly used to map landslide susceptibility
in literature. The factors that influence landslides in this area were selected based on their
correlation to causing landslides. Factors such as aspect, slope gradient, curvature, relative
relief, land use, soil, topographic wetness index, distance from lineaments, distance from
streams, and average annual rainfall were considered for assessing landslide susceptibility
in this region [13,15,19,31,32,34,39]. A Pearson’s correlation analysis was carried out for
each of the factors listed above to assess their relationship to landslides in this specific
geo-environment. The factors that showed a correlation greater than 0.4 were selected to
model landslide susceptibility using logistic regression. The factors selected for the study
based on Pearson’s correlation were aspect, slope, relative relief, TWI, soil, land use and
annual precipitation.

Table 1. Common Physical and Environmental Factors causing Landslides used in Literature.

Factor Reference

Aspect Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Eker and Aydin (2014) [19];
Talaei (2014) [34]; Lee et al. (2017) [13]; Pourghasemi and Rahmati (2018) [39]

Slope
Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Eker and Aydin (2014) [19];

Talaei (2014) [34]; Lee et al. (2017) [13]; Basu and Pal (2018) [41]; Youssef (2015) [42];
Pourghasemi and Rahmati 2018 [39]

Relief Sujatha and Rajamanickam (2011) [40]; Eker and Aydin (2014) [19]; Talaei (2014) [34];
Youssef (2015) [42]; Pourghasemi and Rahmati 2018 [39]

Relative Relief Qui et al., 2018

Curvature Sujatha and Rajamanickam (2011) [40]; Eker and Aydin (2014) [19]; Talaei (2014) [34];
Youssef (2015) [42]; Lee et al. (2017) [13]; Pourghasemi and Rahmati 2018 [39]

Soil Sujatha and Rajamanickam (2011) [40]; Lee et al. (2017) [13]

Geology Eker and Aydin (2014) [19]; Talaei (2014) [34]; Youssef (2015) [42]; Lee et al. (2017) [13];
Pourghasemi and Rahmati 2018 [39]

Distance from Fault/Lineament Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Talaei (2014) [34]; Youssef
(2015) [42]; Lee et al. (2017) [13]

Distance from Streams Akgun (2012) [32]; Talaei (2014) [34]; Youssef (2015) [42]; Pourghasemi and Rahmati
2018 [39]

Drainage Density Pourghasemi and Rahmati 2018 [39]

Topographic Wetness Index (TWI) Sujatha and Rajamanickam (2011) [40]; Lee et al. (2017) [13]

Stream Power Index (SPI) Lee et al. (2017) [13]

Land use Sujatha and Rajamanickam (2011) [40]; Eker and Aydin (2014) [19]; Talaei (2014) [34];
Lee et al. (2017) [13]; Pourghasemi and Rahmati 2018 [39]; Haque et al. (2019) [15]

NDVI Youssef (2015) [42]

Distance from Roads Sujatha and Rajamanickam (2011) [40]; Akgun (2012) [32]; Talaei (2014) [34]; Youssef
(2015) [42]; Pourghasemi and Rahmati 2018 [39]

Peak Ground Acceleration Talaei (2014) [34]

Rainfall Talaei (2014) [34]; Yousef (2015); Haque et al. (2019) [15]

Thematic layers aspect, slope gradient, relative relief, and topographic wetness index
were extracted from ASTER GDEM of 30 m × 30 m resolution using the spatial analyst
tool of ArcMap. Aspect represents slope direction and was divided into eight cardinal
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directions and a category flat (Figure 2a). Slope gradient was reclassified into five classes
as 0◦–5◦, 5◦–15◦, 15◦–25◦, 25◦–35◦, 35◦–45◦, and greater than 45◦ (Figure 2b). Relative relief
represents the difference in maximum and minimum elevation within a pixel. Relative relief
was classified into three categories low (92–250), moderate (250–495), and high (495–922)
and is presented in Figure 2c. The spatial distribution of topographic wetness index (TWI)
was generated using flow accumulation and slope datasets. Flow accumulation was also
extracted from ASTERDEM of 30 m resolution using flow direction raster. It was reclassified
as low (5.77–9.44), moderate (9.44–12.64), and high (12.64–22.78) and is shown in Figure 2d.

