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Abstract: The Anthropocene period is characterised by a general demographic shift from rural
communities to urban centres that transform the predominantly wild global landscape into mostly
cultivated land and cities. In addition to climate change, there are increased uncertainties in the
water balance and these feedbacks cannot be modelled accurately due to scarce or incomplete in situ
data. In African catchments with limited current and historical climate data, precise modelling of
potential runoff regimes is difficult, but a growing number of model applications indicate that useful
simulations are feasible. In this study, we used the new generation of soil and water assessment
tool (SWAT) dubbed SWAT+ to assess the viability of using high resolution gridded data as an
alternative to station observations to investigate surface runoff response to continuous land use
change and future climate change. Simultaneously, under two representative concentration pathways
(RCP4.5 and RCP8.5), six regional climate models (RCMs) from the Coordinated Regional Climate
Downscaling Experiment Program (CORDEX) and their ensemble were evaluated for model skill
and systematic biases and the best performing model was selected. The gridded data predicted
streamflow accurately with a Nash–Sutcliffe efficiency greater than 0.89 in both calibration and
validation phases. The analysis results show that further conversion of grasslands and forests to
agriculture and urban areas doubled the runoff depth between 1984 and 2016. Climate projections
predict a decline in March–May rainfall and an increase in the October–December season. Mean
temperatures are expected to rise by about 1.3–1.5 ◦C under RCP4.5 and about 2.6–3.5 ◦C under
RCP8.5 by 2100. Compared to the 2010–2016 period, simulated surface runoff response to climate
change showed a decline under RCP4.5 and an increase under RCP8.5. In contrast, the combine
effects of land use change and climate change simulated a steady increase in surface runoff under
both scenarios. This suggests that the land use influence on the surface runoff response is more
significant than that of climate change. The study results highlight the reliability of gridded data as
an alternative to instrumental measurements in limited or missing data cases. More weight should be
given to improving land management practices to counter the imminent increase in the surface runoff
to avoid an increase in non-point source pollution, erosion, and flooding in the urban watersheds.

Keywords: surface runoff; land-use change; climate change; gridded observation; SWAT+; IPEAT+

1. Introduction

Human population growth, accompanied by an increase in technological development
over time, has led to a significant increase in the utilisation of land, water, energy, minerals
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and biological resources to meet human socio-economic needs [1]. Globally, human-
induced changes have become so significant over the past two centuries that they are now
seen as marking a new Anthropocene era [2–4]. From 1800 to 2000, the global population
increased from less than 1 billion to 6.5 billion, with a projected increase to 9 billion by
2050. This has been accompanied by cities’ development and a general demographic
shift away from rural communities to major urban centres, a characteristic feature of
land-use landcover changes (LULC) in the Anthropocene period [5]. Similarly, the global
landscape shifted from a predominantly wild or semi-natural state with very little use for
agriculture and settlement in 1700 to most of the land now used for agriculture and urban
development [6,7]. This human population growth and socio-economic advancement have
been made possible by the industrial and agricultural revolutions leading to a dramatic
increase in energy, water and other natural resource consumption [5].

LULC change significantly affects hydrological balance and aggravates water quan-
tity issues [8]. LULC influences hydrological processes such as infiltration, groundwater
recharge, baseflow and surface runoff in the watershed [9] by altering surface rough-
ness and Leaf Area Index (LAI). This leads to disturbances in the surface energy balance
and evapotranspiration (ET) [10] and also accelerates sediment loading mainly due to
uncontrolled urban runoff and soil erosion [11,12]. The energy balance changes and evapo-
transpiration changes can significantly affect the frequency and severity of atmospheric
evaporative losses and water yields that control the moisture content, surface runoff and
baseflow. As a result, these hydrological imbalances lead to increased runoff rates, volumes
and severe and frequent floods [13–15].

Climate change is another stressor in hydrological water balance [16–18]. The feed-
backs between global warming and hydrological processes affect precipitation patterns
and the frequency of extreme weather events [19–21]. According to the recent IPCC Special
Report [22], it is noted that from the pre-industrial period (1850–1900) until the present day
(1999–2018), the global average land surface air temperature (LSAT) rose quicker than the
global average surface temperature as the mean LSAT rose by 1.53 ◦C, while the global
average surface temperature increased by 0.87 ◦C. These changes are likely to disrupt the
rainfall-runoff relationships, water budget and increase evapotranspiration, leading to
changes in rainfall timing and intensity [23]. Subsequently, higher water temperatures and
possible extreme hydrometeorological events will likely aggravate various types of stresses
on water supplies with potentially adverse effects on habitats and human health [24–26].
Climate-related water quantity changes may also affect food availability, access to and use
of water and water infrastructure [27,28].

Several studies have explored the relationship between climate, land use, and hydro-
logical processes to understand the natural hydrological systems [29,30]. Li et al. [31] found
that combined effects of LULC and climate variability led to decreased runoff. Simulta-
neously, independent factor assessment showed that LULC increased evapotranspiration
by 8.0%, while climate changes reduced evapotranspiration by 103.0%. Using a combined
land use and climate scenarios, Pervez et al. [32] predicted increased hydrological compo-
nents due to seasonal variability with potential flooding in August–October and a drought
potential in May–July. While researching a Danish watershed, Karlsson et al. [33] observed
that climate-based models had high variability on mean discharge response linked with
increased extreme events. In contrast, LULC based models showed minimum variation.
In the Ethiopian highlands, Dibaba et al. [34] investigated the combined effects of climate
change using two representative concentration pathways (RCP4.5 and RCP8.5). He ob-
served that LULC contributed to increased water yield and surface runoff and decreased
groundwater volumes. In contrast, the projected climate change predicted a decrease in
surface runoff, water yield and groundwater. The combined LULC and climate change
scenario hydrologic responses were similar to that of climate change only.

Several studies have also investigated land cover change and climate impacts on
the hydrologic response in Kenya’s different ecosystems. Githui et al. [35] reported that
increased agricultural area and decreased forest coverage resulted in a 55%–68% change
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in the two study periods’ runoff. Musau et al. [36] downscaled ten climatic models and
three greenhouse emission scenarios to study potential streamflow response to climate
change in four upper Nzoia River watersheds. Although the watersheds were proximal,
each showed different streamflow variability indicating sensitivity to climate change and
the uncertainty in potential hydrological impacts of climate change. With a combined
climate/land use scenario, Mango et al. [37] found that further conversion of forests to
agriculture and grassland paired with modest climate change projections (precipitation
+5%–10%, temperature +2.5–3.5 ◦C) yielded a non-linear runoff response suggesting that
the basin may be highly vulnerable under extreme climatic conditions. While these studies
substantiate the impacts of LULC and climate change on hydrological processes in diverse
landscapes, none has focused on dynamic urban watersheds.

Watershed-scale models are deterministic (i.e., given input yields the same output)
and can be spatially categorised as lumped, semi-distributed, and distributed models.
Lumped models [38–40] consider watersheds as a single computational entity over aver-
aged watershed parameters and variables, while semi-distributed models [41–43] partition
watersheds into hydrological response units (HRUs). Distributed models [44–46] consider
spatial heterogeneity by dividing watersheds into grids with independent inputs, boundary
conditions and watershed characteristics. The SWAT model is a semi-distributed hydrolog-
ical model. It has been widely used to quantify ecosystem services in terms of provisioning,
policing, sustaining and cultural facets [47]. SWAT is advantageous because of its ability to
be used in various temporal scales [48,49], has an open-access policy and detailed docu-
mentation [50] and can use multiple-input constraints and process-based biogeochemical
sub-models [51,52]. QSWAT, an open-source software written in the Python Programming
Language, utilises an open-source Quantum Geographical Information System (QGIS) to
execute SWAT functions [53]. QSWAT creates input data, executes the SWAT model and
allows visualisations ranging from static maps, animated time-series maps, and streamflow
graphs. Further, it encapsulates calibration procedures through soft calibration and hard
calibration and has seen numerous applications since its recent inception [54–58]. Unlike
the ArcGIS-based SWAT environment, which requires a Spatial Analyst license and lacks
integrated visualisation capability, QSWAT is freely accessible, supports parallel processing
and integrates a visualisation platform.

