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Abstract: Evaluation of the spatial and temporal distribution of water balance components is required
for efficient and sustainable management of groundwater resources, especially in semi-arid and
data-poor areas. The Khadir canal sub-division, Chaj Doab, Pakistan, is a semi-arid area which has
shallow aquifers which are being pumped by a plethora of wells with no effective monitoring. This
study employed a monthly water balance model (water and energy transfer among soil, plants, and
atmosphere)—WetSpass-M—to determine the groundwater balance components on annual, seasonal,
and monthly time scales for a period of the last 20 years (2000–2019) in the Khadir canal sub-division.
The spatial distribution of water balance components depends on soil texture, land use, groundwater
level, slope, and meteorological conditions. Inputs for the model included data on topography, slope,
soil, groundwater depth, slope, land use, and meteorological data (e.g., precipitation, air temperature,
potential evapotranspiration, and wind speed) which were prepared using ArcGIS. The long-term
average annual rainfall (455.7 mm) is distributed as 231 mm (51%) evapotranspiration, 109.1 mm
(24%) surface runoff, and 115.6 mm (25%) groundwater recharge. About 51% of groundwater
recharge occurs in summer, 18% in autumn, 14% in winter, and 17% in spring. Results showed
that the WetSpass-M model properly simulated the water balance components of the Khadir canal
sub-division. The WetSpass-M model’s findings can be used to develop a regional groundwater
model for simulation of different aquifer management scenarios in the Khadir area, Pakistan.

Keywords: Khadir sub-division; WetSpass-M model; groundwater balance components; ArcGIS;
groundwater recharge; Pakistan

1. Introduction

Groundwater is one of the major sources of freshwater for domestic, agricultural, and
industrial use. An exponential increase in population, extensive demand in the agriculture
sector, increasing industrial use, indiscriminate extraction, decreasing recharge, and climate
are causing an alarming depletion of groundwater [1–3]. Groundwater management is
particularly vital in the Khadir canal sub-division, Chaj Doab, Pakistan, for improving
agriculture and improving and protecting the biodiversity and the ecosystem, as well as
for its judicial use.

Chaj Doab is an area of alluvium plain with a considerable depth and has an un-
confined aquifer system which is at risk due to over-exploitation by the farming commu-
nity [4–6]. Over-drafting of groundwater is occurring for two main reasons. First, it is easy
because the water table is shallow and, as a result, the abstraction rate is increasing day after
day. Second, the canal irrigation system of Pakistan was designed for up to 75% cropping
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intensity, but now cropping intensity has exceeded 100%, further increasing the water
demand. In order to fulfill the supply gap and cope with the effect of saline water on soil
fertility, groundwater is conjunctively used with canal water, putting an additional burden
on groundwater resources [7,8]. Groundwater management in the canal sub-division can
be done using an integrated groundwater model. The groundwater models require input
in the form of groundwater recharge and evapotranspiration as boundary conditions [9].

Different methods like hydrological budget, experimental methods, empirical meth-
ods, and water fluctuation methods have been applied to evaluate groundwater balance
components. Experimental methods using an isotopes tracer were used by [10]. The water
table fluctuation and groundwater hydrograph was used by [11] in South Korea. The
hydrological budget method was used by [12] for recharge estimation in the Hemet basin.
An empirical method was used by [13] for the assessment of distributed recharge in the
Cún-Szaporca oxbow of the Drava floodplain, Hungary.

Water and energy transfer between soil, plants, and atmosphere under a quasi-steady-
state (WetSpass) [14] is widely used for groundwater recharge assessment. A model for the
downscaling of monthly groundwater recharge from seasonal recharge was experimented
by in Belgium [15] and satisfactory results were obtained after adjusting various parameters.
This model was also used for the Varazdin aquifer, Croatia [16], cJafar and Hasa basin,
Jordan [17,18], and Werri watershed and Bikri watershed, Ethiopia [19,20]. It was also
used for the Mashhad basin [21], Iran; Nile Delta aquifer, Egypt [22]; and Drava basin in
south-western Hungary [23–25].