The soil was classified based on the region of occurrence as Kallivalasu, Attakatti,
Attavalai, Chinnakupam, Karumpalam, Kuchimuchi, Masinagudi, Milithenu, Murugali,
Puvattihalli, and Reedinguvayalu soil series (Figure 2e). The soil’s textural classification
in the region indicates that loam, loamy sand, sandy clay loam, sandy clay, and clay were
present as stratified layers. Rock outcrops were also noticed in the north-western part of
the study area. They were converted into plantations taking advantage of the terrain. The
thickness of the soil varies between 51 cm in Murugali and 7 m in Attavalai. Land use was
extracted from BHUVAN data provided by the National Remote Sensing Agency, India.
The land use map is of scale 1: 50,000. Figure 2f shows the land use map for the year 2016.
The major land use categories are agriculture, forests, land with scrub, settlements, and
water bodies. Tea cultivation and agriculture occupy nearly 78.4% of the area in the region.
Settlements are dense in the northern part of the study area. An analysis of the spatial
spread of settlements in a decade between 2006 and 2016 indicates an increase of nearly
28% (Figure 2g,h).

Daily rainfall data were used to calculate the average annual rainfall. Rainfall data
from six rainfall stations—Coonoor, Ketti, Kothagiri, Runnymede, Kundah, and Uthagaman-
dalam, was used to map the spatial variations of average annual rainfall in the study area
using spatial kriging (Figure 2i). It was classified into four classes based on natural breaks—
1275 mm–1436 mm, 1436 mm–1545 mm, 1545 mm–1603 mm, and 1603 mm–1890 mm.

2.5. Landslide Susceptibility Assessment

A binary logistic regression model was used to map the spatial variability of the zones
prone to landslides in Coonoor. The spatial variation of the factors causing landslides is
shown in Figure 2.

Logistic function f(z) describes the probability of occurrence of a landslide event and
is defined as

f(z) =
ez

1 + ez =
1

1 + e−z (1)

and it varies from zero to one. ”z” is expressed as the linear combination of predictors
i.e., independent variables that cause landslides and respective coefficients. The model is
expressed by

z = b0 + b1X1 + b2X2 + b3X3 + . . . . . . .+ bnXn (2)

b0 represents model coefficient i.e., the intercept or constant; b1 . . . . . . .bn are coefficients
representing the measure of the contribution of predictor variables X1 . . . .. . . . . . . . Xn
in causing landslides. The terms b0 to bn are unknown and are determined based on
the relationship between the independent variables and landslide conditions and are
estimated by the maximum likelihood approach, which is a derivative of the probability
distribution of landslides, the dependent variable [34]. The independent variables are
spatially represented as thematic layers and illustrate each factor causing a landslide. “z”
varies between −∞ and +∞ and is an index that allows the user to combine the various
independent variables responsible for landslide occurrence. Sample observations are used
to fit a multiple logistic regression model. The coefficients b0, b1, b2, b3 . . . . . . .bn are
estimated and used to ascertain landslide probability.

Logistic regression (LR) model is built by (i) selection of independent variables based
on its association with landslide occurrence (ii) checking the statistical significance of the
selected variables using p-value significance test (iii) verifying the lack of inter-dependency
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between the selected independent variable using collinearity statistics—tolerance and VIF
(iv) modelling landslide probability through logistic regression model and (v) validation
through Area Under Curve (AUC) and landslide density function using the validation
dataset. In this study, the landslide density function, computed for each class of a thematic
layer is used to transform nominal variables into numerical variables, and is used as input
variables for determination of the LR model. This helps prevent the creation of a large
number of dummy variables. Moreover, it incorporates the knowledge of landslide history
into the model. The landslide density function is defined as

LDF =

Area o f Landslide pixels in a particular class
Total Area o f landslide pixels

Area o f pixels in a particular class
Total Area

(3)

Landslides cover nearly 1.1% of the total area, which is many times smaller than the
area in which landslides are not present, and hence, it can be considered a rare event [43,44].
The ratio of landslide to non-landslide pixels used for developing the training dataset of
the model is based on sensitivity analysis conducted on a different ratio of 1:1, 1:2, 1:2.5
and 1:5 based on various literature [31,44,45]. Seed cells of 100 m radius surrounding
a landslide location were considered to extract the independent variable’s feature in a
landslide affected region. Similarly, random locations not affected by landslides were also
selected to represent zones not prone to landslides. The landslide pixels’ ratio to non-
landslide pixels was maintained as 1:1, 1:2, 1:2.5 and 1:5 to generate the training dataset.
It was observed that the ratio of 1:2.5 performed better consistently in these trials, and
hence it was selected for the study. Different random sets of pixels with no landslides were
selected to verify the consistency of the results. A binary variable to indicate the absence
(0) or presence (1) of the landslide was added to the dataset.

