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Abstract: Increased droughts and variable rainfall patterns may alter the capacity to provide ecosys-
tem services, such as biomass production and clean water provision. The impact of these factors
in a semi-arid region, especially on a dry tropical forest with Vertisols and under different land
uses such as regenerated vegetation and thinned vegetation, is still unclear. This study analyzes
hydrologic processes under precipitation pulses and intra-seasonal droughts, and suggests man-
agement practices for ecosystem services improvement. A local 43-year dataset showed a varying
climate with a decrease in number of small events, and an increase in the number of dry days and
in event rainfall intensity, in two catchments with different land use patterns and with Vertisols, a
major soil order in semi-arid tropics. The onset of runoff depends on the expansive characteristics
of the soil rather than land use, as dry spells promote micro-cracks that delay the runoff process.
Forest thinning enhances groundcover development and is a better management practice for biomass
production. This management practice shows a lower water yield when compared to a regenerated
forest, supporting the decision of investing in forest regeneration in order to attend to an increasing
water storage demand.

Keywords: semi-arid region; dry tropical forest; hydrologic processes

1. Introduction

Semi-arid regions, with an aridity index between 0.2 and 0.5, comprise 37%
(22.6 × 106 km2) of total dryland area, which accounts for 41% of the world’s land sur-
face [1] and half of total dryland expansion [2]. These regions are home to 14% of the
world’s population and their sustainability depends, besides other factors, on the scarce
water availability. Human establishment in these areas demands the constant availability of
water resources that compete with ecosystem maintenance requirements. Climate change
scenarios suggest an increase in temperature, a reduction in rainfall and an increase in
consecutive dry days, promoting an increase in dry spells and droughts [3,4].

Due to climate change, the growing season for rainfed crops is expected to decrease in
length [5,6], which will imply either a reduction in yields, or a need for irrigation water
to maintain productivity. Knowledge of hydrologic processes in these regions is of the
utmost importance to the users and water agencies, in order to support long-term decisions
in soil and water resource management to promote eco-efficiency [7,8]. The integrated
management of water resources may improve the quality of living and sustain ecosystems,
given the appropriate strategies and guidelines for water management.
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In semi-arid tropical (SAT) regions with distinct wet and dry seasons that last for
several months, we can find seasonally dry tropical forests (SDTFs) with temperatures
greater than 18 ◦C, a potential evapotranspiration to rainfall ratio greater than 1.0 [9],
summer rains and a 5- to 8-month dry period, and which are present in Africa, South
America, and Asia [10]. SDTFs cover an area of approximately 106 km2, with the largest
extent of continuous SDTF fragments in Bolivia, Paraguay and North Argentina, and in
northeast Brazil [11]. These two areas represent 54% of the world’s SDTFs. A great part
of these forests is degraded or is being subject to other land uses, such as cropland [12]
and livestock production [13], with vegetation thinning the most common management
practice for enhancing feed and biomass production.

SDTFs play a significant role in the direct provision of food, despite little research being
done on the subject outside of Africa [14]. SAT regions with an average rainfall between
500 and 1000 mm have Vertisols as an important soil order [15]. There are 3.35 million km2

of these soils in the semi-arid regions of Africa, India, China, Australia, the American
southwest, and South America [16,17], particularly in the Brazilian northeast [15], of which
1.5 million km2 are potentially agricultural areas. SDTFs are sensitive to droughts, and
their resistance and resiliency to the intra- and interannual variability of rainfall need to be
assessed in order to minimize impacts and adapt to challenging climate changes [9]. The
dynamics of climate change in semi-arid regions might vary by location, depending on the
effects of global- and regional-scale factors [18,19], hence the need to study the hydrologic
processes of SDTFs.

The swelling nature of Vertisols promotes crack formation when dry, enhancing salt
mobilization and salinization of the aquifer from cultivation [20], and surface sealing when
wet, limiting drainage and increasing difficulty in land preparation for crop production [21].
Nonetheless, their high water-holding capacity due to the high expansive 2:1 clay con-
tent is adequate for dryland crop production in semi-arid environments under adequate
management [15,21].

Some studies state that forest-to-grassland conversion in the high-elevation tropics
results in little runoff increase [22], contrary to other studies that show that forest thinning
promotes water yield over the native forest in temperate dry regions. The ultimate goal
is to increase ecosystem services by adopting best management practices [23], such as
restoring land use on marginal lands to enhance biomass production or water yield, purify
surface and ground waters, and contribute to carbon sequestration [24,25]. Therefore,
this study seeks to understand the watershed response to land use management in SATs
under Vertisols.