Although these deterministic models can effectively simulate hydrological responses,
accurately modelling long-term historical and future flow regimes in African catchments is
challenging due to limited or incomplete meteorological observations [37]. Most simula-
tions exhibit low or moderate performance due to difficulties in estimating catchment-scale
weather variables from station observations. Hence, researchers have assessed the possi-
bility of supplementing or substituting instrumental measurements with gridded climate
data [59]. This can be achieved through imputing missing data [60], interpolating additional
stations from gridded data [37], or substituting station data with gridded observations [61].
While there has been a substantial improvement of gridded datasets, few studies to have
utilised gridded observations have either supplemented with station data or used coarse
resolution gridded datasets [37,61,62]. This study seeks to test the performance of the high-
resolution (0.05◦, ~5.55 km) Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) [63] and CHIRTS (Temperature) [64] datasets as an alternative to station
data in hydrological simulations and utilise them to assess the long-term impacts of LULC
on the surface runoff response in a dynamic tropical urban watershed and downscale future
climate simulations. The bias-corrected climate data will provide a basis for assessing and
quantifying climate/land use impacts on the watershed’s surface runoff patterns. The
success of rainfall-runoff models is highly dependent on the quality of the input data as
runoff and streamflow are highly correlated to the rainfall [65].

The study has been executed as follows. First, four land use epochs were classified
to determine trends in the LULC transitions and simulate future land-use scenarios for
2050 and 2080. Secondly, maximum temperature, minimum temperature, and precipitation
from six CORDEX-Africa regional climate model (RCM) (2006–2100) were evaluated for
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model skill, biases and subsequent downscaling against CHIRPS and CHIRTS datasets
and the best performing model was selected. Thirdly, QSWAT was then set to calibrate
and validate the SWAT+ model to assess LULC and climate change impacts on an urban
watershed surface runoff response. Runoff change assessment was done in three phases:
(1) Using historical land use and historical meteorological observations; (2) using historical
land use and corrected climate data; and (3) using simulated future land use and future
climate data. Finally, the surface runoff responses were then compared and analysed based
on the individual surface runoff depth (Q) and surface runoff coefficient (α).

2. Materials and Methods
2.1. Study Area

Nairobi metropolitan area (NMA) (Figure 1) is situated in the upper Athi basin ly-
ing between latitude 0◦45′ S~1◦48′ S and longitude 36◦30′ E~37◦15′ E. The watershed’s
topography is characterised by steep ranges in the east and rolling plains to the west. The
soil distribution majorly consists of Rhodic Nitisols along the steep volcanic slopes, Cam-
bisols and poorly-drained Eutric Vertisols on the gently undulating western region. The
watershed is predominantly agricultural, grasslands and cluster of polycentric urban areas.
The climate is warm and temperate, and the annual precipitation during the study period
varied from 552 mm to 1620 mm and temperatures above 19.0 ◦C with the hottest month
and the wettest month in February and April, respectively. The watershed experiences
two wet seasons, with the significantly wet season in March through April than in October
through December.

Figure 1. Study Area. The Nairobi Metropolitan Area (NMA) covers partly neighbouring Kajiado, Machakos and Ki-
ambu counties.
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2.2. Datasets

Digital elevation model (DEM) data, needed to compute the flow accumulation, stream
links, and watershed delineation, was obtained from the NASA website at a spatial res-
olution of 30 m. The soil data were obtained from the Harmonized World Soil Database.
Eighteen major soil groups were identified based on FAO/UNESCO—ISRIC classification.
The soil attributes prepared in the Harmonized World Soil Database (HWSD) and FAO soil
map comprised electrical conductivity (EC), pH, organic carbon and soil texture (%sand,
%silt, %clay). However, the SWAT model requires soil depth, bulk density, available water
content and hydraulic conductivity for each soil layer. These parameters can be estimated
using the pedotransfer functions. The weather input data required for SWAT simulation
includes daily rainfall, maximum and minimum temperature, wind speed, relative hu-
midity, and solar insolation. Precipitation and temperature data were obtained from high
resolution gridded CHIRPS and CHIRTS datasets. Simultaneously, solar radiation, wind
speed, and relative humidity were added from the SWAT global weather database. The
gridded data was sampled on 42 stratified random stations to act as station input for the
data. The meteorological data used for this study covers 36 years from January 1981 to
December 2016. The land-use/land cover maps were classified and validated using image
composites in the Google Earth Engine (GEE).

2.3. Land Use Model

The future land use simulation (FLUS) model [66] is a self-adaptive model for land
use scenario simulation designed based on the cellular automata (CA) theory and artificial
neural networks (ANN). The model is implemented by training an ANN model to generate
the urban probability of occurrence by finding complex relationships between land use
patterns and the human and natural environment driving factors. The probability of
occurrence guides the allocations of land use distribution changes. At the same time,
a designed roulette mechanism models urban and non-urban area competition in each
cell. The simulation is then forecasted in a tightly coupled “bottom-up” CA model and
“top-down” Markov chain model to determine transition probabilities of change from one
class to another.

The FLUS model requires two land use maps (one as model input and another for
precision and validation), driving factors classified as natural factors and human factors
(such as altitude, slope, aspect, proximity to towns, cities, roads, rails), and restriction
zones for exclusions (such as water, protected areas and policies) to create the probability
of occurrence and perform self-adaptive inertia and competition mechanism. Due to the
complex landscape features and vast socio-economic data required to fit various sub-
modules and components, FLUS can only execute a single scenario equivalent to the
historical trend. Map validation is done using the Kappa statistic and figure of merit (FOM).

FLUS model has been applied successfully both in global and local scales to simulate
elaborate land-use/land cover and has seen improvements in the recent past through
tailored applications [67–69]. It is a powerful tool with diverse applications not limited
to establishing urban construction boundaries (UCBs), discriminating large scale LULC,
hotspot recognition, land suitability analysis and future land-use simulations.

2.4. Climate Models

Downscaling global climate models (GCMs) provide an effective adaptation strategy to
obtain high-resolution future climate simulation at regional and local scales. The approach
assumes that large scale weather exerts a significant influence on the local scale. However, it
disregards reverse local scale effects. Downscaling can be accomplished in two approaches,
i.e., statistical downscaling and dynamic downscaling. Statistical downscaling is developed
based on statistical transfer function between local climate observations and the large scale
GCM outputs, assuming that the past climate statistics will remain valid in the future. For
dynamic downscaling, high-resolution regional climate models (RCMs) is nested within
GCM and solved using boundary conditions from the GCM. The assumption is that high-
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resolution RCM could simulate local climatic conditions over a limited region in greater
detail. Statistical downscaling is widely used because it is inexpensive computationally.
However, its downscaling skill depends on the predictor stationarity. In this study, dynamic
downscaling was selected with an assumption that observed predictor and prediction
relationships would remain reasonable under different future climatic forcing conditions.

Regional climate model (RCM) simulations (Table 1) from the Coordinated Regional
Climate Downscaling Experiment Program (CORDEX) were obtained from the CORDEX
Project under the Africa Domain with a spatial resolution of ~50 km (0.44◦). Monthly mean
precipitation (Pavg), maximum (Tmax) and minimum (Tmin) surface air temperatures were
evaluated against CHIRPS and CHIRTS gridded datasets for model skill and systematic
biases using methods put forth by Kim et al. [70]. The RCMs used in this study are based
on two representative concentration pathways (RCP) scenarios; the high emission scenario
(connoted as RCP8.5) and mid-range mitigation emission (RCP4.5) [71]. RCP4.5 assumes
that economic structures are rapidly changing, with the aim of reducing the material
intensity and introducing clean energy, with a focus on a global solution to economic, social
and environmental stability. In the year 2100, the scenario will stabilise the radiative force
at 4.5 W/m2 without ever exceeding it. RCP8.5 [72], on the other hand, is a worst-case
scenario (the current trend) characterised by high population growth, a lower rate of
development of technology, little efforts to curb emissions, and a heavy reliance on coal-
fired power [71]. RCP8.5 radiative forcing will peak by 2100 at 8.5 W/m2 and overshoot
the value due to heavy fossil fuel dependence.

Table 1. Regional climate models (RCMs) used in the study. Historical, RCP4.5 and RCP8.5 were
obtained from the CORDEX project.

Institute RCM Driving GCM Historical RCP4.5 RCP8.5

SHMI RCA4 CNRM-CERFACS-CNRM-CM5
√ √ √

SHMI RCA4 CSIRO-QCCCE-CSIRO-Mk3-6-0
√ √ √

SHMI RCA4 MOHC-HadGEM2-ES
√ √ √

SHMI RCA4 MPI-M-MPI-ESM-LR
√ √ √

SHMI RCA4 NCC-NorESM1-M
√ √ √

SHMI RCA4 NOAA-GFDL-GFDL-ESM2M
√ √ √

The years 2051–2059 (near future) and 2080–2089 (far future) served as future scenario
periods and the period from 1981 to 2016 as a historical baseline to evaluate the climate
biases. Other baseline weather variables such as solar radiation, relative moisture and wind
speed were omitted in future scenarios as changes in these variables may not significantly
affect the local hydrology’s climate simulations [73].