2.5.1. Multicollinearity Analysis

Collinearity among the selected independent variables profoundly affects the model
performance [39,46]. Tolerance and variance inflation factor (VIF) is used to measure
multicollinearity in selected variables. Tolerance values less than 0.2 indicate marginal
multicollinearity among selected independent variables, while tolerance less than 0.1
advocates multicollinearity to a great extent. Similarly, a variable with VIF greater than
2 indicates serious multicollinearity [44,47]. All the variables selected have a tolerance
greater than 0.2 and VIF less than two, which indicates that the variables are not unduly
correlated with each other (Table 2). Hence, all the selected variables were used to build
the model.

Table 2. Multi-Collinearity Analysis of the selected Predictor Variables.

Predictor Variable Aspect Slope Relative Relief TWI Soil Type Land Use Average Annual Rainfall

Tolerance 0.852 0.899 0.951 0.569 0.815 0.624 0.617

VIF 1.173 1.112 1.052 1.758 1.228 1.603 1.409

Statistical Package for Social Sciences (SPSS) was used to build the logistic regression
model. The logistic regression method based on the forward likelihood ratio was selected
to assess the effect of the predictor variables of landslide occurrences. The statistical
significance of the chosen variable was evaluated using the χ2 score. The Wald χ2 score’s
significance level for a predictor variable to enter the model was set at 0.1. The training
sets were evaluated based on the χ2 value of Hosmer–Lemeshow, Nagelkerke R2, and Cox
and Snell R2.

2.5.2. Landslide Susceptibility Map and Validation

The model was trained using the landslides that occurred between 1992 and 2009.
The pixel size of the raster dataset used for the landslide model was 30 m × 30 m. The
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total area of Coonoor region was represented with 255,700 pixels and the landslide data
used for training the model consisted of 7859 pixels. Random selection of landslide and
non-landslide pixels was adopted to build the logistic regression model. Validation of the
model was carried out using the landslides that happened between the years 2010–2018.
The coefficients calculated using the logistic regression model are assigned as weights for
the thematic layer. The weighted thematic layers are combined in a GIS environment. The
landslide probability is determined from the logistic function “z”. The spatial distribution
of landslide probability represents the landslide susceptibility of the region. Hence, the
spatial variation of probability is reclassified into five categories: very low, low, moderate,
high, and very high, using quantile classification to represent landslide susceptibility. The
landslide susceptibility map is validated using the landslide density index and area under
the curve (AUC) to envisage the prediction and success rate of the landslide model built.
Cumulative landslide percentage and area were plotted, and the area under these curves
was calculated using both the training dataset and validation dataset of landslides. These
represent the prediction and success rate of the model developed.

3. Results and Discussion
3.1. Logistic Regression Model for Mapping Landslide Susceptibility

The variables—aspect, slope, relative relief, TWI, soil, land use, and average annual
rainfall were used to build the landslide susceptibility model. The model included all
the selected variables. The null hypothesis for the test is set as the coefficient is zero.
The estimated coefficient of the selected factors was statistically different from zero. The
logistic regression model employed to assess the impact of predictor variables on landslides’
occurrence showed that the goodness of fit was acceptable as the significance of χ2 was
greater than 0.05.

Similarly, Cox and Snell R2 and Nagelkerke R2 of 0.589 and 0.838, respectively, which
are greater than 0.2 [48] indicate that selected independent i.e., predictor variables explained
the dependent variable successfully. Table 3 shows the coefficient for the factors influencing
landslide susceptibility in the region, and the model’s summary of classification is presented
in Table 4. The model indicates that aspect (slope direction), relative relief, and TWI are
negatively correlated, while all other factors are positively correlated. The influence
of the parameters on increasing the susceptibility to landslides can be understood by
exponentiating these factors’ coefficient, which expresses their odds. Table 3 shows that
this study’s most influential parameters are average annual rainfall and land use, followed
by slope and soil, indicating that climate and anthropogenic interference are very significant
in causing landslides in this region.

Table 3. Factors selected for modelling landslide susceptibility and their estimated coefficient.