The present paper aims at assessing the spatial distribution of long-term average water
balance components in the Khadir basin, Pakistan. Moreover, the WetSpass-M model was
applied to explore the impact of land use/land cover and soil texture on the distribution of
groundwater balance components.

2. Materials and Methods
2.1. Study Area

The Khadir canal sub-division, with a total area of 1139 km2, is located in Chaj Doab
(area between Rivers Chenab and Jhelum), Punjab, Pakistan. The Punjab province lies
between longitudes 72◦30′ and 73◦15′ E and latitudes 31◦36′ and 32◦15′ N and is irrigated
by the lower Jhelum canal (LJC) (Figure 1). Most of this area has a mild slope of 0.3 m/km
and elevation ranges between 155 and 255 m above mean sea level. It is observed that
mostly western monsoons are primarily responsible for heavy rains from June to October.
The average annual rainfall is about 1000 mm in the northeast, which reduces to about
230 mm in the southwest of Punjab, and about 65 to 70% of the rainfall occurs during the
monsoon season [26].

2.2. WetSpass-M Model

WetSpass-M (water and energy transfer between soil, plants, and atmosphere under
a quasi-steady-state) [15] is a geographical user interface model used for the assessment
of groundwater recharge, actual evapotranspiration, and surface runoff in arid/semi-
arid regions [14,27]. This model treats the study area as a regular pattern raster cell and
calculates the water balance by the following equation [14]:

P = I+ Sv + Tv + Rv,

where P is the average monthly, seasonal, or annual precipitation; I is the fraction of
interception; Sv is the surface runoff; Tv is called actual transpiration; and Rv is the recharge
of groundwater, all with units [LT−1].
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Figure 1. Location map of the study area; Khadir canal sub-division, Chaj Doab, Pakistan.

Interception (I) depends upon the type of vegetation, surface runoff that shows the rela-
tion between precipitation amount, precipitation intensity, interception, and soil infiltration
capacity. It is estimated in two stages.

First, potential surface runoff (SV_pot) is calculated as:

SV_pot = Csv(P − I)

where Csv is the coefficient of surface runoff for vegetative infiltration, P is the precipitation,
and I is the interception, both with units [LT−1].

Second, S can be calculated by taking the difference between precipitation and infiltra-
tion capacities [14]:

S = Cchor − SV_pot

where Cchor represents the coefficient of parametrizing rainfall [15].
The actual evapotranspiration was calculated from vegetation, and the open-water

evaporation coefficient is the ratio of reference vegetative transpiration to the potential
water evaporation from the open pan [14].

Reference transpiration was calculated by the following equation:

Trv = CeO

where Trv is vegetative transpiration of reference surface with units [LT−1] and c is the
vegetative coefficient that is the ratio of reference potential evapotranspiration to the
evaporation from the open water surface. Groundwater recharge was calculated by the
following equation:

R = P − Sv − ETV − I

where R is the recharge, P is the precipitation, Sv is the surface runoff, ETV is the actual
evapotranspiration, and I is the interception, all with units [LT−1].
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Water balance components for bare soil, vegetative area impervious fraction, and open
water surface were calculated by the following equations:

ETR = avETV + asEs + aoEo + aiEi

Sr = avSv + asSs + aoSo + aiSi

Rr = avRV + asRs + aoRo + aiRi

where ETR, Sr, and Rr are the total actual evapotranspiration, surface runoff, and ground-
water recharge in raster grids, having av, as, ao, and ai denoting vegetated, bare soil, open
water, and impervious area components, respectively.

2.3. Model Inputs

WetSpass-M [15] is an ArcGIS-integrated model used to simulate runoff, groundwater
recharge, interception, and evapotranspiration. WetSpass-M model is available for free
download from https://github.com/WetSpass. Basic input data for this model include
meteorological data (rainfall, potential evapotranspiration, wind speed, and tempera-
ture), topography, land use/land cover, soil texture, groundwater depth, and leaf area
index [15,28]. All input data were prepared in Geographic Information (GIS) in Ascii grid
format, and the cell size of all raster maps was kept equal for running the model. ArcGIS
10.3.1 was used to prepare the input data from the year 2000 to 2019 and the raster cell
size was kept at 100 m × 100 m. The total grids of each parameter were 72713. WetSpass
operates on the principle of water balance. The scheme of the WetSpass-M model is shown
in Figure 2.
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Figure 2. Scheme of WetSpass-M model.