The model’s climatology has been evaluated under four subregions to select the best
model having the best model skill with the observations. Four statistical functions are
hereby used: Correlation, RMSE, standard deviation and bias.

2.5. Bias Correction

Once the best model was selected, climate model data for hydrological modelling
(CMhyd) [74] was used to apply the precipitation and temperature bias correction. While
applying five precipitation corrections methods and three temperature correction methods
on an arid watershed, Fang et al. [75] noted that power transform (PT) and quantile
mapping (QM) performed equally best in fixing precipitation’s frequency-based indices.
Simultaneously, local intensity scaling (LOCI) performed best in correcting time series-
based indices in precipitation. The three tested correction techniques (linear scaling (LS),
variance scaling (VARI), and distribution mapping (DM)) worked relatively the same
for temperature correction. While using CMhyd to test five bias correction methods
on 12 model combinations, Zhang et al. [76] noted that DM performed best for both
precipitation and temperature bias corrections. Owing to the successful application of
DM in bias correction of temperature [34] and the need to correct precipitation time-series
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indices, local intensity scaling (LOCI) was used in precipitation bias correction. In contrast,
distribution mapping was used to temperature bias correction of Tmax and Tmin.

2.6. QSWAT Interface

QSWAT can be divided into two sections: (1) A QSWAT Control containing the code
that responds to the user’s interactive input; and (2) QSWAT functions housing the code
to implement specific tasks such as combining sub-basins or snapping points to a stream
link [53]. It depends on a set of programs termed terrain analysis using digital elevation
models (TauDEM, http://hydrology.usu.edu/tandem/taudem5; accessed on 17 November
2020) to execute several geoprocessing functions combined with QGIS inbuilt functions.
QSWAT accepts GDAL supported rasters and vectors. It creates copies in the project
directory linked using relative paths, making it easy to move, copy, or archive projects
between and within computers.

During model execution, QSWAT first performs watershed delineation using TauDEM
by executing functions such as pit (depression) removal, calculation of contributing areas,
delineation of stream networks, watersheds and sub-basins, routing to stream sections
and linking subbasin and stream segment attributes. Secondly, it creates homogenous
HRUs using the intersection of land use, soil maps and related lookup tables. Each HRU
will belong to a particular sub-basin, and each cell has the same land use, soil layer, and
slope range. Thirdly, QSWAT is then linked with SWAT Editor to create several database
tables from the previous two steps. SWAT Editor will help create or import weather
databases, edit control databases, execute the SWAT model, manually calibrate outputs,
and export SWAT outputs. Lastly, QSWAT enables three visualisations for investigation
and analysis in the QGIS map window: static, dynamic and plot function. Static and
dynamic visualisations are designed to show spatial distribution through symbology or the
creation of categorical displays, with dynamic visualisation encapsulating time steps. The
plot function displays graphical outputs for comparisons read using a separate tool called
SWATGraph. The graphs can be exported as a comma-separated value (CSV) file. Further,
SWATGraph can calculate the correlation coefficient (R) and Nash–Sutcliffe efficiency (NSE)
coefficients between simulated and observed data.

2.7. Model Setup

A 30 m spatial resolution DEM was used to generate a stream network. Hydrological
station 3DA02 (Figure 2) was considered an outlet point to offer a threshold value to
delineate the watershed boundary. A prepared land use containing six classes, soil map
and its respective lookup tables, and slope map (classified into five slope classes) was
subjected to a defined threshold of 10% land use, 20% soil and 10% slope as put forth by
Setegn et al. [77] delineating 23,699 valid HRUs. SWAT uses Soil Conservation Service’s
curve number (CN) method for runoff estimation. The Penman–Monteith method and
variable storage routing method are used to estimate potential evapotranspiration and flow
routing respectively.

The SCS-CN model can be expressed in its general form as follows:

Q =
(P− Iα)

2

P− Iα + S
, Iα = λS (1)

where P is the total precipitation (mm), Iα is the initial abstraction (mm), Q is the direct
surface runoff (mm), S is the potential maximum retention (mm) after runoff begins, and I
is the initial abstraction coefficient. When Iα is taken to be 0.2 S, i.e., Iα = 0.2 Equation (3)
becomes:

Q =
(P− 0·2S)2

P + 0·8S
f or P > 0 else Q = 0 (2)

http://hydrology.usu.edu/tandem/taudem5
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S can be converted into a unitless CN, variable in a logical scale (0, 100) and can be
stated as:

S =
25, 400

CN
− 254 (3)

The CN values were obtained from the intersection of watershed characteristics (land
use land cover, soil hydrologic condition, hydrologic soil group and antecedent soil mois-
ture condition) [78]. These equations take into account the watershed characteristics in the
form of S and the effect of rainfall variation.

Figure 2. Watershed’s soil composition and elevation distribution. Eutric vertisols are the most dominant soils, while the
elevation is high on the western bounds. The watershed was calibrated using gauging station 3DA02.

2.8. Sensitivity Analysis, Calibration and Validation

For optimal model performance, surface runoff, subsurface flow, and temporal flow
must be calibrated. Sequential Uncertainty Fitting version 2 (SUFI-2) algorithm [43] has
been widely used for automatic calibration and sensitivity analysis of SWAT models.
QSWAT, however, can be calibrated using: (1) SWATCup-plus SUFI-2, a premium version of
the public domain SWAT-CUP; (2) a novel Integrated Parameter Estimation and Uncertainty
Analysis Tool Plus (IPEAT+) [79] explicitly designed for SWAT+; and (3) inbuilt SWAT
Editor hard and soft calibration. In this study, sensitivity analysis and calibration were
performed in two phases: first, sensitive model parameters from Table 2 were identified
using relative sensitivity analysis suggested by Haan [80], and then calibration was done
using IPEAT+ after identifying the sensitive parameters. IPEAT+ is freely available while
SWATCup plus requires a license to calibrate SWAT+ model data. SWAT+ is incompatible
with the public domain SWATCup.

Based on previous studies, fourteen most influential parameters were selected for
analysis using the relative sensitivity analysis method proposed by Haan [80] as follows:

Sr =

[
OP+∆P − OP−∆P

OP

]
[

2∆P
P

] (4)
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where Sr is the relative sensitivity, OP+∆P is the model outputs with the input parameter
set at the base value plus a specified percentage (between 10 and 25%), OP−∆P is the model
outputs with the input parameter set at base minus a specified percentage (between 10
and 25%), OP is the model output with input parameter set at the base value ∆P is the
prescribed input parameter absolute change value, and p is the initial input parameter
base value.

Table 2. SWAT+ calibration parameters. Default values obtained from the calibration parameters file.

Parameter Object Type Description Range

cn2 hru Initial SCS runoff curve number for moisture condition II. 28–98
awc sol Available water content of the soil layer (mm H2O/mm). 0.01–1.0
esco Soil evaporation compensation factor. 0.01–1.00

perco hru Amount of water percolating out of root zone (mm H2O) 0–1
gw_lte hlt Initial shallow aquifer storage 0–10 m

revap_co aqu Groundwater “revap” coefficient. 0.02–0.2

revap_min aqu Minimum depth of water in the shallow aquifer for percolation to the deep
aquifer to occur (mm H2O). 0–10 m

alpha_bf aqu Baseflow alpha-factor (days). 0–1 day
canmax hru Maximum canopy storage (mm H2O) 0–100 mm/H2O

k_ch rte Effective hydraulic conductivity in tributary channelalluvium (mm/h). 0–0.01–500 mm/h

flo_min aqu Minimum water depth in the shallow aquifer required to return flow
(mm H2O). 0–10 m

gwflow lte Groundwater contribution to streamflow (mm H2O). 0–10 m
gwdeep lte Deep aquifer percolation fraction. 0–10 m

ovn hru Manning’s “n” value for overland flow 0.01–30

Regarding the absolute value of ∆P, Lenhart et al. [81] found out that varying value
by 25% gave a more contrasted outcome than when as low as 10%. Other studies have suc-
cessfully used ±25% as the variation value [82,83]; therefore, ∆P± 25% of was taken as the
absolute variation for the study sensitivity test. Mean relative sensitivity (µSr) parameter
values were then classified into four sensitivity categories as defined by Lenhart et al. [81]
(Table 3).