Variables βi SE Wald df Sig. Exp(βi)

Aspect −2.542 0.762 11.119 1 0.001 0.079

Slope 1.204 0.954 1.593 1 0.207 3.334

Relative Relief −6.288 1.298 23.453 1 0.000 0.002

TWI −3.044 1.198 6.458 1 0.011 0.048

Soil 0.995 0.153 42.556 1 0.000 2.705

Land use 1.885 0.534 12.078 1 0.001 6.391

Average Annual Rainfall 2.081 0.170 150.038 1 0.000 8.014

Constant 2.765 2.317 1.425 1 0.233 15.886
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Table 4. Classification Summary.

Observed

Predicted

Percentage CorrectLandslides

Non-Occurrence Occurrence

Landslides Non-Occurrence 605 30 95.3

Occurrence 26 239 90.2

Overall Percentage 93.4

Cut-off value = 0.50.

The landslide susceptibility index based on the logistic regression model is

z = 2.765 − 2.542 (Aspect) + 1.204 (slope) − 6.288 (Relative Relief) − 3.044
(TWI) + 0.995 (Soil) + 1.885 (Land Use) + 2.081 (Average Annual Rainfall)

(4)

The classification summary of the model shows that the model has a 93.4% successful
prediction rate. The model’s capability to delineate areas not prone to landslides is higher
(95.3%) than the ability to identify zones prone to landslides (90.2%).

3.2. Spatial Variation of Landslide Susceptibility

Landslide susceptibility map (Figure 3) of the region has been reclassified into five
zones for better understanding: very low, low, moderate, high, and very high using
quantile classification. Quantile classification is used as the distance between categories
is not known. The upper limit of probability of landslide susceptibility in the very low,
low, moderate, and high zones result to be 7%, 29%, 59%, and 84%, respectively. Zones
with a probability of landslide susceptibility greater than 84% are classified as very high
hazard zones. The zones demarcated as high and very high susceptible constitute 18.5%
and 17.6% of the total area, but nearly 34% and 48.6% of the landslides have occurred in
these zones, respectively. Settlements fall in these high and very high susceptible zones.
The major road network that connects hill town to the plains and further to the district
center Udhagamandalam falls in these high and very high susceptible zones. A part of the
Nilgiri Mountain Railway, a UNESCO world heritage site, falls in these zones. The high
susceptible region is densely populated, intensely modified for agriculture, and has a high
linear infrastructure density. The southern part of the study area with intense agriculture
is not much affected by landslides. Therefore, slope modifications for development may
enhance landslide susceptibility.

Simple biological stabilization techniques like turfing the slopes with plants like hedge
grass-like vetiver, asparagus can be popularized among high-density settlements. The
roots will act as reinforcement and improve the shear strength of the slopes. The water
outlets and drainages can also be regulated along the slopes to avoid the slopes’ saturation.

The performance of the logistic regression model is assessed using landslide occur-
rences between the years 2010 and 2018. A buffer of 100 m radius was used to delineate
the landslide area. The landslide density function calculated with the validation dataset
indicates that landslide density function increases exponentially with the susceptibility
class (Table 5).

It increases from 0.17 for low susceptible areas to 2.76 for very highly susceptible
areas. Area Under the Curve (AUC) is a standard indicator used to assess the susceptibility
model’s spatial forecasting capacity [49]. The AUC of the landslide susceptibility map
generated using the logistic regression model is portrayed in Figure 4. The AUC for the
prediction and success rates are 79% and 83%, respectively (Figure 4), indicating that the
model built assesses landslide susceptibility in Coonoor Taluk satisfactorily. The model
shows a better success rate, indicating that this model’s susceptibility map can be used for
planning schemes for hazard preparedness and land use planning with greater accuracy.
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Table 5. Landslide Density Function for the Susceptibility Classes using Validation Landslide Dataset.

Susceptibility Class Area Pixels Landslide Pixels Area Ratio Landslide Ratio Landslide Density Function

Very Low 45,240 0 0.000 0.177 0.00

Low 61,739 14 0.040 0.241 0.17

Moderate 56,364 48 0.138 0.220 0.63

High 47,406 117 0.336 0.185 1.81

Very High 44,951 169 0.486 0.176 2.76

Hydrology 2021, 8, x FOR PEER REVIEW 13 of 19 
 

 

outlets and drainages can also be regulated along the slopes to avoid the slopes’ satura-

tion.  