2.3.1. Input Data Preparation
Topography and Soil Map

A topographic map of the study area was obtained from the Shuttle Radar Topography
Mission (STRM) at 1 arc second with a 30 m resolution. Elevation ranged from 155 m at the
lowest point to 255 m at the highest point (Figure 3a). The slope map was derived from

https://github.com/WetSpass
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a digital elevation model by using ArcGIS 10.3.1 and ranged from 0 to 16 degrees with a
slope ratio of 0.3/km towards the southwest, as shown in Figure 3b.
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LULC and Soil Sampling

The distribution of vegetation plays a key role in water balance component variation.
For this purpose, a land-use/land-cover map was obtained from moderate resolution
imaging spectroradiometer (MODIS) land-cover products (MCD12Q1.006) for 2018 using
the following link of USGS (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_
products_table/mcd12q1, accessed on 15 November 2021) [29]. MCD12Q1 is an annual
global land-cover dataset that spans the years 2001 to present at 500 m resolution, compiled
from Aqua and Terra observations and classified using six global land-cover classification
methods [29]. The International Geosphere-Biosphere Programme (IGBP) classification
scheme, which included 17 land-cover classes, was created with an ensemble of decision
trees—6 out of these 17 classes were used in this study. Most of the area was covered by
crops that were up to 95% of the total area; only 3% of the area was settled, with other areas
containing 0.2%, 03%, 0.5%, and 1% natural vegetation, shrubs, barren, and natural grass,
respectively, as shown in Figure 4a.

Soil Sample Collection and Analysis

The soil textural map of the study area was prepared from the nineteen soil samples
taken from the study area. Hydrometer analysis of soil samples showed that this area
contained two textural classes—sandy loam and loam, as shown in Figure 4b.

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
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Meteorological Data Collection

Meteorological input data for the WetSpass-M model were collected from the Pakistan
Meteorological Department for the period of 2000 to 2019, and its raster maps were prepared.

The long-term monthly rainfall varied from 35.9 mm to 40.5 mm with an average
value of 38.5 mm/month, and the minimum rain was observed in November and the
maximum rainfall in July, as shown in Figure 5b. The long-term annual rainfall had a
minimum value of 424 mm, a maximum value of 679.5 mm, and an average value of
455.7 mm/year (Figures 5a and 6a). Daily groundwater depth data were collected from the
Punjab Irrigation Department for the period from 2000 to 2019. The spatial groundwater
depth was constructed using Kriging interpolation. The average groundwater depth
ranged from 4.39 m to 6.2 m, as shown in Figure 6b.
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Figure 6. Spatial distribution of long-term annual (a) rainfall and (b) groundwater depth.

Potential evapotranspiration for input data was calculated by using the Hargreaves
equation [30]:

PET = 0.0023 (Tmean + 17.8)/(Tmax − Tmin)0.5Ra

where PET is the potential evapotranspiration (mm day−1); Tmean Tmax, and Tmin are aver-
age, maximum, and minimum temperatures (◦C), respectively; and Ra is the extraterrestrial
radiation (mm day−1). The average monthly PET is presented in Figure 5b. It ranges from
7 mm to 189 mm with an average of 75.4 mm. The lowest PET occurs in January, 7mm,
while July has the highest, 189 mm (Figure 5b). A graphical representation of long-term
maximum, minimum, and mean monthly temperature is depicted in Figure 7. The average
monthly temperature between 2000 and 2019 of the Khadir canal sub-division ranged from
11.3 ◦C in January to 33.1 ◦C in June as the minimum and maximum values, respectively,
with an average temperature of 24.5 ◦C. The highest temperature of 40.1 ◦C was recorded
in June, while January had the lowest temperature of 4.8 ◦C. Table 1 shows the input data
and their sources for the WetSpass-M model.
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Table 1. Input parameters and source for WetSpass-M model.