The objective of this study is to propose best management practices that improve
ecosystem services and minimize the effects of climate variability on SDTFs with Vertisols
in semi-arid regions. To achieve this objective, we have analyzed the hydrologic response
of SDTFs with expansive clay soil to variable rainfall and dry spells, and analyzed the
hydrologic response to climate variability. The results may help decision makers (users
and water agencies) define strategies to implement management practices that favor either
water storage or biomass production in dry tropical forests.

2. Materials and Methods
2.1. Study Area

The hydrologic study was conducted on two small catchments located in the South-
Central region of the state of Ceará, Brazil, part of the Federal Institute for Education,
Science, and Technology of Ceará (IFCE), Campus Iguatu (Figure 1). Both catchments have
an ephemeral second-order stream in areas of 2.1 ha and 1.1 ha, and average slopes of 10.6
and 8.7%, respectively.
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Figure 1. Catchments’ locations.

Although average annual rainfall in the region is 998 mm, the annual potential evap-
otranspiration is 2113 mm, with a Thornthwaite’s aridity index of 0.48, classifying the
climate as semi-arid. This type of climate is confirmed by the Köppen climate classification
(BS: semi-arid hot), and by the life zone chart introduced by Holdridge, 1968 [26], supported
by the Food and Agriculture Organization [27]. This region is characterized by nine months
of water deficit (Figure 2), emphasizing its semi-aridity, despite its total annual rainfall.

Figure 2. Average annual water balance in the period (mm).

The vegetation is typical for a seasonally dry tropical forest (SDTF) with a wide
variety of spine trees in secondary succession, with a prevalence of Aspidosperma pyrifolium,
Commiphora leptophloeos (Mart.) J.B. Gillett, Mimosa caesalpiniaefolia (Benth.), Combretum
leprosumi (Mart.), and Piptadenia stipulacea (Benth.) with a height between 7 and 15 m. The
two adjacent catchments show different land uses: one is a seasonally dry tropical forest
under regeneration for 40 years (R-SDTF) and the other was subject to thinning (T-SDTF)
in December of 2008. In the thinning management, all vegetation with a diameter below
10 cm was cut, and the branches were left on site.

The two catchments have a similar soil type, typical Calcic Vertisol (Pellic), with a high
content of expansive 2:1 montmorillonite clay characterized by X-ray diffraction (XRD) and
X-ray fluorescence (XRF) techniques. The soils are 2 to 3 m deep, and develop cracks when
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dry and are sticky and sealed when wet. Due to the high clay content, these soils show low
hydraulic conductivity (Table 1), as discussed by Pathak et al. (2013) [15].

Table 1. Catchment properties for the seasonally dry tropical forest under regeneration (R-SDTF) and
seasonally dry tropical forest subject to thinning (T-SDTF) [8].

Properties R-SDTF T-SDTF

Saturated hydraulic conductivity m hr−1 0.25 0.20

Phosphorus g dm−3 11.63 45.79

Organic matter % 0.88 1.48

Sand % 18.4 12.4

Silt % 33.75 38.15

Clay % 47.85 49.43

Soil texture Clay Clay

Canopy cover % 90 60

Ground cover % 30 100
R-SDTF: seasonally dry tropical forest under regeneration for 40 years; T-SDTF: seasonally dry tropical forest
subject to thinning.

The canopy cover (90%) in the R-SDTF shades the groundcover (30%), limiting its
growth (Figure 3a), whereas the sparser canopy cover (60%) in the T-SDTF allows solar
radiation to reach the soil and improve the groundcover development (Figure 3b).

Figure 3. Groundcover: (a) R-SDTF and (b) T-SDTF. Photos by the author.

2.2. Data Analysis
2.2.1. Long-Term Rainfall Series

A 1974 to 2017 dataset from the Iguatu, CE, Brazil rain gauge (http://www.funceme.br,
accessed on 13 May 2020) was used for the characterization of rainfall events, in the
following categories: annual total, monthly distribution, monthly average continuous dry
days (CDD) and continuous wet days (CWD), number of dry (DD) and wet days (WD),
and mean daily rainfall. The mean annual rainfall for the studied area was 995 ± 305 mm
(Figure 4). The temporal distribution of rainfall depth shows 85% to be concentrated from
January to May, of which 27% occurs in March, on average.

http://www.funceme.br
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Figure 4. Long-term annual rainfall from 1974 to 2017, Iguatu, Brazil.

