Next Issue
Volume 8, September
Previous Issue
Volume 8, March
 
 

Hydrology, Volume 8, Issue 2 (June 2021) – 38 articles

Cover Story (view full-size image): The GEOGloWS ECMWF Streamflow Service is a disruptive technology for delivering hydrologic data and forecasts on every river of the world. Both a 40-year historical simulation and a 15-day ensemble forecast that is produced daily are included in the service that, along with a web mapping service, is made available for local use in hydrologic studies and derivative applications. The streamflow bias correction and performance web application discussed in this manuscript provides an important component to this service by enabling local users to improve the hydrologic information using in situ observations. Furthermore, it provides the ability for a “crowd-source” mechanism of validation and feedback that, in the long run, can improve the model. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 2339 KiB  
Article
Integrative Assessment of Stormwater Infiltration Practices in Rapidly Urbanizing Cities: A Case of Lucknow City, India
by Jheel Bastia, Binaya Kumar Mishra and Pankaj Kumar
Hydrology 2021, 8(2), 93; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020093 - 12 Jun 2021
Cited by 5 | Viewed by 3005
Abstract
The lack of strategic planning in stormwater management has made rapidly urbanizing cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned [...] Read more.
The lack of strategic planning in stormwater management has made rapidly urbanizing cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned rapid urbanization. As with many other low to middle-income countries, India depends on its conventional and centralized stormwater drains for managing stormwater runoff. However, in the absence of a robust stormwater management policy governed by the state, its impact trickles down to a municipal level and the negative outcome can be clearly observed through a failure of the drainage systems. This study examines the role of onsite and decentralized stormwater infiltration facilities, as successfully adopted by some higher income countries, under physical and social variability in the context of the metropolitan city of Lucknow, India. Considering the 2030 Master Plan of Lucknow city, this study investigated the physical viability of the infiltration facilities. Gridded ModClark rainfall-runoff modeling was carried out in Kukrail river basin, an important drainage basin of Lucknow city. The HEC-HMS model, inside the watershed modeling system (WMS), was used to simulate stormwater runoff for multiple scenarios of land use and rainfall intensities. With onsite infiltration facilities as part of land use measures, the peak discharge reduced in the range of 48% to 59%. Correlation analysis and multiple regression were applied to understand the rainfall-runoff relationship. Furthermore, the stormwater runoff drastically reduced with decentralized infiltration systems. Full article
(This article belongs to the Special Issue Advances in Modelling of Rainfall Fields)
Show Figures

Figure 1

16 pages, 6493 KiB  
Article
Flood Mitigation Measure and Water Storage in East Africa: An Analysis for the Rio Muaguide, Mozambique
by Sara Rrokaj, Benedetta Corti, Anna Giovannini, Giorgio Cancelliere, Davide Biotto and Alessio Radice
Hydrology 2021, 8(2), 92; https://doi.org/10.3390/hydrology8020092 - 11 Jun 2021
Cited by 3 | Viewed by 828191
Abstract
In the last century, floods have been more frequently hitting population and human activity, especially in the sub-Saharan context. The aim of this study is to propose suitable flood mitigation measures for the downstream part of the Rio Muaguide, which flows in northern [...] Read more.
In the last century, floods have been more frequently hitting population and human activity, especially in the sub-Saharan context. The aim of this study is to propose suitable flood mitigation measures for the downstream part of the Rio Muaguide, which flows in northern Mozambique. In this terminal part of the river, the bed has been buried by sediment in many reaches; due to the reduction of the section conveyance, wide areas are inundated during the rainy season with negative consequences for several villages relying on subsistence agriculture. The design of any measure requires quantitative determinations but, as many less developed countries, Mozambique is affected by data scarcity. Therefore, in this study global and freely available data have been used to perform hydrologic and two-dimensional hydro-dynamic modelling, finally producing a flood hazard map. Particular care has been put into a critical analysis of several data sources, in terms of their suitability for the purposes of the work. Based on the modelling results and on field evidence, an intervention has been proposed with a double functionality of mitigating the effects of periodic floods and storing water to be used by the agricultural community during drier seasons. The proposed intervention combines restoring a sedimentation-less shape of the river sections and exploiting a natural basin as a storage basin. The methods applied and the intervention proposed for the Rio Muaguide are prototypal for several analogous streams in the coastal portion of Mozambique. Full article
Show Figures

Figure 1

18 pages, 2093 KiB  
Article
Introducing an Open-Source Regional Water Quality Data Viewer Tool to Support Research Data Access
by Danisa Dolder, Gustavious P. Williams, A. Woodruff Miller, Everett James Nelson, Norman L. Jones and Daniel P. Ames
Hydrology 2021, 8(2), 91; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020091 - 10 Jun 2021
Cited by 4 | Viewed by 2765
Abstract
Water quality data collection, storage, and access is a difficult task and significant work has gone into methods to store and disseminate these data. We present a tool to disseminate research in a simple method that does not replace but extends and leverages [...] Read more.
Water quality data collection, storage, and access is a difficult task and significant work has gone into methods to store and disseminate these data. We present a tool to disseminate research in a simple method that does not replace but extends and leverages these tools. The tool is not geo-graphically limited and works with any spatially-referenced data. In most regions, government agencies maintain central repositories for water quality data. In the United States, the federal government maintains two systems to fill that role for hydrological data: the U.S. Geological Survey (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency (EPA) Storage and Retrieval System (STORET), since superseded by the Water Quality Portal (WQP). The Consortium of the Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) has developed the Hydrologic Information System (HIS) to standardize the search and discovery of these data as well as other observational time series datasets. Additionally, CUAHSI developed and maintains HydroShare.org (5 May 2021) as a web portal for researchers to store and share hydrology data in a variety of formats including spatial geographic information system data. We present the Tethys Platform based Water Quality Data Viewer (WQDV) web application that uses these systems to provide researchers and local monitoring organizations with a simple method to archive, view, analyze, and distribute water quality data. WQDV provides an archive for non-official or preliminary research data and access to those data that have been collected but need to be distributed prior to review or inclusion in the state database. WQDV can also accept subsets of data downloaded from other sources, such as the EPA WQP. WQDV helps users understand what local data are available and how they relate to the data in larger databases. WQDV presents data in spatial (maps) and temporal (time series graphs) forms to help the users analyze and potentially screen the data sources before export for additional analysis. WQDV provides a convenient method for interim data to be widely disseminated and easily accessible in the context of a subset of official data. We present WQDV using a case study of data from Utah Lake, Utah, United States of America. Full article
Show Figures