ID Input Parameters Source Resolution

1 Rainfall Pakistan Meteorological Department and own processing 100 × 100 m
2 ET Pakistan Meteorological Department and own processing 100 × 100 m
3 Wind speed Pakistan Meteorological Department and own processing 100 × 100 m
4 Temperature Pakistan Meteorological Department and own processing 100 × 100 m

5 DEM and Slop https://earthexplorer.usgs.gov/, (accessed on 15 November
2021) [31] and own processing and own Processing 100 × 100 m

6 LULC maps
https://lpdaac.usgs.gov/datasetdiscovery/modis/

modisproductstable/mcd12q1, (accessed on 15 November 2021)
[32] and own processing

100 × 100 m

7 Soil texture FAO soil maps and own processing 100 × 100 m
8 Groundwater depth Punjab Irrigation Department and own processing 100 × 100 m
9 Soil lookup tables WetSpass-M Model 100 × 100 m

10 LULC lookup tables WetSpass-M Model
11 Runoff lookup tables WetSpass-M Model

3. Results and Discussion
3.1. Validation of WetSpass-M Model

Validation of any hydrological model is a crucial element for the authenticity of its
results. In this study, simulated groundwater recharge components were validated against
the calculated groundwater recharge. One of the most commonly used approaches for
estimating groundwater recharge is the water-table fluctuation method (WTF). It was used
to validate the performance of the WetSpass-M model in this case. It requires information on
variations of groundwater levels throughout time, as well as specific yield. The following
formula was used to determine recharge:

R = Sy x ∆h

where R is recharge, Sy is specific yield, and ∆h is the change in water table height with time.
The specific yield data and observed daily groundwater table data were collected from

the water and Punjab Irrigation Department at 20 observation wells from 2000 to 2019 [33].
The GIS was used to derive the simulated groundwater recharge for the WetSpass model at
the associated observation wells.

Validated results showed a good agreement between the simulated groundwater
recharge by WetSpass and the calculated recharge by WTF with R2 = 0.93., a mean error of
0.18 mm/month, an absolute mean error of 1.49 mm/month, and a root-mean-square error
(RMSE) of 0.34 mm/month, as shown in Figure 8.
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3.2. Temporal and Spatial Distribution of Simulated Water Balance Components

The WetSpass model yielded 240 raster maps of each water balance component,
evapotranspiration, runoff, recharge, and interception in raster Ascii maps for the period of
2000 to 2019 on a monthly basis. Each pixel in the raster output map had a unique value of
the water balance component [14]. This is the first study to assess the spatial and temporal
distribution of water balance components in the Khadir canal sub-division, Chaj Doab,
Pakistan. Simulations by the WetSpass model were used to evaluate the water budget of
the study area at annual, seasonal, and monthly scales. Evapotranspiration, as a crucial
component of water balance, removes a major part of rainfall and causes water losses [34].
Long-term annual evapotranspiration ranged between 134.4 mm/year and 287.2 mm/year
with an average value of 231 mm/year and a standard deviation of 17.9 mm for the period
of 2000 to 2019 (Figure 9a) and, annually, 51% of total precipitation was accounted to
evapotranspiration.
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Water balance components were divided into four seasons (summer, autumn, win-
ter, and spring). Long-term summer evapotranspiration ranged from 68.5 mm/season
to 141.5 mm/season with a mean value of 114.5 mm/season and a standard deviation
of 8.5 mm. Long-term autumn evapotranspiration varied with a minimum value of
22.4 mm/season and a maximum value of 53.7 mm/season, as well as mean and standard
deviation of 41.3 mm/season and 4.4 mm, respectively. Evapotranspiration in the long-
term winter season for the period of 2000 to 2019 had a maximum value of 36.7 mm/season
and a minimum value of 16.1 mm/season with an average value of 28.8 mm/season and
a standard deviation of 1.9 mm. Long-term spring evapotranspiration values ranged be-
tween 22.3 mm/season and 60.8 mm/season having an average value of 47.4 mm/season
and a standard deviation of 4.5 mm, as shown in Table 1. Results showed that 51% of
evapotranspiration occurred in summer, 18% in autumn, 14% in winter, and 17% in spring.
Similarly, long-term monthly evapotranspiration ranged between 11.2 mm/month and
23.9 mm/month as minimum and maximum values, respectively, with a standard devia-
tion of 1.5 mm and an average value of 19.4 mm/year, as shown in Table 2 and
mboxfigfig:hydrology-1448970-f009b.
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Table 2. Long-term annual, seasonal, and monthly simulated water balance components of the Khadir canal sub-division
(2000–2019).