2.2.2. Short-Term Rainfall Runoff Events

Catchment response was analyzed based on rainfall and runoff data collected between
2009 and 2017 during the wet season (January to May) at two catchments in Iguatu, CE,
Brazil. Runoff data from 2012 and 2014 were rejected due to a sensor failure. A total of
259 rainfall events were recorded at the rain gauge shared by the two adjacent catchments.
The R-SDTF and T-SDTF vegetation catchments produced 67 and 60 runoff events in the
period, respectively.

2.2.3. Statistics

Descriptive statistical analyses were performed on the long-term daily rainfall series
for total daily rainfall, number of wet days in the year and number of wet days in the wet
season (Jan to May). Histograms were developed for total annual rainfall and number of
dry days in a year. Trends in annual rainfall and for annual number of dry days for the
43 year-long series were evaluated based on the significance of the slope being statistically
different from zero.

Descriptive statistics were also performed on the short-term daily rainfall series asso-
ciated with the runoff data in both catchments—all rainfall events, rainfall that generated
runoff, and rainfall that did not generate runoff.

A t-test to compare water yield from both land use management strategies was
performed at the 95% confidence level.

3. Results and Discussion
3.1. Long-Term Rainfall Series

The larger dataset (1974–2017) shows that the average annual rainfall in Iguatu is
995 mm, across 55 wet days. On a rainy day, the expected mean value is 18.1 mm, and the
median is 11.0 mm (Table 2).

Based on the temporal variability of rainfall events in semi-arid regions [28], total
annual rainfall and number of dry days were used to define a dry year (25th percentile)
and a wet year (75th percentile), with a total annual rainfall below 790 mm and more
than 323 dry days, and a rainfall above 1128 mm and less than 302 dry days, respectively
(Figure 5b and Table 2).



Hydrology 2021, 8, 46 6 of 12

Table 2. Characteristics of daily rainfall at Iguatu, CE, Brazil (1974–2017).

Daily Rainfall (mm)
Number of Wet Days

Annual Jan–May

N (number) 16014 2418 2109

Mean 2.7 18.1 18.4

Std. Deviation 10.0 19.7 19.7

Minimum 0.00 0.20 0.20

Maximum 174.0 174.0 174.0

Percentiles
25th 0.0 5.0 5.0

50th 0.0 11.0 11.0

75th 0.0 24.0 25.0

Figure 5. Histogram of (a) annual rainfall and (b) number of dry days (DD) (1974–2017).

Even though total annual rainfall did not show a significant trend in the period
(1974–2017), the number of dry days and average rainfall intensity increased significantly
(p-value = 0.05 and 0.001, respectively). These results suggest that extreme events are more
frequent (dry spells and intense rainfall events).

The rain falls mostly between December and May, and seasonal dry spells occur from
June to December (Figure 6a), as continuous dry days (CDD) increase from an average of
21 in July to almost 70 in November (Figure 6c). Total monthly rainfall shows a higher
skewness from June to November, the mean value being a poor parameter to represent
this variable. The average number of CDD from January to May is less than a week, and
continuous wet days (CWD) tend to occur in pairs (1.5 to 2.5 days) in the wet season (January
to May) and one at a time in the dry season (June to December), in small amounts (Figure 6b).

The rainfall driving forces are cold fronts from October to January, which displace the
subtropical cells in the Atlantic Ocean and lead to an increase in monthly precipitation.
The intertropical convergence zone (ITCZ) from January to May, which reaches the highest
southern latitude (6º S) in March, sets the rainfall season, after which it goes back to the
northern hemisphere, allowing the easterly waves to attenuate rainfall occurrence from
May to August [28]. Subtropical cells in the Atlantic Ocean are responsible for the driest
season from August to October [29], closing the annual cycle.

3.2. Short Term Rainfall-Runoff Events

The catchment dataset (2009–2017) shows that the average annual rainfall in the wet
season is 759 mm (507 mm to 1308 mm), over 37 (26 to 54) wet days. On a rainy day, the



Hydrology 2021, 8, 46 7 of 12

expected mean value is 20.4 mm, and the median is 14.3 mm, of which a minimum of
5.3 mm is generated runoff (Table 3).

Figure 6. Monthly (a) rainfall; (b) continuous wet days (CWD); (c) continuous dry days (CDD)—
1974–2017.

Table 3. Characteristics of rainfall and runoff at catchment scale (2009–2017).