Figure 1

16 pages, 7975 KiB  
Article
Linking DPSIR Model and Water Quality Indices to Achieve Sustainable Development Goals in Groundwater Resources
by Dimitrios E. Alexakis
Hydrology 2021, 8(2), 90; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020090 - 09 Jun 2021
Cited by 33 | Viewed by 3921
Abstract
The achievement of sustainable development goals in groundwater resources related to water quality issues is a critical question in many regions. This study aims to combine powerful tools for helping stakeholders and policymakers achieve sustainable development goals in groundwater resources of agricultural areas. [...] Read more.
The achievement of sustainable development goals in groundwater resources related to water quality issues is a critical question in many regions. This study aims to combine powerful tools for helping stakeholders and policymakers achieve sustainable development goals in groundwater resources of agricultural areas. The DPSIR (Driver–Pressure–State–Impact–Response) model in combination with the Canadian Council of Ministers of Environment Water Quality Index and Groundwater Directive 2006/118/European Community—Threshold Values was applied using a hydrogeochemical dataset derived from the analysis of groundwater samples collected from 31 monitoring sites in an unconfined alluvial aquifer. Elevated Cl (up to 423.2 mg L−1), NO3 (up to 180.1 mg L−1) concentration and electrical conductivity (up to 2037 μS cm−1) value are observed for groundwater samples of the study area. The outcome of the “One Out-All Out” procedure revealed that the groundwater in 42% of the monitored sites is unsuitable for drinking according to the health-based guideline values established by Directive 98/83/European Community. A difficulty to achieve targets under Sustainable Development Goals 3 and 6 in the study area is revealed. The proposed response actions are reported. Full article
(This article belongs to the Special Issue Groundwater Management)
Show Figures

Figure 1

17 pages, 5260 KiB  
Article
Flood Mapping from Dam Break Due to Peak Inflow: A Coupled Rainfall–Runoff and Hydraulic Models Approach
by Mihretab G. Tedla, Younghyun Cho and Kyungsoo Jun
Hydrology 2021, 8(2), 89; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020089 - 06 Jun 2021
Cited by 20 | Viewed by 3914
Abstract
In this study, we conducted flood mapping of a hypothetical dam break by coupling the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and River Analysis System (HEC-RAS) models under different return periods of flood inflow. This study is presented as a case study [...] Read more.
In this study, we conducted flood mapping of a hypothetical dam break by coupling the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and River Analysis System (HEC-RAS) models under different return periods of flood inflow. This study is presented as a case study on the Kesem embankment dam in Ethiopia. Hourly hydrological and meteorological data and high-resolution land surface datasets were used to simulate the design floods for piping dam failure with empirical dam breach methods. Based on the extreme inflows and the dam physical characteristics, the dam failure was simulated by a two-dimensional, unsteady flow hydrodynamic model. As a result, the dam will remain safe for up to 50-year return-period inflows, but it breaks for 100- and 200-year return periods and floods the downstream area. For the 100-year peak inflow, a 208 km2 area will be inundated by a maximum depth of 20 m and for a maximum duration of 46 h. The 200-year inflow will inundate a 240 km2 area with a maximum depth of 31 m for a maximum duration of 93 h. The 2D flood map provides satisfactory spatial and temporal resolution of the inundated area for evaluation of the affected facilities. Full article
(This article belongs to the Special Issue Flood Early Warning and Risk Modelling)
Show Figures

Figure 1

19 pages, 29723 KiB  
Article
Simulation of Dam Breaks on Dry Bed Using Finite Volume Roe-TVD Method
by Ebrahim Alamatian, Sara Dadar and Bojan Đurin
Hydrology 2021, 8(2), 88; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020088 - 03 Jun 2021
Cited by 1 | Viewed by 2973
Abstract
Dams are one of the most important hydraulic structures. In view of unrecoverable damages occurring after a dam failure, analyzing a dams’ break is necessary. In this study, a dam located in Iran is considered. According to adjacent tourist and entertainment zones, the [...] Read more.
Dams are one of the most important hydraulic structures. In view of unrecoverable damages occurring after a dam failure, analyzing a dams’ break is necessary. In this study, a dam located in Iran is considered. According to adjacent tourist and entertainment zones, the breaking of the dam could lead to severe problems for the area and bridges downstream of the river. To investigate the issue, a numerical FORTRAN code based on the 2D finite volume Roe-TVD method on a fixed bed is provided to assess the effects of the dam break. Turbulence terms and dry bed conditions were considered in the code. A numerical wave tank (NWT) with a triangular barrier in the bed was numerically modeled and compared with analytical models to verify the capability of the code. Comparing numerical, experimental and analytical results showed that estimated water level and mass conservation in the numerical model is in good agreement with the experimental data and analytical solutions. The 2D approach used has reduced the cost of computing compared to a 3D approach while obtaining accurate results. The code is finally applied to a full-scale dam-break flood. Six KM of the natural river downstream of the dam, including two bridges, B1 and B2, is considered. Flood flow hydrographs and water level variations at bridges B1 and B2 are presented. The results denoted that bridges B1 and B2 will be flooded after 12 and 21 min, respectively, and are at risk of the potential break. Thus, it is necessary to announce and possibly evacuate the resort area alongside the dam in order to decrease losses. Full article
Show Figures

Figure 1

17 pages, 3416 KiB  
Article
Predicting Outflow Hydrographs of Potential Dike Breaches in a Bifurcating River System Using NARX Neural Networks
by Anouk Bomers
Hydrology 2021, 8(2), 87; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020087 - 03 Jun 2021
Cited by 7 | Viewed by 2933
Abstract
Early flood forecasting systems can mitigate flood damage during extreme events. Typically, the effects of flood events in terms of inundation depths and extents are computed using detailed hydraulic models. However, a major drawback of these models is the computational time, which is [...] Read more.
Early flood forecasting systems can mitigate flood damage during extreme events. Typically, the effects of flood events in terms of inundation depths and extents are computed using detailed hydraulic models. However, a major drawback of these models is the computational time, which is generally in the order of hours to days for large river basins. Gaining insight in the outflow hydrographs in case of dike breaches is especially important to estimate inundation extents. In this study, NARX neural networks that were capable of predicting outflow hydrographs of multiple dike breaches accurately were developed. The timing of the dike failures and the cumulative outflow volumes were accurately predicted. These findings show that neural networks—specifically, NARX networks that are capable of predicting flood time series—have the potential to be used within a flood early warning system in the future. Full article
Show Figures