Period Water Balance
Components (mm) MIN MAX RANGE MEAN STD

Annual

Rainfall 424.0 479.5 55.5 455.7 10.7
Evapotranspiration 134.4 287.2 152.8 231 17.9

Runoff 37.2 192.2 155.0 109.1 12.9
Recharge 99.1 218.5 119.4 115.6 9.0

Summer

Rainfall 236.7 262.0 25.3 251.0 4.9
Evapotranspiration 68.5 141.5 73.0 114.5 8.5

Runoff 32.5 135.7 103.2 83.7 8.3
Recharge 44.1 105.6 61.4 52.8 4.5

Autumn

Rainfall 65.4 82.0 16.5 73.2 3.7
Evapotranspiration 22.4 53.7 31.3 41.3 4.2

Runoff 2.4 26.7 24.3 11.2 2.5
Recharge 17.4 39.8 22.4 20.7 1.9

Winter

Rainfall 41.8 46.2 4.4 44.0 0.9
Evapotranspiration 18.1 36.7 18.6 28.8 1.9

Runoff 0.4 10.7 10.4 4.7 0.9
Recharge 7.1 22.6 15.5 10.5 1.3

Spring

Rainfall 79.6 93.2 13.7 87.3 2.7
Evapotranspiration 22.3 60.8 38.5 47.4 4.5

Runoff 1.2 24.8 23.6 8.9 2.2
Recharge 25.6 53.9 28.4 31 2.5

Monthly

Rainfall 35.9 40.5 4.6 38.5 0.9
Evapotranspiration 11.2 23.9 12.7 19.4 1.5

Runoff 3.1 16.0 12.9 9.3 1.1
Recharge 8.3 18.2 10.0 9.8 0.8

Surface runoff is a function of the soil type, slope, and vegetation of the area [35]. An-
nual seasonal and monthly runoff distributions are depicted in (Table 2). Long-term annual
runoff showed that its value for a period of 2000 to 2019 ranged between 37.2 mm/year
and 192.2 mm/year with an average value of 109.1 mm/year and a standard deviation
of 12.9 mm/year (Table 2) (Figure 10a). Average annual surface runoff attributes for 24%
of total average precipitation. Seasonal results showed that 77% of evapotranspiration
occurred in summer, 10.3% in autumn, 4.3% in winter, and 8.4% in spring. Similarly,
long-term monthly runoff ranged between 3.1 mm/month and 16 mm/month as minimum
and maximum values, respectively, with a standard deviation of 1.1 mm/year and an
average value of 9.3 mm/year, as shown in Table 2. Long-term annual interception ranged
between a minimum value of 11 mm/year and a maximum value of 87.3 mm/year and
had an average value of 60.1 mm/year with a standard deviation of 8.4 mm, as shown in
Figure 10b and Table 2.
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Groundwater recharge is also a necessary component of groundwater management
and was simulated for long-term (20 years) annual, seasonal, and monthly periods, as
shown in Table 1. Results showed that 25% of the total average precipitation was due to
average groundwater recharge. The long-term annual groundwater recharge showed that
its value for the period of 2000 to 2019 ranged between 99.1 mm/year and 218.5 mm/year
with an average value of 115.6 mm/year and a standard deviation of 9.0 mm/year, as
shown in Figure 11a.