Daily Rainfall Event (mm)

RunoffAll Events Runoff
Generating

No Runoff
Generating

N (number) 257 67 190 67

Mean 20.4 34.9 15.3 5.4

Std. Deviation 19.3 23.7 14.4 7.2

Minimum 1.3 5.3 1.3 0.01

Maximum 162.0 162.0 80.3 34.5

Percentiles
25th 7.2 19.8 6.1 0.6

50th 14.3 30.3 11.4 2.6

75th 27.9 47.9 18.2 7.0

The number of rainfall events during the wet season shows little relationship with
total rainfall (Table 4), as discussed by Guerreiro et al. (2013) [28]—the second year with
the most events (46) was the second driest year of the series, 2017. In the period for which
there is runoff data (2009–2017), 2015 and 2017 were classified as dry years and 2009 and
2011 as wet years.

The amount of rainfall prior to the first runoff event of the water year (Pcum to Q1) is
not proportional to the number of events (Table 4) but has a positive relationship with the
number of days from first rainfall to first runoff event, ∆T. The ratio between Pcum to Q1
and ∆T is a function of the soil type, the expansive Vertisol [30–32]. The seasonal dry spell
from June to December promotes wide cracks due to the shrinkage of the Vertisol at the end
of the dry season, which influences infiltration and the resulting runoff at the beginning of
the wet season [15]. The dry spells during the wet season promote micro-cracks, and delay
the runoff process, as will be explained in the following section.
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Table 4. Rainfall characteristics: rainfall runoff data set (2009–2017).

Pcum
(mm) # Pevents

Pcum to Q1
(mm)

∆T
(days)

Qtotal
(mm) # Qevents

Pmin to Q
(mm)

Pmax to
no Q (mm)

Year Wet Season R T R T R T R T R T

2009 981.0 39 162.0 162.0 8 8 104.0 74.0 25 26 8.6 9.0 68

2010 711.0 26 163.0 163.0 23 23 15.0 11.0 7 9 28.7 10.0 80

2011 1308.0 54 182.0 222.0 21 25 188.0 143.0 26 22 12.0 12.0 69

2012 SENSOR FAILURE

2013 634.0 28 475.0 475.0 126 126 39.0 30.0 2 2 44.0 44.0 59

2014 SENSOR FAILURE

2015 507.0 32 113.0 0.0 52 0.1 0.0 1 0 5.3 56

2016 608.0 34 345.0 345.0 80 80 7.0 1.0 2 1 8.0 12.0 66

2017 583.0 46 327.0 0.0 49 8.0 0.0 4 0 2.0 40

Pcum—cumulative rainfall; # Pevents—number of rainfall events; Pcum to Q1—cumulative rainfall to first runoff event; ∆T—number of days
from first rainfall to first runoff event; Qtotal—total annual runoff; # Qevents—total number of runoff events; Pmin to Q—minimum daily
rainfall to promote a runoff event; Pmax to no Q—maximum daily rainfall that did not produce runoff; R (Regenerated dry tropical forest
catchment); T (Thinned dry tropical forest catchment).

A greater ∆T in dry years lead to a loss of soil moisture, the shrinkage of expansive
clays [30], and the presence of micro-cracks [31], demanding more rainfall to start the
runoff process [32]. Cracks in Vertisols increase hydraulic conductivity [33], promoting
preferential flow paths for water infiltration in the soil. Even after the sealing of the
cracks, there might still be preferential flow paths [34], explaining the cumulative rainfall
requirement of up to 475 mm for runoff to occur.

Even though the two land uses under study, R-SDTF and T-SDTF, showed similar
responses to cumulative rainfall and time to first runoff event, a t-test showed a different
response to water yield (p-value ≤ 0.05). The similarities among the two catchments re-
garding the onset of the first runoff event suggest that the beginning of runoff depends on
the characteristics of the Vertisol soil, and the differences suggest a dependency on ground-
cover (Figure 3), since the two catchments have similar geomorphological characteristics
and soil type, but different land uses (Table 1).

The R-SDTF catchment had runoff events in all years of study (2009–2017), whereas the
T-SDTF did not exhibit runoff during the dry years 2015 and 2017 (Figure 7b). The cracks
generated in the soil prior to the beginning of the wet season increase initial abstractions,
influence infiltration, and affect the onset of runoff generation, as suggested by [15]. The
onset of runoff in both catchments needs a minimum cumulative rainfall of 62 mm within
a 7-day period (PCUM 7) from the previous rainfall event (Figure 7a,b).