Figure 1

19 pages, 6135 KiB  
Article
Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece
by Angeliki Mentzafou, George Varlas, Anastasios Papadopoulos, Georgios Poulis and Elias Dimitriou
Hydrology 2021, 8(2), 86; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020086 - 31 May 2021
Cited by 6 | Viewed by 3835
Abstract
Water resources, especially riverine ecosystems, are globally under qualitative and quantitative degradation due to human-imposed pressures. High-temporal-resolution data obtained from automatic stations can provide insights into the processes that link catchment hydrology and streamwater chemistry. The scope of this paper was to investigate [...] Read more.
Water resources, especially riverine ecosystems, are globally under qualitative and quantitative degradation due to human-imposed pressures. High-temporal-resolution data obtained from automatic stations can provide insights into the processes that link catchment hydrology and streamwater chemistry. The scope of this paper was to investigate the statistical behavior of high-frequency measurements at sites with known hydromorphological and pollution pressures. For this purpose, hourly time series of water levels and key water quality indicators (temperature, electric conductivity, and dissolved oxygen concentrations) collected from four automatic monitoring stations under different hydromorphological conditions and pollution pressures were statistically elaborated. Based on the results, the hydromorphological conditions and pollution pressures of each station were confirmed to be reflected in the results of the statistical analysis performed. It was proven that the comparative use of the statistics and patterns of the water level and quality high-frequency time series could be used in the interpretation of the current site status as well as allowing the detection of possible changes. This approach can be used as a tool for the definition of thresholds, and will contribute to the design of management and restoration measures for the most impacted areas. Full article
Show Figures

Figure 1

20 pages, 26513 KiB  
Article
Impacts of Climate Change on Irrigation Water Management in the Babai River Basin, Nepal
by Yogendra Mishra, Mukand Singh Babel, Tai Nakamura and Bhogendra Mishra
Hydrology 2021, 8(2), 85; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020085 - 24 May 2021
Cited by 9 | Viewed by 4285
Abstract
The diminishing spring discharge in the Middle Mountain Zone (MMZ) in Nepal is a matter of concern because it directly affects the livelihoods of low-income farmers in the region. Therefore, understanding the impacts of changes in climate and land-use patterns on water demand [...] Read more.
The diminishing spring discharge in the Middle Mountain Zone (MMZ) in Nepal is a matter of concern because it directly affects the livelihoods of low-income farmers in the region. Therefore, understanding the impacts of changes in climate and land-use patterns on water demand and availability is crucial. We investigated the impact of climate change on streamflow and environmental flow, and the demand for spring-fed river water for irrigation using the limited meteorological data available for the Babai River Basin, Nepal. SWAT and CROPWAT8.0 were used to respectively calculate present and future streamflow and irrigation water demand. Three general circulation models under two representative concentration pathways (RCPs 4.5 and 8.5) for the periods of 2020–2044, 2045–2069, and 2070–2099 were used to investigate the impact of climate change. Results indicate that the catchment is likely to experience an increase in rainfall and temperature in the future. The impact of the increment in rainfall and rise in temperature are replicated in the annual river flow that is anticipated to increase by 24–37%, to the historical data of 1991–2014. Despite this increase, projections show that the Babai River Basin will remain a water deficit basin from January to May in future decades. Full article
(This article belongs to the Special Issue Climate Change Effects on Water Resources Management)
Show Figures

Figure 1

21 pages, 41474 KiB  
Article
A Catalogue of Tropical Cyclone Induced Instantaneous Peak Flows Recorded in Puerto Rico and a Comparison with the World’s Maxima
by Carlos E. Ramos-Scharrón, Caroline T. Garnett and Eugenio Y. Arima
Hydrology 2021, 8(2), 84; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020084 - 21 May 2021
Cited by 5 | Viewed by 5792
Abstract
Peak streamflow rates from the Insular Caribbean have received limited attention in worldwide catalogues in spite of their potential for exceptionality given many of the islands’ steep topographic relief and proneness to high rainfall rates associated with tropical cyclones. This study compiled 1922 [...] Read more.
Peak streamflow rates from the Insular Caribbean have received limited attention in worldwide catalogues in spite of their potential for exceptionality given many of the islands’ steep topographic relief and proneness to high rainfall rates associated with tropical cyclones. This study compiled 1922 area-normalized peak streamflow rates recorded during tropical cyclones in Puerto Rico from 1899 to 2020. The results show that the highest peak flow values recorded on the island were within the range of the world’s maxima for watersheds with drainage areas from 10 to 619 km2. Although higher tropical cyclone rainfall and streamflow rates were observed on average for the central–eastern half of Puerto Rico, the highest of all cyclone-related peaks occurred throughout the entire island and were caused by tropical depressions, tropical storms, or hurricanes. Improving our understanding of instantaneous peak flow rates in Puerto Rico and other islands of the Caribbean is locally important due to their significance in terms of flooding extent and its associated impacts, but also because these could serve as indicators of the implications of a changing climate on tropical cyclone intensity and the associated hydrologic response. Full article
(This article belongs to the Special Issue Hydrology in the Caribbean Basin)
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Modeling of the Geological Probability Procedure for the Prediction of High Flows in Small Streams, Case Study of Medvednica Mt., Croatia
by Vedran Sudar, Tomislav Malvić, Tatjana Vujnović and Josip Ivšinović
Hydrology 2021, 8(2), 83; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020083 - 19 May 2021
Cited by 1 | Viewed by 2095
Abstract
Floods are defined by maximum water levels or flow of high-water waves. Here, we defined the deterministic method for the calculation of the probability of a high discharge event, named as the Probability Of Success (POS). The POS method previously developed for petroleum [...] Read more.
Floods are defined by maximum water levels or flow of high-water waves. Here, we defined the deterministic method for the calculation of the probability of a high discharge event, named as the Probability Of Success (POS). The POS method previously developed for petroleum subsurface systems has been modified for the surface hydrological system with the purpose of flood prediction. The case study of this research is the small basin of Kašina Stream on Medvednica Mt. (NW Croatia). The data are obtained upstream from the hydrological station Gornja Kašina. The POS model is defined by four categories. Each geological category is described with accompanied events and probabilities. Floods are defined by four categories: total precipitation, total water flow, basement, and maximal water capacity in soil. The categories total precipitation and basement were divided into two sub-categories each: quantity and duration; porosity and soil depth. Data are collected for a hydrometeorological event, namely an intensive convective storm on 24–25 July 2020, when Zagreb was locally hit by heavy urban floods. The presented probability method yielded a probability of 1.76% that such an event could happen to the station. However, the flooding was not recorded. A comparison of the real event and the predicted probability supported the adequacy and applicability of the method, showing it has high reliability. The presented probability model could be easily applied, with small modifications, to the entire area of Northern Croatia for the prediction of small basin flooding events. Full article
Show Figures