 

Figure 3. Landslide Susceptibility Map of Coonoor Taluk of Nilgiris District, India using Logistic 

Regression Model. 

The performance of the logistic regression model is assessed using landslide occur-

rences between the years 2010 and 2018. A buffer of 100 m radius was used to delineate 

the landslide area. The landslide density function calculated with the validation dataset 

indicates that landslide density function increases exponentially with the susceptibility 

class (Table 5).  

Table 5. Landslide Density Function for the Susceptibility Classes using Validation Landslide Da-

taset. 

Susceptibility 

Class 

Area  

Pixels 

Landslide 

Pixels 

Area  

Ratio 

Landslide 

Ratio 

Landslide Density 

Function 

Very Low 45,240 0 0.000 0.177 0.00 

Low  61,739 14 0.040 0.241 0.17 

Moderate 56,364 48 0.138 0.220 0.63 

High 47,406 117 0.336 0.185 1.81 

Very High 44,951 169 0.486 0.176 2.76 

It increases from 0.17 for low susceptible areas to 2.76 for very highly susceptible 

areas. Area Under the Curve (AUC) is a standard indicator used to assess the susceptibil-

ity model’s spatial forecasting capacity [49]. The AUC of the landslide susceptibility map 

generated using the logistic regression model is portrayed in Figure 4. The AUC for the 

prediction and success rates are 79% and 83%, respectively (Figure 4), indicating that the 

model built assesses landslide susceptibility in Coonoor Taluk satisfactorily. The model 

shows a better success rate, indicating that this model’s susceptibility map can be used for 

planning schemes for hazard preparedness and land use planning with greater accuracy.  

Figure 3. Landslide Susceptibility Map of Coonoor Taluk of Nilgiris District, India using Logistic
Regression Model.

Hydrology 2021, 8, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 4. Prediction and Success Rate of the Logistic Regression Model using Area Under the 

Curve Method. 

3.3. Effect of Local Geo-Environment on Landslides 

Average annual rainfall is observed as the most influential parameter that contributes 

to landslide susceptibility in this region. Bisht et al. [50] reported that the study area region 

had witnessed both 95th and 99th percentile extreme precipitation events between 1971–

2015. An analysis of the relationship between the past landslide occurrence and rainfall 

indicates that antecedent rainfall plays a vital role in initiating landslides. A minimum of 

five days antecedent rainfall of 132 mm is required to cause small and medium volume 

landslides. Landslides are more prevalent in the zones where the average annual rainfall 

ranges between 1730 mm–1890 mm, which is the highest recorded in this region i.e., nearly 

55% of the landslides have been registered in this zone. It is also noted that around 26% 

of the landslides are observed in the zones where average annual rainfall ranges between 

1436–1545 mm. This region is intensely cultivated, and a high number of landslide inci-

dences may be due to the land modification for agriculture and related agriculture prac-

tices.  

The descriptive statistics of slope gradient indicates that most slopes fall in the gen-

tle—moderate category where landslides are most likely to occur [51–54]. The majority of 

landslides have occurred in slopes less than 28°. Gentle slopes appear to be more prone to 

landslides [13,19]. Nearly 40% of the landslides have occurred in the slopes with a gradi-

ent between 15°–25° that cover 34% of the total area. Slopes with steeper angles have sig-

nificantly less overburden as the material tends to erode faster due to its gradient. The 

overburden covering the slope is highly resistant to movement. Slope direction often dic-

tates the flow direction, and the amount of rainfall received. Nearly 45% of the study 

area’s slopes face the southeast, south and southwest directions, and 59% of the landslides 

have occurred in the slopes facing these directions. These slopes are frequently affected 

by landslides by virtue of their slope morphometry.  

Soil is ranked as the fourth factor that influences landslide susceptibility. Masinagudi 

series and Kallivalasu series are more prone to landslides. Nearly 22% of the total slides 

fall in 3% of the Masinagudi series area, and 9% of landslides fall in 19% of the total area 

occupied by the Kallivalasu series. Both the series have soil in the category sandy clay 

loam. The average hydraulic conductivities of Kallivalasu and Masinagudi series are 2.29 

× 10−4 cm/s and 6.31 × 10−5 cm/s, respectively, with an average thickness of 3 m each. These 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti

ve
 A

re
a 

(%
)

Landslides (%)

Prediction Success

Figure 4. Prediction and Success Rate of the Logistic Regression Model using Area Under the Curve Method.