Figure 7. Rainfall characteristics to first runoff event (2009-2017): (a) R-SDTF; (b) T-SDTF.
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T-SDTF reacted to thinning by increasing the number of runoff events but decreasing
total yield. The increase in number of events was expected, but not the decrease in water
yield [23,35]. This result suggests that the processes were still not established in SDTFs
after thinning. However, after 2011 (two years after forest thinning), the groundcover
had already been improved and both the number of events and water yield showed a
decrease (Figure 7b), as already verified by Ponette-González et al. (2013) [22]. These
results suggest that groundcover development reduces surface flow due to an increase in
surface roughness that reduces flow velocity and increases infiltration opportunity [8], and
the development of a herbaceous root system [36] that creates preferential flow paths [30]
for water to infiltrate the soil [22].

Total annual rainfall from the time series (1974–2017) classified 2009 and 2011 as wet
years, and 2015 and 2017 as dry years. Dry years (annual rainfall < 608 mm) showed low to
no runoff, due to the shrinking and swelling characteristics of the soils [15]. During the dry
years 2015 and 2017, despite the cumulative rainfall being above 62 mm (Figure 7b), the
low continuous dry days (CDD) (lower than seven) associated with rainfall events below
40 mm (Figure 8a,b) promoted and maintained groundcover in the thinned vegetation
catchment, increasing roughness and infiltration opportunity, with no resulting runoff.

Figure 8. Rainfall events leading to first runoff event in the dry years 2015 (a) and 2017 (b).

The catchments responded similarly to the onset of runoff when there was enough
CDD to compromise the development of vegetation in the T-SDTF, mimicking the R-SDTF
catchment, suggesting that the soil is the major driver of the process. When the CDD is above
30 days, micro-cracks are formed, and the soil returns to the initial dry, cracked condition. The
median value of cumulative rainfall to the beginning of the runoff process is approximately
200 mm when the maximum CDD is below 30 days [37]. This was particularly evident in
2016, when a total cumulative rainfall of 345 mm was necessary to begin the runoff process,
after a dry spell of 36 days in which a total rainfall of 298 mm occurred.

The behavior contributing to the onset of runoff events is evident for the wet years
2009 to 2011 and the average years 2013 and 2016, but none can be spotted for the dry
years 2015 and 2017 (Figure 9a). In average and wet years, there is a linear relationship
between cumulative rainfall for the onset of the first runoff event and CDD. More CDD in
dry years results in more water loss via evapotranspiration and soil moisture reduction,
and reinstates cracks in the soil [34], which redefine new preferential flow paths for water
to infiltrate into the soil. Still, Figure 9b shows a similar behavior in both catchments,
confirming that soil, rather than land use, is the major driver to start the runoff process in
Vertisols in a semi-arid tropical region.
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Figure 9. (a) CDD vs. rainfall to first runoff event; (b) rainfall to first runoff event: regenerated vs. thinned vegetation

Once runoff has been established, groundcover explains the variation in water yield
in both catchments, as the water yield from the T-SDTF catchment corresponds to approx-
imately 75% of the R-SDTF (Figure 10). This suggests that 25% of total rainfall will be
available to the other eco-hydrological processes. T-SDTF allows solar radiation to hit the
soil and promotes the development of groundcover [36,38], which increases surface rough-
ness and infiltration opportunity and reduces runoff. Regenerated vegetation promotes
greater coverage of the soil, but canopy shading does not allow the further development of
groundcover. Biomass production may be a profitable alternative to agriculture, as crop
yield is expected to be more affected by climate variability than perennial biomass [39].

Figure 10. T-SDTF vs. R-SDTF water yield relationship.

4. Conclusions

Forest thinning enhances groundcover development and is a better management
practice for biomass production. This management practice shows a lower water yield
when compared to a regenerated forest, supporting the decision of investing in forest
regeneration to attend to an increasing water storage demand. The number of dry days
and rainfall intensity increased in the 1974–2017 period, aggravating the already dry
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characteristics of the region, and contributing to more extreme runoff events. In the case
of a dry spell over 30 days, micro-cracks are formed, and the soil returns to the initial dry,
cracked condition. The onset of runoff events is defined by the soil characteristics rather
than the land use. The onset of runoff in both catchments requires a minimum cumulative
rainfall of 62 mm within a 7-day period from the previous rainfall event, although it is the
land-use that defines water yield. The impact of water storage in the soil cracks upon the
onset of runoff generation is evident, but needs further studies for quantification.
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