Figure 1

14 pages, 3009 KiB  
Technical Note
Impacts of Land Use and Land Cover Changes on PeakDischarge and Flow Volume in Kakia and Esamburmbur Sub-Catchments of Narok Town, Kenya
by Etienne Umukiza, James M. Raude, Simon M. Wandera, Andrea Petroselli and John M. Gathenya
Hydrology 2021, 8(2), 82; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020082 - 12 May 2021
Cited by 13 | Viewed by 2609
Abstract
Due to population growth and an expanding economy, land use/land cover (LULC) change is continuously intensifying and its effects on floods in Kakia and Esamburmbur sub-catchments in Narok town, Kenya, are increasing. This study was carried out in order to evaluate the influence [...] Read more.
Due to population growth and an expanding economy, land use/land cover (LULC) change is continuously intensifying and its effects on floods in Kakia and Esamburmbur sub-catchments in Narok town, Kenya, are increasing. This study was carried out in order to evaluate the influence of LULC changes on peak discharge and flow volume in the aforementioned areas. The Event-Based Approach for Small and Ungauged Basins (EBA4SUB) rainfall–runoff model was used to evaluate the peak discharge and flow volume under different assumed scenarios of LULC that were projected starting from a diachronic analysis of satellite images of 1985 and 2019. EBA4SUB simulation demonstrated how the configuration and composition of LULC affect peak discharge and flow volume in the selected catchments. The results showed that the peak discharge and flow volume are affected by the variation of the Curve Number (CN) value that is dependent on the assumed LULC scenario. The evaluated peak discharge and flow volume for the assumed LULC scenarios can be used by local Municipal bodies to mitigate floods. Full article
Show Figures

Figure 1

14 pages, 7810 KiB  
Article
The Nitrogen Budget of Coastal Eastern Guangdong in the Last 15 Years
by Yongsong Su, Song Song, Lichun Xie and Zhenyu He
Hydrology 2021, 8(2), 81; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020081 - 11 May 2021
Cited by 2 | Viewed by 1787
Abstract
Nitrogen pollution has caused severe ecological and environmental crisis, especially in densely populated coastal regions. Using a mathematical model based on statistical data series from industry, agriculture, environmental protection, and population in 2000, 2005, 2010, and 2015, this paper aims to estimate the [...] Read more.
Nitrogen pollution has caused severe ecological and environmental crisis, especially in densely populated coastal regions. Using a mathematical model based on statistical data series from industry, agriculture, environmental protection, and population in 2000, 2005, 2010, and 2015, this paper aims to estimate the nitrogen income and expenditure of coastal Eastern Guangdong, to reveal the temporal variation of the nitrogen budget in the coastal region with high agriculture intensity, and to suggest a management strategy for the local nitrogen control. The results show that: coastal Eastern Guangdong is a nitrogen surplus region, with nitrogen load and nitrogen flux varying in the range 276.01–299.60 kg N ha−1 yr−1 and 221.26–239.06 kg N ha−1 yr−1, respectively, during the period 2000–2015; from 2000 to 2015, the overall nitrogen surplus and the nitrogen surplus unit area showed an obvious upward trend, indicating that nitrogen pollution in the area was deteriorating; agricultural used fertilizer serves as the main contributor to nitrogen input, while water nitrogen accounts for the highest portion of nitrogen output; despite the fluctuation of nitrogen input and output, water nitrogen output steadily increased, suggesting a stronger water environment management requirement. This research provides reference for researchers and decision-makers in the ecological and environmental domains. Full article
Show Figures

Graphical abstract

22 pages, 7178 KiB  
Article
Groundwater Origin and Dynamics on the Eastern Flank of the Colorado River Delta, Mexico
by Hector A. Zamora, Christopher J. Eastoe, Jennifer C. McIntosh and Karl W. Flessa
Hydrology 2021, 8(2), 80; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020080 - 11 May 2021
Cited by 2 | Viewed by 2799
Abstract
Isotope data and major ion chemistry were used to identify aquifer recharge mechanisms and geochemical evolution of groundwaters along the US–Mexico border. Local recharge originates as precipitation and occurs during winter through preferential infiltration pathways along the base of the Gila Range. This [...] Read more.
Isotope data and major ion chemistry were used to identify aquifer recharge mechanisms and geochemical evolution of groundwaters along the US–Mexico border. Local recharge originates as precipitation and occurs during winter through preferential infiltration pathways along the base of the Gila Range. This groundwater is dominated by Na–Cl of meteoric origin and is highly concentrated due to the dissolution of soluble salts accumulated in the near-surface. The hydrochemical evolution of waters in the irrigated floodplain is controlled by Ca–Mg–Cl/Na–Cl-type Colorado River water. However, salinity is increased through evapotranspiration, precipitation of calcite, dissolution of accumulated soil salts, de-dolomitization, and exchange of aqueous Ca2+ for adsorbed Na+. The Na–Cl-dominated local recharge flows southwest from the Gila Range and mixes with the Ca–Mg–Cl/Na–Cl-dominated floodplain waters beneath the Yuma and San Luis Mesas. Low 3H suggests that recharge within the Yuma and San Luis Mesas occurred at least before the 1950s, and 14C data are consistent with bulk residence times up to 11,500 uncorrected 14C years before present. Either the flow system is not actively recharged, or recharge occurs at a significantly lower rate than what is being withdrawn, leading to aquifer overdraft and deterioration. Full article
Show Figures

Figure 1

20 pages, 1238 KiB  
Article
Reservoir Sizing at Draft Level of 75% of Mean Annual Flow Using Drought Magnitude Based Method on Canadian Rivers
by Tribeni C. Sharma and Umed S. Panu
Hydrology 2021, 8(2), 79; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020079 - 11 May 2021
Cited by 2 | Viewed by 2222
Abstract
On a global basis, there is trend that a majority of reservoirs are sized using a draft of 75% of the mean annual flow (0.75 MAF). The reservoir volumes based on the proposed drought magnitude (DM) method and the sequent peak algorithm (SPA) [...] Read more.
On a global basis, there is trend that a majority of reservoirs are sized using a draft of 75% of the mean annual flow (0.75 MAF). The reservoir volumes based on the proposed drought magnitude (DM) method and the sequent peak algorithm (SPA) at 0.75 MAF draft were compared at the annual, monthly and weekly scales using the flow sequences of 25 Canadian rivers. In our assessment, the monthly scale is adequate for such analyses. The DM method, although capable of using flow data at any time scale, has been demonstrated using monthly standardized hydrological index (SHI) sequences. The moving average (MA) smoothing of the monthly SHI sequences formed the basis in the DM method for estimating the reservoir volume through the use of the extreme number theorem, and the hypothesis that drought magnitude is equal to the product of the drought intensity and drought length. The truncation level in the SHI sequences was found as SHIo [ = (0.75 ‒ 1) µo/σo], where µo and σo are the overall mean and standard deviation of the monthly flows. The DM-based estimates for the deficit volumes and the SPA-based reservoir volumes were found comparable within an error margin of ±18%. Full article
Show Figures