Table 3. Mean relative sensitivity categories for classifying the parameter sensitivity.

Class µSr Sensitivity Category

I 0.00 ≤ µSr < 0.05 Small to negligible
II 0.05 ≤ µSr < 0.20 Medium
III 0.2 ≤ µSr < 1 High
IV µSr > 1 Very high

After the completing sensitivity analysis, the three primary IPEAT+ controls files, i.e.,
the technical control file (IPEAT_Control.set), the parameter setting file (IPEAT_para.set)
and the observation file (IPEAT_ObsXY.set) were set. IPEAT_Control.set contains variables
needed to conduct the optimisation algorithm and define the calibration variables, includ-
ing objective functions. IPEAT_para.set defines the full list of candidate parameters available
for calibration in SWAT+, which is the same as that cal_parms.cal in the SWAT model, while
IPEAT_ObsXY.set defines the simulation timestep (day, month, or year), the outlet number
to be calibrated, and the observations used in model calibration. Monthly streamflow was
examined, and five statistical goodness-of-fit indices (Table 4) were calculated in the R
software using the hydroGOF library [84] as the model performance indicators.

PBIAS =
∑n

i=1

(
Yobs

i −Ysim
i

)
∑n

i=1
(
Ysim

i
) ·100 (5)
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NSE = 1−
∑n

i=1

(
Yobs

i −Ysim
i

)2

∑n
i=1
(
Yobs

i −Ymean
obs

)2 (6)

bR2 =

 ∑n
i=1

(
Yobs

i −Ymean
obs

)(
Ysim

i −Ymean
sim

)√
∑n

i=1
(
Yobs

i −Ymean
obs

)2
√

∑n
i=1
(
Ysim

i −Ymean
sim

)
2


2

(7)

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (8)

VE = 1− ∑n
i=1|Ysim −Yobs|

∑n
i=1 Yobs

(9)

where Y is the streamflow discharge, obs is the observation, while sim is the simulation. r is
the correlation coefficient, β is the bias ratio (dimensionless) and γ is the variability ratio
(dimensionless)

Table 4. Statistical goodness-of-fit indices to probe model validity.

Coefficient Description Optimal Values

Percent bias (PBIAS) [85]
measures the average tendency of the

simulated channel flow to deviate from the
observed flow.

0—Optimal,
Negative—underestimation,

Positive—overestimation

Nash-Sutcliffe efficiency (NSE) [86]

a normalised statistic that calculates the
relative magnitude of the simulated flow
variance compared to the observed flow

variance.

NSE = 1 perfect match,
NSE = 0, model predictions accurate

as the mean of the observed data,
-Inf < NSE < 0, observed mean is a

better predictor than the model

Product of coefficient of determination
(R2) and the regression line slope between

simulation and observation (bR2) [87]

allows measurement for the discrepancy in
the magnitude of simulated and observed

flows (b) and their dynamics (R2)

0 ≤ bR2 ≤ 1
1—Optimal,

>0.5—good match,
<0.5—representative.

Kling-Gupta efficiency (KGE) [88]
aids the evaluation of the relative importance
of diverse components (correlation, bias, and

variability)

-inf < KGE > 1
∼ 1 efficient

Volumetric efficiency (VE) [89] represents the fraction of water reaching the
channel at the proper time

-Inf ≤ VE ≤ 1
∼ 1− efficient

Three historical epochs were selected for calibration and validation. Due to gaps
in the hydrological station data, 1984–1990 was selected as base years for calibration
using corresponding historical meteorological data and the year 1990 land use map. For
validation, the land use map for the year 2000 was validated using 2003–2009 weather
data. The land use map for the year 2010 was validated using 2010–2016 weather data. All
simulations had an initial one year warming period, i.e., 1983, 2002 and 2009.

2.9. Evaluation of the Effects of LULC and Climate Change on Surface Runoff

To assess impacts of LULC and climate change on the surface runoff, runoff dis-
crepancies have been evaluated annually in three phases: (1) The impacts of LULC is
independently evaluated using historical data and assuming that the observed historical
meteorological data are subject to negligible climate change effects; (2) the independent
climate influence is tested by changing meteorological conditions over a static 2010 land
use map; and (3) the combined effects of LULC and climate change are evaluated using
future corrected climate data and projected land use evolution. Under the first condition,
1984–1990 serves as a baseline for 2003–2009 and 2010–2016 LULC scenarios. For the third
condition, two bias-corrected RCM data under RCP4.5 and RCP8.5 were combined with the
historical trend of LULC and evaluated under three temporal conditions at 30-year interval;
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historical baseline (2010s), near future (2050s), and far future (2080s). This temporal spacing
is likely to enable climate change effects to be pronounced as the climate is considered at
least a 30-year weather average.

The deviation from baseline observation of two SCS-CN model variables (the runoff
depth (Q) and runoff coefficient (α)) were evaluated to assess land use and climate impacts
on the surface runoff as given below:

∆Q = Qa −Qb (10)

∝=
Q
P

, ∆ ∝=
∆Q
P

(11)

β =
Qi+1 −Qi

Qi
(12)

where Qa and Qb denotes surface runoff depths (mm) of the baseline and the subsequent
land-use scenarios, respectively, P is the rainfall depth (mm), ∆Q is the change in runoff
depth between two successive epochs, ∆ ∝ is the absolute change in the runoff coefficient
and β represent the relative degree of change between to subsequent land use/climate
scenarios (i). Positive values of ∆Q and ∆ ∝ indicate land use/climate change increased
the surface runoff, reduced if negative, or otherwise, no significant changes [90].

3. Results and Discussion
3.1. Land Use/Land Cover Change Analysis

A confusion matrix is used to establish the correctness of the classified image during
the accuracy assessment. Randomly-selected points were compared to the classification
maps from the image mosaics and the Google Earth image as a reference. 301, 576, 1020
and 1407 sampling points were chosen to validate images from 1990, 2000, 2010 and 2020.
Results (Tables A1–A4) reveal that the average precision for 1990, 2000, 2010 and 2020 maps
was 87%, 89%, 95% and 95%, respectively. The producer’s accuracy ranged from 85% to
99%, while the user’s accuracy ranged from 79% to 100%.

For the predicted land use map, 5% of the valid pixels (Table 5 in Appendix B) in the
2020 predicted raster were randomly selected to compute the confusion matrix against the
2020 classified image (ground truth). The overall accuracy was 88%, and the Kappa statistic
was 0.84 (Table 6). Commission errors were high in agricultural land use (0.24), while the
omission errors were high in the water land class (0.43). Additionally, the computed figure
of merit (FoM) was 23.43%. Similar studies computed FoM values ranging from 12% to
59% [66,91,92]. Low FoM can be attributed to the short simulation period used in the study
(2010–2020), as long-term simulations have relatively higher FoM values [66,91].

Historical land use/land cover change (Table 5) between 1990 and 2020 was dominated
by the change in the grasslands (σ = 423.71) with a total loss of 629.99 km2 followed by
urban (+342.44 km2, σ = 267.46) and shrublands (+355.24 km2, σ = 151.11). Agricultural
land showed an increasing trend gaining 173.88 km2 (σ = 85.87) while water changed the
least (+13.75 km2, σ = 7.15).

Table 5. Historical and future land use composition in the watershed.

Urban Forest Water Agriculture Grasslands Shrublands

1990 85.87 666.01 5.93 980.90 3162.12 785.02
2000 98.73 401.99 10.78 1041.76 3097.78 1034.78
2010 274.98 427.09 9.64 1083.75 2817.02 1073.40
2020 428.31 410.72 19.68 1154.78 2532.13 1140.26
2050 624.58 419.05 21.03 1185.73 2244.61 1190.17
2080 725.20 392.75 23.27 1194.67 2169.12 1181.17

For the class-to-class transitions (Figure 3), grasslands loss made it the primary player
in the watershed. About 768.65 km2 of grasslands in 1990 have transited to shrublands gain-
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ing about 71.15 km2 with a net loss of −697.5 km2 between these two classes. Additionally,
much of its area has been converted to agricultural (505.83 km2), urban (373.28 km2) and
forest (166.04 km2). Forest also has seen a decrease in its coverage (net−405.08 km2), chiefly
lost to agricultural (246.44 km2), cleared to grassland-like land (100.45 km2), and urban
(26.07 km2). However, it has reclaimed a substantial 152.39 km2, mostly from grasslands
(74.70 km2), agricultural (71.83 km2) and shrubs (4.71 km2).