Long-term summer groundwater recharge ranged from 44.1 mm/season to 105.6 mm/
season with a mean value of 114.5 mm/season and a standard deviation of 4.5 mm/season
(Figure 11d.) Long-term autumn groundwater recharge varied with a minimum value
of 17.4 mm/season and a maximum value of 39.8 mm/season with mean and standard
deviation of 20.7 mm/season and 1.9 mm/season, respectively (Figure 11e). Long-term
groundwater recharge in winter for the period of 2000 to 2019 has a maximum value
of 22.7 mm/season and minimum value of 7.1 mm/season with an average value of
10.5 mm/season and a standard deviation of 1.3 mm/season (Figure 11f). Long-term
groundwater recharge values of spring ranged between 25.6 mm/season and 53.9 mm/ sea-
son, having an average value of 8.9 mm/season and a standard deviation of 2.2 mm/season
(Figure 11c). Results showed that 51% groundwater recharge occurred in summer, 18%
in autumn, 14% in winter, and 17% in spring. Similarly, long-term monthly groundwater
recharge ranged between 8.3 mm/month and 18.2 mm/month as minimum and maximum
values, respectively, with a standard deviation of 0.8 mm/month and an average value of
9.8 mm/month (Figure 11b).
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3.3. Water Balance Components under Different LULC and Soil Types

Assessment of the water balance components, especially recharge, with respect to land-
use/land-cover change is important for proper groundwater management. Land use/land
cover directly affects the water balance components of evapotranspiration, recharge, and
runoff [36,37], and the relationship between land use and land cover was assessed in this
study. In built-up areas, long-term annual surface runoff was greater as compared to
evapotranspiration and groundwater recharge, as shown in Figure 12. Evapotranspiration
in the built-up area was 32.7%, recharge was 23.7%, and runoff was 43.6 % of the total
precipitation, as shown in Appendix A Table A1. In the shrubs area, there was more
evapotranspiration than recharge and surface runoff, as evapotranspiration in the shrubs-
covered area was 59%, runoff 16.3%, and recharge was only 24.7% of the total precipitation.
In agricultural areas, simulated evapotranspiration was 51.1%, surface runoff 23.3%, and
recharge 25.3% of the total precipitation on a long-term annual basis. In the reference
(grass) area, recharge was observed to be maximum as compared to evapotranspiration
and runoff. There was 40% recharge, 26.5% runoff, and 33.5% evapotranspiration of the
total precipitation, as shown in Table A1.
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The relationship between water balance components and soil texture was important
for groundwater management. The study area was divided into two major classes, sandy
loam and loam. Groundwater balance components behaved differently in different soil
types. In sandy loam soil, more recharge was simulated by the model than in loamy soil,
but evapotranspiration and surface runoff in sandy loam were more than in loamy soil, as
shown in Figure 13.

In sandy loam, evapotranspiration was simulated as 49.2%, surface runoff as 23.8%,
and recharge as 27% of the total precipitation. In loamy soil, evapotranspiration was
simulated as 51.5%, surface runoff as 23.9%, and recharge as 24.6% of the total precipitation,
as shown in Table A2. Simulation of groundwater balance components at spatial and
temporal scales is useful for the efficient management of groundwater resources. The
results obtained are highly encouraging and can be used as input data for groundwater
model development for future prediction of groundwater resources and development of
groundwater management guidelines for the study area.
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4. Conclusions