Figure 1

20 pages, 3292 KiB  
Article
Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States
by Wafa Chouaib, Younes Alila and Peter V. Caldwell
Hydrology 2021, 8(2), 78; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020078 - 11 May 2021
Cited by 3 | Viewed by 2627
Abstract
This study seeks to advance the knowledge about the effect of a priori parameters on calibration using the Sacramento Soil Moisture accounting Model (SAC-SMA). We investigated the catchment characteristics where calibration is most affected by the limitations in the a priori parameters and [...] Read more.
This study seeks to advance the knowledge about the effect of a priori parameters on calibration using the Sacramento Soil Moisture accounting Model (SAC-SMA). We investigated the catchment characteristics where calibration is most affected by the limitations in the a priori parameters and we studied the effect on the modeled processes. The a priori parameters of SAC-SMA model parameters were determined from soil-derived physical expressions that make use of the soil’s physical properties. The study employed 63 catchments from the eastern United States (US). The model calibration employed the Shuffle-Complex algorithm (SCE-UA) and used the a priori parameters as default allowing for ±35% as a range of deviation. The model efficiency after calibration was sensitive to the catchment landscape properties, particularly the soil texture and topography. The highest efficiency was obtained in conditions of well-drained soils and flat topography where the saturation excess overland flow is predominant. Most of the catchments with smaller efficiency had poorly drained soils where mountainous and forested catchments of predominant subsurface stormflow had the lowest efficiency. The current regional study shows that improvements of SAC-SMA a priori parameters are crucial to foster their operational use for calibration and prediction at ungauged catchments. Full article
Show Figures

Figure 1

14 pages, 6672 KiB  
Article
Application of Biofilm Carrier in Aerobic Reactors as a Method to Improve Quality of Wastewater Treatment
by Nikolay Makisha
Hydrology 2021, 8(2), 77; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020077 - 10 May 2021
Cited by 5 | Viewed by 2124
Abstract
The research revealed in the paper considers the improvement of secondary treatment of wastewater in the aerobic reactor to provide removal of organics and nutrients. There were five types of polymer biofilm carriers taken into account initially; however, two of them were decided [...] Read more.
The research revealed in the paper considers the improvement of secondary treatment of wastewater in the aerobic reactor to provide removal of organics and nutrients. There were five types of polymer biofilm carriers taken into account initially; however, two of them were decided not to apply due to technological reasons. The main part of the research was divided into three substages to investigate each type of biofilm carrier. According to the literature review, the optimal efficiency may be reached if the carrier filling ratio is 10 to 30% of reactor volume. On this basis, there were three benches launched at each sub-stage with a corresponding filling ratio of 10, 20, and 30%. The fourth reactor at each sub-stage had no floating carrier to control the experiment. The research of all three types of carriers showed the effect of BOD removal in the range of 95–96% for benches equipped with a floating carrier, which can be considered similar to the control bench with the efficiency of 92%. In the case of ammonia nitrogen, the removal control bench showed only 55% of efficiency, while floating carriers helped to increase the efficiency up to 70–86%. Despite obtaining relatively positive results, the research has to be continued to achieve regulation requirements in treatment quality. Full article
Show Figures

Figure 1

32 pages, 20566 KiB  
Article
STORAGE (STOchastic RAinfall GEnerator): A User-Friendly Software for Generating Long and High-Resolution Rainfall Time Series
by Davide Luciano De Luca and Andrea Petroselli
Hydrology 2021, 8(2), 76; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020076 - 03 May 2021
Cited by 16 | Viewed by 4844
Abstract
The MS Excel file with VBA (Visual Basic for Application) macros named STORAGE (STOchastic RAinfall GEnerator) is introduced herein. STORAGE is a temporal stochastic simulator aiming at generating long and high-resolution rainfall time series, and it is based on the implementation of a [...] Read more.
The MS Excel file with VBA (Visual Basic for Application) macros named STORAGE (STOchastic RAinfall GEnerator) is introduced herein. STORAGE is a temporal stochastic simulator aiming at generating long and high-resolution rainfall time series, and it is based on the implementation of a Neymann–Scott Rectangular Pulse (NSRP) model. STORAGE is characterized by two innovative aspects. First, its calibration (i.e., the parametric estimation, on the basis of available sample data, in order to better reproduce some rainfall features of interest) is carried out by using data series (annual maxima rainfall, annual and monthly cumulative rainfall, annual number of wet days) which are usually longer than observed high-resolution series (that are mainly adopted in literature for the calibration of other stochastic simulators but are usually very short or absent for many rain gauges). Second, the seasonality is modelled using series of goniometric functions. This approach makes STORAGE strongly parsimonious with respect to the use of monthly or seasonal sets for parameters. Applications for the rain gauge network in the Calabria region (southern Italy) are presented and discussed herein. The results show a good reproduction of the rainfall features which are mainly considered for usual hydrological purposes. Full article
(This article belongs to the Special Issue Advances in Modelling of Rainfall Fields)
Show Figures

Figure 1

11 pages, 1046 KiB  
Article
Calcium and Potassium Nutrition Increases the Water Use Efficiency in Coffee: A Promising Strategy to Adapt to Climate Change
by Victor Hugo Ramírez-Builes and Jürgen Küsters
Hydrology 2021, 8(2), 75; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020075 - 01 May 2021
Cited by 4 | Viewed by 2626
Abstract
Coffee (Coffea spp.) represents one of the most important sources of income and goods for the agricultural sector in Central America, Colombia, and the Caribbean region. The sustainability of coffee production at the global and regional scale is under threat by climate [...] Read more.
Coffee (Coffea spp.) represents one of the most important sources of income and goods for the agricultural sector in Central America, Colombia, and the Caribbean region. The sustainability of coffee production at the global and regional scale is under threat by climate change, with a major risk of losing near to 50% of today’s suitable area for coffee by 2050. Rain-fed coffee production dominates in the region, and under increasing climate variability and climate change impacts, these production areas are under threat due to air temperature increase and changes in rainfall patterns and volumes. Identification, evaluation, and implementation of adaptation strategies for growers to cope with climate variability and change impacts are relevant and high priority. Incremental adaptation strategies, including proper soil and water management, contribute to improved water use efficiency (WUE) and should be the first line of action to adapt the coffee crop to the changing growing conditions. This research’s objective was to evaluate at field level over five years the influence of fertilization with calcium (Ca+2) and potassium (K+) on WUE in two coffee arabica varieties: cv. Castillo and cv. Caturra. Castillo has resistance against coffee leaf rust (CLR) (Hemileia vastatrix Verkeley and Brome), while Caturra is not CLR-resistant. WUE was influenced by yield changes during the years by climate variability due to El Niño–ENSO conditions and CLR incidence. Application of Ca+2 and K+ improved the WUE under such variable conditions. The highest WUE values were obtained with an application of 100 kg CaO ha−1 year−1 and between 180 to 230 kg K2O ha−1 year−1. The results indicate that adequate nutrition with Ca+2 and K+ can improve WUE in the long-term, even underwater deficit conditions and after the substantial incidence. Hence, an optimum application of Ca+2 and K+ in rain-fed coffee plantations can be regarded as an effective strategy to adapt to climate variability and climate change. Full article
(This article belongs to the Special Issue Hydrology in the Caribbean Basin)
Show Figures