Hydrology 2021, 8, 41 14 of 18

3.3. Effect of Local Geo-Environment on Landslides

Average annual rainfall is observed as the most influential parameter that contributes
to landslide susceptibility in this region. Bisht et al. [50] reported that the study area
region had witnessed both 95th and 99th percentile extreme precipitation events between
1971–2015. An analysis of the relationship between the past landslide occurrence and
rainfall indicates that antecedent rainfall plays a vital role in initiating landslides. A mini-
mum of five days antecedent rainfall of 132 mm is required to cause small and medium
volume landslides. Landslides are more prevalent in the zones where the average annual
rainfall ranges between 1730 mm–1890 mm, which is the highest recorded in this region
i.e., nearly 55% of the landslides have been registered in this zone. It is also noted that
around 26% of the landslides are observed in the zones where average annual rainfall
ranges between 1436–1545 mm. This region is intensely cultivated, and a high number
of landslide incidences may be due to the land modification for agriculture and related
agriculture practices.

The descriptive statistics of slope gradient indicates that most slopes fall in the gentle—
moderate category where landslides are most likely to occur [51–54]. The majority of
landslides have occurred in slopes less than 28◦. Gentle slopes appear to be more prone
to landslides [13,19]. Nearly 40% of the landslides have occurred in the slopes with a
gradient between 15◦–25◦ that cover 34% of the total area. Slopes with steeper angles
have significantly less overburden as the material tends to erode faster due to its gradient.
The overburden covering the slope is highly resistant to movement. Slope direction often
dictates the flow direction, and the amount of rainfall received. Nearly 45% of the study
area’s slopes face the southeast, south and southwest directions, and 59% of the landslides
have occurred in the slopes facing these directions. These slopes are frequently affected by
landslides by virtue of their slope morphometry.

Soil is ranked as the fourth factor that influences landslide susceptibility. Masinagudi
series and Kallivalasu series are more prone to landslides. Nearly 22% of the total slides
fall in 3% of the Masinagudi series area, and 9% of landslides fall in 19% of the total
area occupied by the Kallivalasu series. Both the series have soil in the category sandy
clay loam. The average hydraulic conductivities of Kallivalasu and Masinagudi series
are 2.29 × 10−4 cm/s and 6.31 × 10−5 cm/s, respectively, with an average thickness of
3 m each. These deposits being moderately permeable and lesser in thickness, allow the
water to reach the nearly impermeable bedrock and shear resistance at the soil’s interface
overburden and rock bed reduces to an insignificant amount causing the entire overburden
to fail.

Topographic wetness index (TWI), a steady-state wetness index quantifies the topo-
graphic control on the hydrologic processes. While it considers the slope morphometry
and upstream contributing area per unit width perpendicular to the direction of flow [55],
a suite of soil moisture indices is widely used for predicting hydrologic extremes [56,57]. It
is a more relevant metric for hill terrains than flat areas. It also explains the distribution of
soil moisture [58]. It quantifies the tendency to distribute soil water, which is influenced by
topography [59] and is often used in vegetation studies. Landslides are more prevalent in
the high TWI zones indicating that soil moisture is an essential factor that causes landslide
susceptibility. It is rather challenging to be spatially mapped. Hence, TWI can be effectively
used in place of soil moisture despite its inability to consider the humidity, heterogeneity
of soil, and vegetation cover [58].

Relative relief helps to characterize the relief characteristics without taking into ac-
count the mean sea level. Landslides are more prevalent in zones with moderate relative
relief i.e., 37% of landslides have occurred in 37% of the area falling under the moderate
relative relief category.

3.4. Effect of Anthropogenic Activities of Landslides

Anthropogenic factors are not included in the susceptibility model. Notwithstanding
this, it is reasonable to construct a susceptibility map based on the geo-environmental
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factors and compare the susceptibility zones with the anthropogenic interferences. In fact,
nearly 68% of the landslides have occurred in the zones heavily modified by anthropogenic
activities. The gentle slopes are modified by various anthropogenic activities, mainly
agricultural and construction activities, including infrastructure development and hous-
ing projects, because of their favorable topography. The gentle slope gradient does not
allow rapid drainage of water during heavy rainfall periods increasing pore pressure
and subsequent slope failure. The high density of settlements in favorable topography
further increases the surcharge weight on the slopes, saturate soil due to improper drainage
arrangements to carry stormwater, greywater, and sullage.