Figure 3. Class-to-class land-use transition changes in square kilometres. Black bars represent unchanged land class area
while blue denotes the respective conversion to individual classes.

Projected land use land cover (Figure 4) based on the recent land-use transition
probabilities (between 2010 and 2020) instead of long-term land-use trends (1990–2020)
has been used to capture current land-use dynamics. It was noted that high class to class
transition probabilities between 1990 and 2020 land use maps did not accurately reflect
current trends in urban and forest land utilisation as compared to using recent land-use
epochs. This was partly because the CA-Markov land use prediction only considers two
sets of land use maps for LULC simulation. Urban land cover is expected to rise steadily
to about 624.58 km2 in 2050 and 725.20 km2 in 2080, an equivalent of 45.82% increase
between 2020 and 2050 and a 16.11% increase between 2050 and 2080. Agricultural land,
shrubland and water land use land cover classes exhibit positive net change. At the
same time, forest and grasslands will continue to be converted to other land uses. The
loss of grasslands could be attributed to the urban growth in the suburbs in the Kajiado,
Kiambu and Machakos counties. Increasing agricultural land demand would likely absorb
significant portions of the forests.
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Figure 4. Maps showing land use land cover distribution. The first four maps show historical LULC
classified from Landsat imageries, while the latter two represent projected land use distribution.

3.2. Climate Data Evaluation
3.2.1. Precipitation

All the precipitation RCMs generated wet biases in the wettest northern region and
dry biases in the study area’s southern region. Among the models, CSIRO and the ensemble
(ENS) performed best with high spatial correlation (R > 0.8) for RCP4.5. However, ENS
dropped in quality under RCP8.5 (R > 0.7). Additionally, comparing all models, CSIRO
yielded the lowest RMSE (<10%) followed by the ENS, whereas NOAA yielded the highest
(>20%) in both climate scenarios. NOOA, MOHC and ENS had the lowest standard
deviation against CHIRPS data. On evaluating model skill (spatial correlation, biases,
RMSE, and standard deviation), CSIRO and ENS performed better under both climate
scenarios in the study area, with CSIRO being selected for statistical downscaling (Figure 5).
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Figure 5. Taylor diagrams: Model skill and biases. The plots display individual model correlation coefficient, standard
deviation and% bias compared to CHIRPS and CHIRTS datasets. The red markers and labels represent RCP8.5, while blue
markers and labels represent RCP8.5. Note that the shape variation of markers corresponds to the percentage bias sizes.

Corrected precipitation (Figure 6) exhibits an increasing annual precipitation trend
from 2021 to about 2076 in both climate scenarios. These findings show consistency
with other previous studies considering rainfall projections in East Africa [93]. How-
ever, long rains (March–April–May, (MAM)) are set to decline while short rains (ON and
DJF) are expected to increase. The cause of these seasonal variabilities is still debated.
Williams et al. [94] attributed these changes to the enhanced convection in the Western
Equatorial Pacific stretching warm pool and Walker circulation towards the Indian ocean.
In contrast, Lyon et al. [95] linked the decline to the warming SSTs over the Western Tropical
Pacific and the cooling SSTs over the Eastern Tropical Pacific. The linear rainfall trend is not
determinant; hence, it is inaccurate to estimate linear annual average precipitation change.
Generally, the results suppose an annual loss of 3 mm of precipitation in the MAM season
and an annual net gain of 0.2 mm and 14 mm in JJAS and ONDJF, respectively.

Figure 6. Model precipitation trends at a sample station (a) Annual precipitation trends, (b) March–April–May (MAM)
seasonal trend, (c) June–July–August (JJA) seasonal trend, and (d) October–February (ON + DJF) Seasonal trend.
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3.2.2. Surface Air Temperature

Tmax and Tmin evaluation were also performed against CHIRTS data, with all the
models underestimating both Tmax and Tmin. Under both climate scenarios, Tmax spatial
correlation ranged from 0.55 to 0.82, while all models yielded almost a unified spatial corre-
lation for Tmin ranging from 0.8 to 0.85. ENS (bias < 20%, 1.02 < RMSE < 1.75) and CSIRO
(bias < 20%, 1.02 < RMSE < 1.61) performed best for Tmin under both climatic scenarios,
while CSIRO (bias < 20%, 0.71 < RMSE < 0.87) and MOHC (bias < 20%, 0.51 < RMSE < 0.65)
had a good skill for estimating Tmax. In the light of the CSIRO model’s high performance for
precipitation and surface air temperatures and the efficiency in single model bias correction,
CSIRO-QCCCE-CSIRO-Mk3-6-0 driven RCM was selected as a representative of future
climate data for subsequent bias correction. The CSIRO Mk3.6.0 has also been noted to be
the only model to account for both East Africa long rains rainfall-SST relationship and the
precipitation climatology [96].

Corrected temperature projections (Figure 7) predict general increase warming at
all seasons in the study area, with average increases of about 1.3–1.5 ◦C under RCP4.5
and about 2.6–3.5 ◦C under RCP8.5. These findings are consistent with similar studies
downscaling RCMs and within limits of the theoretical values [34]. Using 11 RCMs to
assess climate change implications on Nile basin water resources, Beyene et al. [97] noted
an annual average increase in temperatures ranging from 1.5 ◦C to 4.4 ◦C as compared
to the historical observations. Under RCP4.5, mean annual temperatures are projected to
increase by 0.57 ◦C, 0.76 ◦C, and 0.17 ◦C between 2021–2050, 2050–2080 and 2080–2100. For
RCP8.5, mean temperatures will increase by 0.62 ◦C, 1.21 ◦C and 0.97 ◦C under the same
periods. Cumulatively, mean temperatures would rise from historical 23.45 ◦C (2006–2020)
to 24.96 ◦C (+1.51 ◦C) by 2100 under RCP4.5 and 26.26 ◦C (+2.81 ◦C) under RCP8.5 in
the NMA.

Figure 7. Model mean surface temperature trends at a sample station. (a) Annual precipitation trends, (b) March–April–May
(MAM) seasonal trend, (c) June–July–August (JJA) seasonal trend, and (d) October–February (ON + DJF) seasonal trend.
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3.3. SWAT + Model Sensitivity Evaluation

Fourteen SWAT+ parameters (Table 2) were evaluated for sensitivity using relative
sensitivity analysis to identify and optimise the three SWAT+ water balance components
(total water yield, baseflow, and surface runoff). Four parameters were significantly
sensitive to variations and were ranked based on their absolute mean, as tabulated in
Table 3. CN2 was the most sensitive parameter to total water yield (Sr = 1.53), baseflow
(Sr = −1.32) and surface runoff (Sr = 5.01) yield. Sr means that a 1% change in the
parameter results in Sr% change in the affected parameter, i.e., a 1% change in CN2 results
in the 1.53% change in the total water yield. Total water yield is sensitive primarily
to CN2 (Sr = 1.53) and SOL_AWC (Sr = −0.31) and mildly to ESCO (Sr = 0.1) and
PERCO (Sr = −0.03). Baseflow is affected chiefly by CN2 (Sr = −1.32) and SOL_AWC
(Sr = −0.55) with effects of SOL_AWC more pronounced in baseflow balance than in
the total water yield. Surface runoff is the most affected parameter by CN2 (Sr = 5.01)
and also significantly by SOLW_AWC (Sr = −0.67) and ESCO (Sr = 0.11). Ranking these
parameters (Table 6), CN2 is the most sensitive parameter, followed by SOL_AWC, ESCO,
and lastly PERCO.

Table 6. Calibration parameters sensitivity, rank and final calibrated values.

Parameter Water Yield Baseflow Surface Runoff Sr Sensitivity Category Final Calibrated Value Rank

cn2 1.53 −1.32 5.01 1.74 IV 20.175–79.086 1
awc −0.31 −0.55 −0.67 0.51 III 0.733 2
esco 0.10 0.09 0.11 0.10 II 0.659 3

perco −0.03 −0.02 −0.04 0.03 I 0.128 4
gw_lte 0.00 0.00 0.00 0.00 I - -

revap_co 0.00 0.00 0.00 0.00 I - -
revap_min 0.00 0.00 0.00 0.00 I - -
alpha_bf 0.00 0.00 0.00 0.00 I - -
canmax 0.00 0.00 0.00 0.00 I - -

k_ch 0.00 0.00 0.00 0.00 I - -
flo_min 0.00 0.00 0.00 0.00 I - -
gwflow 0.00 0.00 0.00 0.00 I - -
gwdeep 0.00 0.00 0.00 0.00 I - -

ovn 0.00 0.00 0.00 0.00 I - -

The four sensitive parameters were calibrated using IPEAT+. A 100 simulation runs
were set, and the objective function 1− R2 was used to measure and track model perfor-
mance. It was noted that the model iterations exhibited no further change in parameter
randomisation after 59 iterations with optimal objective function 1− R2 converging at
0.0657 (R2 = 0.93). Final optimal values were then used for hard calibration in SWAT
Editor for all the subsequent model experiments (land use maps 2000, 2010, 2050, 2080).
Both calibration and validation results indicated a good agreement between simulated
streamflow and the observed flow data, as tabulated in Figure 8d.

The model success to predict monthly flow with high accuracy reflects CHIRPS and
CHIRTS algorithms success in blending CHIRP/CHIRT and station data. Although there
is an overestimation of streamflow, monthly flow statistics indicate a good relationship
between observed and simulate streamflow. NSE coefficients were 0.92 for the calibration
period and 0.89 and 0.95 for the validation periods. A better predictor for estimating
volumetric efficiency, the VE, returned satisfactory indices of 0.78, 0.72 and 0.76 during the
same phases.
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Figure 8. Calibration results. (a) Calibration phase, (b,c) validation phase and (d) goodness-of-fit coefficients.

3.4. Surface Runoff Response
3.4.1. Due to LULC

Historical LULCs exhibit a high relationship with the surface runoff response with
a statistically insignificant (p > 0.05) correlation with all land classes having a Pearson’s
product-moment correlation coefficient ranging from 0.57 to 0.99, as shown in Table 7.
Grasslands R2 = 0.98, urban land (R2 = 0.94) classes and agriculture (R2 = 0.90) are the
most contributors to changes in the runoff depth. An increase in urban land and agricultural
use corresponded to the increasing surface runoff depth, while the decrease in grasslands
corresponded to the increasing surface runoff (Figure 9). Additionally, a decrease in forest
cover contributed significantly to the increasing runoff depth (R2 = 0.463). In contrast, an
increase in shrubland cover contributed positively to the average runoff depth (R2 = 0.67)
whereas water coverage had little relationship with increasing runoff depth.

Table 7. Historical land use relationship with watersheds average surface runoff depth. t—t-statistic,
p—p-value, and R2—the Spearman correlation coefficient. Areas in square kilometres.

Urban Forest Water Agriculture Grasslands Shrublands Q

1990 85.87 666.01 5.93 980.90 3162.12 785.02 18.32
2000 98.73 401.99 10.78 1041.76 3097.78 1034.78 25.32
2010 274.98 427.09 9.64 1083.75 2817.02 1073.40 40.70

t 3.92 −0.93 0.70 3.03 −7.40 1.42 -
p 0.16 0.52 0.61 0.20 0.09 0.39 -

R2 0.94 0.46 0.33 0.90 0.98 0.67 -

The average annual runoff depth in the period 2000–2009 (25.32 mm) increased by
38.18% compared to the period 1984–1990 (18.32 mm) supplemented by the increase in
urban land use (14.97%), shrublands (31.82%), decrease in forests cover (−39.64%) and
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decrease in average annual precipitation (−9.31%) between 1990 and 2000. Comparably,
exponential urban land use growth (+179%), loss of grasslands (−9.06%) and increased
precipitation (15.13%) between 2000 and 2010 doubled the average surface runoff depth to
40.70 mm (+107%). Surface runoff coefficient (α), the runoff rainfall ratio, increased steadily
from 1984 to 2010 with an average increase of 49.07% compared to the base period.

Figure 9. Historical annual surface runoff depth in millimetres (mm) for the epochs (a) 1984–1990, (b), 2003–2009, (c)
2010–2016.

Impacts of land use fragmentation have been found to alter the hydrological response
of the watershed substantially. Due to their influence on evapotranspiration, soil surface
temperatures, and aerodynamic roughness associated with the leaf area index (LAI) and
root depth, forests have long been considered the main cause of altering water yield and
flow patterns. However, weak correlations have been found between forest cover and
surface runoff (r = 0.42, p < 0.05) [98], which is consistent with our findings (r = 0.46).
Experimental observations by Guzha et al. [98] also showed a significant increase in surface
runoff due to forest loss to agricultural parcels, suggesting that the high probability of
transition between forest and agriculture observed in our study would likely increase
surface runoff, particularly in the hilly slopes. Conversion of grasslands to shrublands
primarily used for grazing results in changes in soil hydro-physical properties, such as
increased bulk density and lower total porosity, resulting in lower evapotranspiration
and increased runoff coefficients. The urban expansion also increases the impermeable
surface’s ratio, leading to decreased infiltration and baseflow and eventually increasing
surface runoff. Hu et al. [90] verified a high correlation between increasing impermeable
surfaces and increasing surface runoff in the Beijing Central Area case study. By comparing
predictor residuals and runoff depth, grassland changes contributed to 43.4% of surface
runoff, while urban and agricultural changes contributed to 38.71% and 11.6%, respectively.
On the other hand, forest and shrubland accounted for 2.13% and 2.4% of total changes,
while the water class was the least significant (1.7%).

3.4.2. Due to Climate Change

In order to assess the intensity of the individual climate contribution to the surface
runoff response, the 2010 land use map was used with projected weather data for 2010–2016,
2050–2059 and 2080–2089 under both climate scenarios (RCP4.5 and RCP8.5). First, to
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measure model discrepancies, climate projections between 2010 and 2016 were compared
with historical outputs, and then the latter epochs were considered to be the direct impacts
of climate change on the surface runoff response. Both climate-induced surface runoff
and the calibrated epoch generated almost equal runoff between 2010 and 2016 (calibrated
2010–2016 = 40.70 mm, RCP4.5 2010–2016 = 45.57 mm, RCP8.5 2010–2016 = 39.65 mm) as
shown in Table 8, instilling confidence in the rainfall model performance to capture rainfall
variability within its recent years. When the current land use conditions are kept constant,
it is noted that under RCP4.5, the surface runoff will decrease slightly (−1.57 mm) by the
end of the century, while expected to increase significantly under RCP8.5 (+39.83 mm).

Table 8. Annual surface runoff depth in different scenarios in millimetres (mm).

Land Use Climate Climate + Land Use
Baseline RCP4.5 RCP8.5 RCP4.5 RCP8.5

1984–1990 18.32 - - - -
2003–2009 25.32 - - - -
2010–2016 40.70 45.57 39.65 - -
2051–2059 - 42.70 67.78 60.72 97.36
2081–2089 - 39.13 80.52 63.17 127.33

The decline in the surface runoff generated under RCP4.5 and the latter period of
RCP8.5 (2080–2089) can be attributed to decreased precipitation. Rainfall-runoff correla-
tion on these periods (RCP4.5 2050–2059 = 0.75, RCP4.5 2080–2089 = 0.90, and RCP8.5
2080–2089 = 0.89) are statistically significant (p < 0.05), indicating that any increase in rain-
fall under these climate scenarios would positively influence the amount of surface runoff
if the land use land cover is kept constant. However, in the middle of this century, surface
runoff under RCP8.5 will substantially increase due to an extreme precipitation event and
a dip in surface temperatures. It has been noted that an increase in precipitation and a
decrease in temperature increases simulated runoff the most as the decrease in minimum
temperature influenced the evaporation thresholds. Climate effects are significant under
extreme conditions (RCP8.5) compared to the mild meteorological changes (RCP4.5).

3.4.3. Due to Climate and Land Use

Combining land use and climate change impacts resulted in increased surface runoff
generated in both climate scenarios compared to climate change contributions alone. Under
the RCP4.5 scenarios, there is an average increase of 21.24 mm (+52.20%) in the surface
runoff generated, while RCP8.5 projects a substantial increase in surface runoff depth
(+56 mm between 2050 and 2059, and +29.97 mm between 2080 and 2089). Although there
is a projected decline in rainfall intensity between 2076 and 2100, the average annual runoff
depth increased by 4%. This highlights the resilience of LULC and its dominance in the
combined scenarios driven by an increase in urban land use and a decrease in forest and
grasslands quotas. Table 9 summarises changes in surface runoff coefficients under all
three scenarios. Both land use and climate/land use scenarios exhibit a positive increase in
rainfall-runoff ratio while the climate scenario exhibits otherwise.

Table 9. Changes in watershed annual surface runoff coefficients (∆ ∝).

Land Use Climate Climate + Land Use
Baseline RCP4.5 RCP8.5 RCP4.5 RCP8.5

1984–1990 - - - - -
2003–2009 0.0040 - - - -
2010–2016 0.0208 - - - -
2051–2059 - −0.0185 0.0455 0.0441 0.0838
2081–2089 - −0.0072 −0.0040 0.0004 0.0069
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Combining the effects of LULC and climate change on watershed hydrologic responses
can be very complex due to the unique feedbacks of each independent hydrometeorolog-
ical parameters. While caution must be taken when the model results are interpreted or
reported, heuristic measured values provide a basis for quantifying and understanding
the feedback’s magnitudes. Although the LULC is expected to catalyse the surface runoff
response, climate change has both probabilities (to decrease or increase the surface runoff)
based on their measured/projected output. For example, the effects of climate/land use
under RCP4.5 are more significant than that of climate alone, suggesting that LULC could
be the primary determinant of hydrological response. Under the RCP4.5 climate/land use
scenario, the runoff coefficient between 2050 and 2059 increased by an average of 93.99%,
while it decreased by 35.35% in the climate only scenario. Overall, decreased precipitation
between 2076 and 2100 reduced the average surface runoff coefficient by 0.0072 (−21.24%),
while the combined simulation of land use and climate change remained relatively un-
changed. (+0.0004, +0.75%). However, the high emission scenario (RCP8.5) simulated
almost a double increase in surface runoff coefficient (+0.0838, +178.83%) compared to the
average climate condition under RCP4.5 (0.0469). These discrepancies indicate that extreme
weather conditions and significant landcover changes (especially grasslands, urban and
agricultural land classes) could result in severe hydrometeorological conditions. Increased
runoff coefficient is seen mostly in urban and agricultural land classes that dominate the
watershed’s upper and middle reaches (Figure 10).

Figure 10. Annual surface runoff coefficient distribution under both climate scenarios.

Similar studies in tropical areas are still limited, especially in dynamic urban water-
sheds. However, the present studies suggest positive variations under land use and climate
change scenarios. Lucas-Borja et al. [99] found that maximum runoff coefficients increased
by 23.3% on average compared to the baseline scenario in a tropical Brazilian watershed
primarily driven by forest land conversion to agricultural use. However, in an Ethiopian
highland, the combined climate and LULC scenario were comparable to climate change
only due to the observed decrease in surface runoff, groundwater and total water yield
driven by a decrease in precipitation and higher surface temperatures [34].

3.5. Implications of Surface Runoff Change on Water Balance and Quality

Renewable water supplies are critical for the sustainability of terrestrial and marine
habitats, as well as human use in agriculture, industry, and households. As increased
amounts of water vapour are anticipated in a warmer environment, climate change will
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alter the hydrological cycle and, thus, the regional freshwater supplies. While rainy
areas are expected to become wetter and dry regions drier, the NMA watershed has high
potential evapotranspiration, resulting in increased water loss through evapotranspiration.
Consequential impacts will differ regionally; where rainfall is estimated to be lower in
the future, especially in the southern part of the watershed, a decrease in water resources
is expected. Increased temperatures and reduced rainfall between 2076 and 2100 would
decrease surface and groundwater supplies, increase plant evapotranspiration and increase
evaporation rates from open water and water infrastructure. In the western and northern
regions where rainfall is estimated to be higher in the future, an increase in water supplies
can be expected to support terrestrial and freshwater habitats, agriculture and domestic
use, but these benefits may be limited due to higher temperatures. Increases in severe
precipitation events are also expected to lead to increased surface runoff, regional flooding
and fertiliser removal, as well as a decrease in soil water and groundwater recharge in
many areas. Anthropogenic land use change will intensify or moderate climate change
effects on water supplies, and informed land management strategies need to be established.
The warming climate will intensify current pressures on renewable freshwater supplies
especially in the water-stressed south regions of the NMA watershed, and will result in
intensified competition for water between human and natural systems.

Any land transition and how it is used can influence the exchange of water, energy,
greenhouse gasses, non-greenhouse gasses and aerosols between the soil and the atmo-
sphere. LULC thus changes the condition and dynamics of the atmosphere, which, in
turn, can dampen or intensify local climate change. Land-induced changes in humidity
and wind may affect neighbouring and often more distant regions. In addition to global
warming, deforestation and urbanisation, especially in the upper northern reaches, may
contribute to surface warming and increases convection, which then increases the relative
terrestrial temperature difference. These changes invariably cause incoming solar radiation
to be redistributed, resulting in an urban-rural contrast in surface radiance and air temper-
ature, resulting in higher ambient and surface temperatures in urban areas than in adjacent
rural areas (urban heat island effect) and a localised rainfall pattern (urban rainfall effects).
Grasslands absorb CO2 to be used for growth and continuation. Forests also confine more
carbon in their wood and soils than cropland, and the conversion of forests and grasslands
in the watershed to cropland, for example, may result in CO2 emissions to the atmosphere,
thereby accelerating the global warming caused by greenhouse gasses. Terrestrial habitats
are sources and sinks of chemical compounds such as nitrogen and ozone. Although the
watershed rainfall formation is complex, biogenic volatile organic compounds (BVOCs)
from increasing agricultural land use may contribute to the formation of tropospheric ozone
and secondary aerosols that influence both surface and cloud formation [100]. Shrublands
further emit dust as also do the cropland areas after harvesting. An increase in these aerosol
volumes in the atmosphere influences temperature positively and negatively, depending
on the size, altitude, and composition of the particles. While global warming can affect
the land’s functioning and condition, it is not a one-way relationship, as changes in land
use/land cover will also influence climate change and, thus, modulate climate change.
Understanding this two-way relationship will help to improve adaptation and mitigation
strategies and manage the NMA watershed ecosystem.

While this research’s findings focus on alternative data sources and quantification of
probable effects land use and climate scenarios, landscape vulnerability should be tested
based on integrated surface water management such as controlled development, green
infrastructure, sustainable urban drainage designs (SUDS), and water-sensitive urban
designs (WSUD). These concepts should encompass greening open spaces, idle land use
management, climate change adaptation to land use plans, and ecological functions to
maintain water balance by providing a natural water cycle system and improving water
quality through guided suitability analysis of waste disposal sites.

The realisation of climate/land use implication on hydrological response is still far-
fetched as scaling climate/land use models to understand hydrological processes are
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exceedingly complicated. Critical issues lie in predicting precipitation as climate models
cannot provide exact scenarios, especially in individual land classes. For example, models
do not include the local effects of urban heat intensity and urban rainfall effects. Further,
land use is also interconnected through intricate patchworks of the artificial and natural
environment and can be estimated on contributing landscape scale, resulting in complex
rainfall-runoff transformations.

4. Conclusions

Rainfall runoff models are input-dependent and require that gridded data have the
threshold accuracies in representing the corresponding input parameters’ actual obser-
vations. The successful calibration of rainfall runoff models depends highly on rain-
fall observation to capture the observed precipitation patterns and trends. CHIRPS and
CHIRTS datasets yielded a high observed-simulated streamflow correlation (≥0.91) and
Nash–Sutcliffe efficiency (≥0.89) in all calibration and validation phases, implying that
CHIRPS/CHIRTS datasets can provide valuable and dependable alternative data for
climate services. While the model accuracies cannot depend only on the inputs, model algo-
rithms play a significant role in estimating physical variables used in the model execution.
The ability of SWAT+ to perform functions with high integrity suggests that SWAT+ model
algorithms can represent real-world physical environments with remarkable accuracy.
Further, sensitivity analysis, model calibration, and validation procedures are essential
in optimising parameters, determining input/output errors and detecting/quantifying
model biases. SWAT+ model can be calibrated successfully using IPEAT+.

Climate and land use utilisation are vital parameters in hydrological response, espe-
cially in surface runoff generation. In particular, land use has a significant influence on
surface runoff change compared to climate changes. Land use plays an essential role in
determining the amount of percolating water, surface runoff, and the lost water to the
atmosphere through evapotranspiration. The principal drivers of surface runoff generation
in the NMA watershed are a rise in the urban area and agricultural land and a loss of
grasslands. The effects of climate change cannot be neglected since their combined effects
are exponential. The explicit nature of the results of the study requires critical adaptation
of sustainable land practises tailored to counter the inevitable pressures of demand for
land use, particularly in these rapidly urbanising ecosystems. While such findings can
only provide scenarios, patterns, and insights into these changes, cities’ scientific planning
is essential in controlling extreme rainfall-related events by considering these scenarios.
These data and models’ availability provides essential prerequisites to develop, evaluate
and compare different sustainable practices against these findings.