Figure 1

10 pages, 1858 KiB  
Technical Note
Swinging-Pulse Sprinkling Head for Rain Simulators
by Petr Kavka and Martin Neumann
Hydrology 2021, 8(2), 74; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020074 - 01 May 2021
Cited by 2 | Viewed by 2363
Abstract
Rainfall simulators are research devices that can be used for studying runoff and sediment transport on the plot scale. This technical note introduces a new solution that combines the two most commonly used methods for generating artificial rain—swinging and pulse jet systems. Reasons [...] Read more.
Rainfall simulators are research devices that can be used for studying runoff and sediment transport on the plot scale. This technical note introduces a new solution that combines the two most commonly used methods for generating artificial rain—swinging and pulse jet systems. Reasons for developing this device are its universal use, simple construction, and reduction of water consumption, with better spatial distribution of rain and rainfall kinetic energy close to that of natural conditions. Routine operations of this device are expected for plots of 1 × 1 m, with a height 2–2.5 m. The rained surface could be extended to 2 × 2 m with lower spatial distribution. The sprinkled area in this case was limited by the drain box that also collected the remaining water. The principle of the presented single-nozzle simulator can be extended to multi-nozzle simulators for larger experimental plots. Full article
(This article belongs to the Special Issue Soil Water Balance)
Show Figures

Figure 1

14 pages, 10251 KiB  
Article
Disastrous Flash Floods Triggered by Moderate to Minor Rainfall Events. Recent Cases in Coastal Benguela (Angola)
by Pedro A. Dinis, João Huvi, Marina Cabral Pinto and Joel Carvalho
Hydrology 2021, 8(2), 73; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020073 - 01 May 2021
Cited by 7 | Viewed by 2743
Abstract
The present work focuses on two recent flash floods in coastal Benguela (Angola), both triggered by moderate rainfall but which had disastrous consequences for local populations (namely 71 deaths in 2015 and 17 in 2019). The research involved a regional survey to establish [...] Read more.
The present work focuses on two recent flash floods in coastal Benguela (Angola), both triggered by moderate rainfall but which had disastrous consequences for local populations (namely 71 deaths in 2015 and 17 in 2019). The research involved a regional survey to establish the effects of these floods combined with a geomorphological and socio-economic analysis of the most affected areas to understand the main forcing factors. The two flash floods produced major damage in restricted sectors within very small coastal catchments (<16 km2). The prevalence of fine-grained sedimentary rocks, relatively steep hills, thin soil cover, and vegetation scarcity are natural factors that promote surface runoff. However, socio-economic conditions are most likely the main reasons of flood damage. Namely, rapid population growth with poor planning and making use of low-quality construction materials, the high waste yields that are not properly managed and the absence of flood risk awareness. In the small valleys around the fast-growing cities of coastal Benguela, hazardous flash floods occur recurrently, even after moderate precipitation. Most affected areas are determined by local conditions that compromise drainage at the time of the rainfall event, being very difficult to predict. Full article
Show Figures

Figure 1

13 pages, 1930 KiB  
Technical Note
Geographic Location System for Identifying Urban Road Sections Sensitive to Runoff Accumulation
by Daniel Jato-Espino and Shray Pathak
Hydrology 2021, 8(2), 72; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020072 - 30 Apr 2021
Cited by 3 | Viewed by 2345
Abstract
This paper concerns the design of a geographic location system to identify urban road sections susceptible to runoff accumulation through the analysis of the efficiency of surface drainage networks. To this end, a combination of Geographic Information Systems (GISs) and stormwater models was [...] Read more.
This paper concerns the design of a geographic location system to identify urban road sections susceptible to runoff accumulation through the analysis of the efficiency of surface drainage networks. To this end, a combination of Geographic Information Systems (GISs) and stormwater models was proposed. First, GIS hydrology tools were employed to generate all the information required to characterise urban catchments geometrically. Then, a synthetic storm was created from precipitation data obtained through spatial interpolation for a given return period. Finally, the three main hydrological processes occurring in catchments (precipitation loss, transformation and routing) were simulated using the Hydrologic Modeling System (HEC-HMS). The system was tested through a case study of an urban catchment located in the city of Santander (Spain). The results demonstrate its usefulness in detecting critical points in terms of runoff accumulation, according to the efficiency of the existing surface drainage network. Full article
Show Figures

Figure 1

21 pages, 35161 KiB  
Article
A Streamflow Bias Correction and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow Services
by Jorge Sanchez Lozano, Giovanni Romero Bustamante, Riley Chad Hales, E. James Nelson, Gustavious P. Williams, Daniel P. Ames and Norman L. Jones
Hydrology 2021, 8(2), 71; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020071 - 25 Apr 2021
Cited by 15 | Viewed by 4758
Abstract
We present the development and testing of a web application called the historical validation tool (HVT) that processes and visualizes observed and simulated historical stream discharge data from the global GEOGloWS ECMWF streamflow services (GESS), performs seasonally adjusted bias correction, computes goodness-of-fit metrics, [...] Read more.
We present the development and testing of a web application called the historical validation tool (HVT) that processes and visualizes observed and simulated historical stream discharge data from the global GEOGloWS ECMWF streamflow services (GESS), performs seasonally adjusted bias correction, computes goodness-of-fit metrics, and performs forward bias correction on subsequent forecasts. The HVT corrects GESS output at a local scale using a technique that identifies and corrects model bias using observed hydrological data that are accessed using web services. HVT evaluates the performance of the GESS historic simulation data and provides more accurate historic simulation and bias-corrected forecast data. The HVT also allows users of the GEOGloWS historical streamflow data to use local observed data to both validate and improve the accuracy of local streamflow predictions. We developed the HVT using Tethys Platform, an open-source web application development framework. HVT presents data visualization using web mapping services and data plotting in the web map interface while functions related to bias correction, metrics reporting, and data generation for statistical analysis are computed by the back end. We present five case studies using the HVT in Australia, Brazil, Colombia, the Dominican Republic, and Peru. In these case studies, in addition to presenting the application, we evaluate the accuracy of the method we implemented in the HVT for bias correction. These case studies show that the HVT bias correction in Brazil, Colombia, and Peru results in significant improvement in historic simulation across the countries, while bias correction only resulted in marginal historic simulation improvements in Australia and the Dominican Republic. The HVT web application allows users to use local data to adjust global historical simulation and forecasts and validate the results, making the GESS modeling results more useful at a local scale. Full article
Show Figures