The principal land use categories are agriculture, forest (includes deciduous and
evergreen forest), a forest plantation, land with scrub, built-up area, and water bodies
(tanks and river). Tea plantation occupies nearly 64% of the region, forest and forest
and forest plantation (24%), land with scrub (7%), built-up area (4%), and rest by water
bodies. The vast area of land under agriculture points to intense anthropogenic interference.
The slopes are continuously modified and irrigated for agricultural purposes, leading to
saturated soil moisture conditions in the top 100–150 cms with shifted surface energy
fluxes [60,61], causing significant concern in problems related to slope instability. Though
the built-up area occupies only 4% of the study area, the built-up density is very high,
making the region more prone to landslides. In a decade, an increase of nearly 28% in the
built-up area i.e., the settlements, is witnessed, as seen from Figure 2g,h. The expansion
of settlement zones indicates the land pressure caused due to urbanization and makes
the built-up category more vulnerable to landslides and increases the risk associated with
landslides. The losses in terms of life and property will be more when a landslide occurs in
this area. The area under scrubland also does not protect the soil the slopes from sliding.
Many of the landslides were also observed to have happened in these land use categories.

Linear infrastructure is a predominant factor causing slope instability in the region,
particularly the railway lines. Around 90% of the landslides have occurred near the linear
infrastructure facilities of which 48% have been reported along the rail route. Natural slopes
are modified continuously to lay or widen the roads and regular maintenance activities
for both the road and railway lines. These interferences have severe consequences on the
slopes’ stability as they usually steepen the natural slope reducing their shear resistance.
Moreover, these modified slopes with made-up fills of borrow materials tend to have lower
permeability, leading to pore pressure increase, which further decreases the slopes’ shear
resistance. The removal of forest cover for laying or widening of linear infrastructure
further adds to slope instability problems as root cohesion can add to slope stability lost in
these slopes. Major roads like the national and state highway with large traffic volumes
appear to be most affected by these slope instability problems.

Average annual precipitation and land use are the two most dominant factors that
cause landslides in the region. This study emphasizes that anthropogenic interference
has played a major role in causing landslides in this environmental set-up. Particularly,
linear infrastructure facilities like roads and railway lines have been very influential. These
zones are more prone to the risk of landslides. Landslides have a significant social and
economic effect in this region as the zones falling in the high susceptibility category are
predominantly built-up area and intensely cultivated regions. A further study relating
landslide occurrences to extreme climate events can add value to this study.

4. Conclusions

Coonoor is severely affected by landslides almost every year during periods of intense
and prolonged rainfall, causing heavy social and economic losses to its residents. The econ-
omy of Coonoor is dependent mainly on tourism and tourism-related activities. Landslide
susceptibility mapping can help identify zones that need immediate attention in terms of
planning mitigation strategies and development activities. Logistic regression is a more
reliable model to map landslide susceptibility compared to other heuristic models like the
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analytical hierarchy process model or statistical models like frequency ratio model and is
hence used for this study.

The physical and environmental factors causing landslides were identified, and the
logistic regression model was used to assess their impact on causing slope instability. The
model shows that average annual rainfall, land use, slope morphometry, and soil type
are important factors that contribute to slope instability. The landslide susceptibility map
indicates the spatial distribution of areas’ susceptibility to various degrees of landslide
vulnerability. It is a crucial component to ascertain the temporal mapping of landslides. The
spatial distribution of susceptibility classes in the region based on the logistic regression
model shows that nearly 17.6% of the area is classified as highly unstable i.e., very high
susceptible, and 48.6% of total landslides falls under this unstable category i.e., very highly
susceptible. Anthropogenic interference is observed to be a very significant factor that has
caused landslides in the region as most of the instable areas fall in the densely built-up
zones, adjacent to major roads and railway line and in agriculture areas and where forests
are disturbed by road infrastructure development like roads and forest plantations.

This study reinforces the need for providing landslide susceptibility maps in hill–town
development and planning. It is an indispensable tool for planning land management
and mitigation strategies. It will also aid the town planners in developing sustainable
agriculture practices. It can help in locating regions for future growth in suitable areas of
low susceptibility. It can help policymakers in hazard management and disaster planning
and preparedness at the taluk level. It can also be further used at the block level with
the availability of block boundaries. It can also help in drawing policies against land
degradation and watershed deterioration.
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