Overexploitation in the Khadir basin without effective monitoring for groundwater
is lessening groundwater availability. Understanding the spatial and temporal variation
in groundwater in this region is imperative for sustainable management of groundwater
resources. Its management is important for preserving this precious resource for nourishing
and raising future offspring on the face of the planet. For proper simulation and man-
agement of the aquifer, the study of groundwater balance components is necessary. The
long-term annual, seasonal, and monthly groundwater recharge, actual evapotranspiration,
and surface runoff of the Khadir canal sub-division were estimated using the spatially
distributed water balance model WetSpass-M. Specific input data were prepared in the
form of digital maps using GIS tools. Parameter attribute tables in the WetSpass model
were adjusted to the conditions prevailing in the study area. Basic input data for this model,
including meteorological data (rainfall, potential evapotranspiration, wind speed, and
temperature), topography, land use/land cover, soil texture, groundwater depth, and leaf
area index, were prepared in raster maps using ArcGIS 10.3.1. Water balance components
were simulated at annual, seasonal, and monthly scales. Long-term average annual rain-
fall of 455.7mm was divided into evapotranspiration of 231 mm (51%), surface runoff of
109.1 mm (24%), and recharge of 115.6 mm (25%). The long-term monthly evapotranspira-
tion was 19.5 mm (50.6%), surface runoff was 9.3 mm (24.1%), and recharge was 9.8 mm
(25.3%) of the total monthly precipitation of 38.5 mm (100%). Seasonal results showed
that 51% groundwater recharge occurred in summer, 18% in autumn, 14% in winter, and
17% in spring. The relationship between land use/land cover and groundwater balance
components showed that there was more recharge in a grassy area, more runoff in built-up
areas, and more evapotranspiration in shrubs-dominated areas. Similarly, the relationship
between soil type and water balance components showed that, in sandy loam, there was
more recharge than in loamy soils and less evapotranspiration, as well as less runoff than
in loamy soils. Simulation of groundwater balance components at spatial and temporal
scales is useful for the efficient management of groundwater resources.
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Appendix A

Table A1. Average annual water balance components as a function of land-use types.

LULC Type Water Balance
Components (mm) Min MX RANGE MEAN % STD

Build up

Rainfall 438.0 479.0 40.9 451.3 100 12.1
Evapotranspiration 137.3 164.9 27.6 148.0 32.7 5.7

Runoff 127.4 192.2 64.9 195.0 43.6 7.6
Recharge 121.1 173.3 52.2 105.0 23.7 5.0

Agriculture

Rainfall 424.0 479.5 55.5 455.9 100 10.7
Evapotranspiration 208.9 250.9 42.0 233.5 51.1 9.9

Runoff 56.5 123.1 66.7 107.7 23.6 6.5
Recharge 102.4 151.4 49.1 114.8 25.3 5.6

Shrub

Rainfall 439.2 469.6 30.4 457.3 100 6.2
Evapotranspiration 262.1 287.2 25.1 272.4 59 9.0

Runoff 37.2 68.8 31.5 65.6 16.3 3.1
Recharge 99.1 129.0 29.9 108.5 24.7 4.9

Reference

Rainfall 424.0 467.4 43.4 446.0 100 9.6
Evapotranspiration 134.4 162.2 27.7 149.5 33.5 6.4

Runoff 65.8 137.4 71.6 117.2 26.5 8.2
Recharge 166.2 218.5 52.3 178.6 40 5.2

Table A2. Average annual water balance components as a function of soil types.

Soil Type Water Balance
Components (mm) MIN MAX RANGE MEAN % STD

Sandy loam

Rainfall 424.0 463.8 39.8 449.3 100 8.3
Evapotranspiration 134.4 264.8 130.3 220.9 49.2 12.9

Runoff 41.3 192.2 150.9 107.6 23.8 11.3
Recharge 112.3 218.5 106.2 119.9 27 8.5

Loam

Rainfall 434.6 479.5 44.8 459.6 100 10.1
Evapotranspiration 142.7 287.2 144.6 237.0 51.5 17.7

Runoff 37.2 191.6 154.4 110.1 23.9 13.7
Recharge 99.1 214.2 115.1 113.3 24.6 8.4
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24. Salem, A.; Dezső, J.; El-Rawy, M.; loczy, D.; Halmai, Á. Estimation of groundwater recharge distribution using Gis based WetSpass
model in the Cun-Szaporca oxbow, Hungary. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference
SGEM 2019, Albena, Bulgaria, 28 June–7 July 2019; Volume 19, pp. 169–176.
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