Figure 1

27 pages, 575 KiB  
Article
Modelling Long-Term Monthly Rainfall Variability in Selected Provinces of South Africa: Trend and Extreme Value Analysis Approaches
by Vusi Ntiyiso Masingi and Daniel Maposa
Hydrology 2021, 8(2), 70; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020070 - 23 Apr 2021
Cited by 6 | Viewed by 2871
Abstract
Extreme rainfall events have made significant damages to properties, public infrastructure and agriculture in some provinces of South Africa notably in KwaZulu-Natal and Gauteng among others. The general global increase in the frequency and intensity of extreme precipitation events in recent years is [...] Read more.
Extreme rainfall events have made significant damages to properties, public infrastructure and agriculture in some provinces of South Africa notably in KwaZulu-Natal and Gauteng among others. The general global increase in the frequency and intensity of extreme precipitation events in recent years is raising a concern that human activities might be heavily disturbed. This study attempts to model long-term monthly rainfall variability in the selected provinces of South Africa using various statistical techniques. The study investigates the normality and stationarity of the underlying distribution of the whole body of rainfall data for each selected province, the long-term trends of the rainfall data and the extreme value distributions which model the tails of the rainfall distribution data. These approaches were meant to help achieve the broader purpose of this study of investigating the long-term rainfall trends, stationarity of the rainfall distributions and extreme value distributions of monthly rainfall records in the selected provinces of South Africa in this era of climate change. The five provinces considered in this study are Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo and Mpumalanga. The findings revealed that the long-term rainfall distribution for all the selected provinces does not come from a normal distribution. Furthermore, the monthly rainfall data distribution for the majority of the provinces is not stationary. The paper discusses the modelling of monthly rainfall extremes using the non-stationary generalised extreme value distribution (GEVD) which falls under the block maxima extreme value theory (EVT) approach. The maximum likelihood estimation method was used to obtain the estimates of the parameters. The stationary GEVD was found as the best distribution model for Eastern Cape, Gauteng, and KwaZulu-Natal provinces. Furthermore, model fitting supported non-stationary GEVD model for maximum monthly rainfall with nonlinear quadratic trend in the location parameter and a linear trend in the scale parameter for Limpopo, while in Mpumalanga the non-stationary GEVD model with a nonlinear quadratic trend in the scale parameter and no variation in the location parameter fitted well to the monthly rainfall data. The negative values of the shape parameters for Eastern Cape and Mpumalanga suggest that the data follow the Weibull distribution class, while the positive values of the shape parameters for Gauteng, KwaZulu-Natal and Limpopo suggest that the data follow the Fréchet distribution class. The findings from this paper could give information that can assist decision makers establish strategies for proper planning of agriculture, infrastructure, drainage system and other water resource applications in the South African provinces. Full article
Show Figures

Figure 1

20 pages, 5217 KiB  
Article
Decision Support Tools for River Restoration: The Implementation of the “River Habitat Survey” Methodology on the River Selho (Guimarães Municipality, Northwest Portugal)
by Francisco Costa and António Vieira
Hydrology 2021, 8(2), 69; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020069 - 21 Apr 2021
Cited by 5 | Viewed by 3206
Abstract
The river habitat survey (RHS) system is a method used to assess the physical features and quality of rivers, which was developed to assist in the conservation and recovery of riverside habitats. The RHS takes into account the need to characterize areas of [...] Read more.
The river habitat survey (RHS) system is a method used to assess the physical features and quality of rivers, which was developed to assist in the conservation and recovery of riverside habitats. The RHS takes into account the need to characterize areas of intervention from a hydromorphological point of view, in order to introduce corrective measures aimed at restoring degraded sections and habitats, and increasing local biodiversity. In this paper, we present the results obtained from the application of the RHS methodology to the River Selho, in the municipality of Guimarães (Portugal). The transects that we defined were strongly influenced by anthropic actions that have modified the riverside habitats, the artificialization of the river channel, and the urban occupation of the banks. Taking into account the results, we can point out the main problems that currently affect the hydromorphological quality of the transects analyzed in the River Selho, as well as identify the originating factors: the excessive silting of the watercourse; morphometric changes, with an emphasis on the narrowing and modification of the channel and the banks; as well as the massive destruction of the riparian zone. This study shows that the application of the RHS methodology is a useful tool for the management of degraded riverside areas. Full article
(This article belongs to the Special Issue Aquatic Ecosystems and Water Resources)
Show Figures

Figure 1

18 pages, 3403 KiB  
Review
An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters
by Tamiru A. Abiye, Molla B. Demlie and Haile Mengistu
Hydrology 2021, 8(2), 68; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020068 - 19 Apr 2021
Cited by 7 | Viewed by 4311
Abstract
A comprehensive assessment of the stable isotope distribution in the groundwater systems of South Africa was conducted in relation to the diversity in the aquifer lithology and corresponding hydraulic characteristics. The stable isotopes of oxygen (18O) and hydrogen (2H) [...] Read more.
A comprehensive assessment of the stable isotope distribution in the groundwater systems of South Africa was conducted in relation to the diversity in the aquifer lithology and corresponding hydraulic characteristics. The stable isotopes of oxygen (18O) and hydrogen (2H) in groundwater show distinct spatial variation owing to the recharge source and possibly mixing effect in the aquifers with the existing water, where aquifers are characterized by diverse hydraulic conductivity and transmissivity values. When the shallow aquifer that receives direct recharge from rainfall shows a similar isotopic signature, it implies less mixing effect, while in the case of deep groundwater interaction between recharging water and the resident water intensifies, which could change the isotope signature. As aquifer depth increases the effect of mixing tends to be minimal. In most cases, the isotopic composition of recharging water shows depletion in the interior areas and western arid zones which is attributed to the depleted isotopic composition of the moisture source. The variations in the stable isotope composition of groundwater in the region are primarily controlled by the isotope composition of the rainfall, which shows variable isotope composition as it was observed from the local meteoric water lines, in addition to the evaporation, recharge and mixing effects. Full article
Show Figures