The realisation of climate/land use implication on hydrological response is still far-
fetched as scaling climate/land use models to understand hydrological processes are
exceedingly complicated. Critical issues lie in predicting precipitation as climate models
cannot provide exact scenarios or local feedback factors. For example, models do not
include the local effects of urban heat intensity and urban rainfall effects. Land use is
also interconnected through intricate patchworks of the artificial and natural environment
and can be estimated on contributing landscape scale, resulting in complex rainfall runoff
transformations which the models oversimplify. Future models should consider land
use as complex entities with their local feedback and not generalised only by roughness
coefficients and curve numbers.

The study fundamentally highlights the reliability of gridded data as an alternative
to instrumental measurements in limited or missing data cases. Further, it highlights the
SWAT+ model’s integrity in hydrological simulations and underscores climate/land use
change impacts on local hydrology. This research provides a basis for land-use planners on
strategies, adaptations and empirical analysis of sustainable development practices for a
balanced ecological urban watershed.
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Appendix A

Figure of merit (FoM) is computed using the initial year land use map, final year land
use map and the predicted land use map. It can be expressed as:

FoM = B/(A + B + C + D)

where A is an area of error due to observed change predicted as persistence, B is an area of
accuracy due to observed change predicted correctly as change, C is an area of error due to
observed change predicted as changing to an incorrect category and D is an area of error
due to observed persistence predicted as change.

The values adopted in Table 8 are the basin’s average annual surface runoff depth
in all the watershed within those particular epochs. However, surface runoff depths are
heterogeneous in their spatial dimension ranging from 0 mm to 630 mm (Figure 9) in
individual hydrologic response units (HRUs). While the major hydrological processes are
evapotranspiration, surface runoff, and percolation, evapotranspiration in tropical East
Africa is very high [101–104], accounting for a loss of over 66% of the rainfall received [104].
The hydrologic cycle as simulated by SWAT is based on the water balance equation, and
it accounts for all the hydrological processes within the HRU, including losses through
evapotranspiration:

SWt = SW0 +
n

∑
i=1

(
Rday −Qsur f − Ea − wseep −Qgw

)
where:

SWt is the final soil water content (mm H2O),
SW0 is the initial soil water content (mm H2O),
t is time in days,
Rday is the amount of precipitation on the day i (mm H2O),
Qsur f is the amount of surface runoff on the day i (mm H2O),
Ea is the amount of evapotranspiration on the day i (mm H2O),
wseep is the amount of percolation and bypass exiting the soil profile bottom on day i
(mm H2O),
Qgw is the amount of return flow on the day i (mm H2O).

Moderate surface runoff in the study area is chiefly due to high actual evapotran-
spiration, EA. The vegetation cover in East Africa very much follows the annual rainfall
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distribution, where highly vegetated areas are often associated with high evapotranspi-
ration rates. Low annual values of actual evapotranspiration are found in East Africa’s
semi-arid/arid areas where there is little moisture available for evaporative purposes [101].
Several studies have estimated both PET and ET in East Africa and our study results are
agreed with these findings. Nyenzi et al. [101] estimated potential evapotranspiration (Ep)
and actual evapotranspiration (EA) value of 84 African stations and mapped them using
the Morton model. He noted high Ep values in dry areas and low Ep values in thickly
vegetated regions. However, the EA was higher in thickly vegetated areas as compared to
dry regions. In our study area, according to Nyenzi et al. [101], Ep ranges from 1400–2300
mm while EA ranges from 900–1200 mm. Nevertheless, EA values vary with the amount of
precipitation, and it is not constant throughout the years.

Dagg et al. [103] also estimated Ep in East Africa using 53 agricultural meteorologi-
cal stations and supplementary information from other 123 ill-equipped meteorological
stations using Penman estimate. The results indicated an annual value of potential evapo-
ration ranging from more than 2600 mm to less than 1400 mm, with 70% of East Africa’s
area having potential evaporation rates of between 1800 mm and 2200 mm per annum.
Karongo et al. [102] evaluated EA in three catchments predominantly covered by pasture,
annual and perennial crops, and forests using 34 years of daily rainfall and runoff for
analysis. Although there was overestimation in catchments where pasture and crops were
predominant, the mean monthly EA ranged from 68.2 mm to 118.7 mm, while the annual
EA ranged from 958.1 mm to 1352.1 mm. Recently, Alemayehu et al. [104] mapped EA in a
heterogenous Mara basin (East Africa) using remote sensing and global weather datasets.
He found that seasonal estimates of EA had statistically significant correlations with all
land cover classes at the 95% confidence interval. Notably, all land use classes under the
study area had about 66% water loss through ET, i.e., EA accounted for about 66% of the
rainfall received, leaving about 34% as intercepted (stored) water, percolated water and
surface runoff.

Appendix B

Table A1. Confusion matrix, 1990.

1990
URB FOR WAT AGR GRA SHR Total U_Accuracy Kappa

URB 50 0 0 0 0 0 50 1
FOR 0 64 1 2 2 0 69 0.93
WAT 0 0 9 0 0 0 9 1
AGR 0 3 0 51 5 0 59 0.86
GRA 0 1 0 0 46 5 52 0.88
SHR 6 0 0 7 7 42 62 0.68
Total 56 68 10 60 60 47 301

P_Accuracy 0.89 0.94 0.90 0.85 0.77 0.89 0.87
Kappa 0.84

Table A2. Confusion matrix, 2000.

2000
URB FOR WAT AGR GRA SHR Total U_Accuracy Kappa

URB 81 0 0 0 0 0 81 1.00
FOR 0 87 4 5 0 0 96 0.91
WAT 0 0 31 0 0 0 31 1.00
AGR 1 10 0 131 2 0 144 0.91
GRA 9 3 0 10 110 8 140 0.79
SHR 3 0 0 2 7 72 84 0.86
Total 94 100 35 148 119 80 576

P_Accuracy 0.86 0.87 0.89 0.89 0.92 0.90 0.89
Kappa 0.86
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Table A3. Confusion matrix, 2010.

2010
URB FOR WAT AGR GRA SHR Total U_Accuracy Kappa

URB 171 0 1 2 2 0 176 0.97
FOR 0 174 2 30 0 0 180 0.97
WAT 3 0 71 0 0 0 74 0.96
AGR 4 3 0 296 0 0 303 0.98
GRA 0 1 2 9 169 7 188 0.90
SHR 6 0 0 1 8 84 99 0.85
Total 184 178 76 312 179 91 1020

P_Accuracy 0.93 0.98 0.93 0.95 0.94 0.92 0.95
Kappa 0.93

Table A4. Confusion matrix, 2020.

2020
URB FOR WAT AGR GRA SHR Total U_Accuracy Kappa

URB 301 0 0 15 2 0 318 0.95
FOR 0 379 2 3 1 0 385 0.98
WAT 0 0 101 0 0 0 101 1.00
AGR 0 3 5 367 6 3 384 0.95
GRA 1 1 2 6 82 7 99 0.83
SHR 2 0 0 9 5 104 120 0.87
Total 304 383 110 400 96 114 1407

P_Accuracy 0.99 0.99 0.92 0.92 0.85 0.91 0.95
Kappa 0.93

Table 5. 5% valid cells samples for validating predicted land use map, 2020.

Land Use
Types Urban Forest Water Agricultural Grassland Shrubland Total

Urban 22563 24 107 1843 1265 95 25897
Forest 76 32402 18 4468 881 0 37845
Water 8 0 409 0 7 0 424

Agricultural 781 372 77 76073 22090 49 99442
Grassland 3478 11 108 12537 176014 361 192509
Shrubland 114 0 0 260 9323 77019 86716

Total 27020 32809 719 95181 220324 77524 453577

Table 6. Accuracy assessment of the predicted land use map, 2020.

Land Use Types Commission
Error

Omission
Error

Producer’s
Accuracy User’s Accuracy

Urban 0.13 0.16 0.84 0.87
Forest 0.14 0.01 0.99 0.86
Water 0.04 0.43 0.57 0.96

Agricultural 0.24 0.20 0.80 0.76
Grassland 0.09 0.20 0.80 0.91
Shrubland 0.11 0.01 0.99 0.89

Kappa 0.835048 Overall 0.8750
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