Figure 1

18 pages, 515 KiB  
Article
A Multilayer Perceptron Model for Stochastic Synthesis
by Evangelos Rozos, Panayiotis Dimitriadis, Katerina Mazi and Antonis D. Koussis
Hydrology 2021, 8(2), 67; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020067 - 19 Apr 2021
Cited by 21 | Viewed by 2681
Abstract
Time series analysis is a major mathematical tool in hydrology, with the moving average being the most popular model type for this purpose due to its simplicity. During the last 20 years, various studies have focused on an important statistical characteristic, namely the [...] Read more.
Time series analysis is a major mathematical tool in hydrology, with the moving average being the most popular model type for this purpose due to its simplicity. During the last 20 years, various studies have focused on an important statistical characteristic, namely the long-term persistence and the simultaneous statistical consistency at all timescales, when different timescales are involved in the simulation. Though these issues have been successfully addressed by various researchers, the solutions that have been suggested are mathematically advanced, which poses a challenge regarding their adoption by practitioners. In this study, a multilayer perceptron network is used to obtain synthetic daily values of rainfall. In order to develop this model, first, an appropriate set of features was selected, and then, a custom cost function was crafted to preserve the important statistical properties in the synthetic time series. This approach was applied to two locations of different climatic conditions that have a long record of daily measurements (more than 100 years for the first and more than 40 years for the second). The results indicate that the suggested methodology is capable of preserving all important statistical characteristics. The advantage of this model is that, once it has been trained, it is straightforward to apply and can be modified easily to analyze other types of hydrologic time series. Full article
Show Figures

Figure 1

21 pages, 3478 KiB  
Opinion
Science Informed Policies for Managing Water
by Daniel P. Loucks
Hydrology 2021, 8(2), 66; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020066 - 15 Apr 2021
Cited by 4 | Viewed by 3522
Abstract
Water resource management policies impact how water supplies are protected, collected, stored, treated, distributed, and allocated among multiple users and purposes. Water resource policies influence the decisions made regarding the siting, design, and operation of infrastructure needed to achieve the underlying goals of [...] Read more.
Water resource management policies impact how water supplies are protected, collected, stored, treated, distributed, and allocated among multiple users and purposes. Water resource policies influence the decisions made regarding the siting, design, and operation of infrastructure needed to achieve the underlying goals of these policies. Water management policies vary by region depending on particular hydrologic, economic, environmental, and social conditions, but in all cases they will have multiple impacts affecting these conditions. Science can provide estimates of various economic, ecologic, environmental, and even social impacts of alternative policies, impacts that determine how effective any particular policy may be. These impact estimates can be used to compare and evaluate alternative policies in the search for identifying the best ones to implement. Among all scientists providing inputs to policy making processes are analysts who develop and apply models that provide these estimated impacts and, possibly, their probabilities of occurrence. However, just producing them is not a guarantee that they will be considered by policy makers. This paper reviews various aspects of the science-policy interface and factors that can influence what information policy makers need from scientists. This paper suggests some ways scientists and analysts can contribute to and inform those making water management policy decisions. Brief descriptions of some water management policy making examples illustrate some successes and failures of science informing and influencing policy. Full article
(This article belongs to the Collection Feature Papers of Hydrology)
Show Figures

Figure 1

12 pages, 25050 KiB  
Article
Real-Time Flood Mapping on Client-Side Web Systems Using HAND Model
by Anson Hu and Ibrahim Demir
Hydrology 2021, 8(2), 65; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020065 - 11 Apr 2021
Cited by 32 | Viewed by 5751
Abstract
The height above nearest drainage (HAND) model is frequently used to calculate properties of the soil and predict flood inundation extents. HAND is extremely useful due to its lack of reliance on prior data, as only the digital elevation model (DEM) is needed. [...] Read more.
The height above nearest drainage (HAND) model is frequently used to calculate properties of the soil and predict flood inundation extents. HAND is extremely useful due to its lack of reliance on prior data, as only the digital elevation model (DEM) is needed. It is close to optimal, running in linear or linearithmic time in the number of cells depending on the values of the heights. It can predict watersheds and flood extent to a high degree of accuracy. We applied a client-side HAND model on the web to determine extent of flood inundation in several flood prone areas in Iowa, including the city of Cedar Rapids and Ames. We demonstrated that the HAND model was able to achieve inundation maps comparable to advanced hydrodynamic models (i.e., Federal Emergency Management Agency approved flood insurance rate maps) in Iowa, and would be helpful in the absence of detailed hydrological data. The HAND model is applicable in situations where a combination of accuracy and short runtime are needed, for example, in interactive flood mapping and supporting mitigation decisions, where users can add features to the landscape and see the predicted inundation. Full article
(This article belongs to the Special Issue Flood Early Warning and Risk Modelling)
Show Figures

Figure 1

20 pages, 4869 KiB  
Article
Analyses of Spatial and Temporal Variations of Salt Concentration in Waterbodies Based on High Resolution Measurements Using Sensors
by Rohan Benjankar, Ravin Kafle, Shanti Satyal and Nirajan Adhikari
Hydrology 2021, 8(2), 64; https://0-doi-org.brum.beds.ac.uk/10.3390/hydrology8020064 - 08 Apr 2021
Cited by 3 | Viewed by 2208
Abstract
Studies have shown that salt concentrations are increasing in waterbodies such as lakes, rivers, wetlands, and streams in areas where deicers are commonly applied for winter road maintenance, resulting in degraded water quality. As the salt concentration varies spatially and temporally based on [...] Read more.
Studies have shown that salt concentrations are increasing in waterbodies such as lakes, rivers, wetlands, and streams in areas where deicers are commonly applied for winter road maintenance, resulting in degraded water quality. As the salt concentration varies spatially and temporally based on environmental and hydrological characteristics, we monitored high resolution (15 min) salt concentrations for a relatively long period (winter and spring season) at different sites (i.e., stream, urban-stream, roadside drain, and parking-lot drain) using multiple electric conductivity-based sensors. The salt concentrations were significantly different from each other considering individual sensors and different sites in both winter and spring seasons, which support past research results that concentration varies spatially. Parking-lot (1136 ± 674 ppm) and Roadside (701 ± 263 ppm) drain measured significantly higher concentration than for Stream (260 ± 60 ppm) and Urban-stream (562 ± 266 ppm) in the winter season. Similar trends were observed for the spring season, however, the mean concentrations were lower in the spring. Furthermore, salt concentrations were significantly higher during the winter (242 ± 47 ppm to 1695 ± 629 ppm) than for the spring (140 ± 23 ppm to 863 ± 440 ppm) season considering different sites, which have been attributed to the winter snow maintenance practice using deicers in past studies. All sites exceed the United States Environmental Protection Agency (USEPA) threshold (salt concentration higher than 230 mg/L) for chronic exposure level for 59% to 94% and 10% to 83% of days in winter and spring seasons, respectively. The study has highlighted the usefulness and advantages of high resolution (spatially and temporally) salt concentration measurement using sensor technology. Furthermore, the salt concentration in waterbodies can vary spatially and temporally within a small spatial scale, which may be important information for managing water quality locally. The high resolution measurements (i.e., 15 min) were helpful to capture the highest potential salt concentrations in the waterbody. Therefore, the sensor technology can help to measure high resolution salt concentrations, which can be used to quantify impacts of high salt concentrations, e.g., application of deicer for winter road maintenance on aquatic systems based on the criteria developed by USEPA. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop