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Abstract: In most developing countries, biophysical data are scarce, which hinders evidence-based
watershed planning and management. To use the scarce data for resource development applications,
special techniques are required. Thus, the primary goal of this study was to estimate sediment yield
and identify erosion hotspot areas of the Andasa watershed with limited sediment concentration
records. The hydrological simulation used meteorological, hydrological, suspended sediment concen-
tration, 12.5 m Digital Elevation Model (DEM), 250 m resolution African Soil Information Service
(AfSIS) soil, and 30 m resolution land-cover data. Using the limited sediment concentration data,
a sediment rating curve was developed to estimate the sediment yield from discharge. The physical-
based Soil and Water Assessment Tool (SWAT) model was employed to simulate streamflow and
sediment yield in a monthly time step. The result shows that SWAT predicted streamflow with a
coefficient of determination (R2) of 0.88 and 0.81, Nash–Sutcliffe Efficiency (NSE) of 0.88 and 0.80,
and percent of bias (PBIAS) of 6.4 and 9.9 during calibration and validation periods, respectively. Sim-
ilarly, during calibration and validation, the model predicted the sediment yield with R2 of 0.79 and
0.71, NSE of 0.72 and 0.66, and PBIAS of 2.7 and −8.6, respectively. According to the calibrated model
result in the period 1992–2020, the mean annual sediment yield of the watershed was estimated as
17.9 t ha−1yr−1. Spatially, around 22% of the Andassa watershed was severely eroded, and more than
half of the watershed (55%) was moderately eroded. The remaining 23% of the watershed was free
of erosion risk. Therefore, the findings suggests that applying the sediment rating curve equation,
in conjunction with hydrological and sediment modeling, can be used to estimate sediment yield
and identify erosion hotspot areas in data-scarce regions of the Upper Blue Nile Basin in particular,
and the Ethiopian highlands in general with similar environmental settings.

Keywords: sediment rating curve; SWAT; calibration; validation; streamflow; sediment yield; data
scarce region; erosion prone areas

1. Introduction

Soil degradation is a process by which soils’ current and/or future capacity to produce
goods or services is reduced [1]. Soil erosion, which causes soil degradation, is one of the
most harmful processes of soil degradation and reduction in soil fertility [2]. Soil degrada-
tion is a major issue because of its negative effects on agricultural productivity, the envi-
ronment, food insecurity, and quality of life [3]. According to Tamene and Vlek [4], water
erosion accounts for approximately 55% of the world’s 2 billion ha of degraded soils. That is,
approximately 915 million ha of land was degraded due to water erosion which lowered
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crop production by 2–5% per millimeter of soil loss [4]. Crop production reductions owing
to previous erosion range from 2% to 40% in Africa, with a mean drop of 16% by 2020 [5].

In Ethiopia, soil productivity loss due to water indicted erosion and unsustainable land
management practices is substantially affecting agricultural productivity, which accounts
for 85% of the country’s economy [6]. According to international standards, the average
crop yield in Ethiopia is very low, owing primarily to soil fertility loss caused by erosion
of topsoil [7]. Tamene et al. [8] estimated that cropland soil loss due to erosion accounts
for approximately 42 tons ha−1 yr−1. Taddese [9] found that the 1.5 million tons of annual
grain yield drop in Ethiopia was caused by the 1.5 billion tons of annual soil loss.

Soil erosion has ramifications that go beyond reduced agricultural yields. Siltation
and sedimentation are two more impacts of soil erosion that affect the service life of
reservoirs. A continuous supply of sediment is transported and deposited in reservoirs
due to upland and river channel erosion [10]. Sediment deposition affects 1% of the global
storage capacity of reservoirs on a yearly basis [11]. Reservoir storage capacity is dwindling
at a significantly faster rate in some emerging countries where watershed management
policies are poor. Ayele et al. [10] in Koga reservoir, Shiferaw and Abebe [12] in Abrajit
reservoir, and Moges et al. [13] in Selamko and Shina reservoirs evaluated storage capacity
reduction in Ethiopian reservoirs.

Records of streamflow and suspended sediment concentration that are being gathered
by government organizations, academic institutions, and private people are the most cru-
cial and vital information to comprehend the condition and trends of river water quantity
and quality [14]. Insights into the patterns and variability of streamflow and sediment in
time and space can be gained from records of streamflow and suspended sediment concen-
tration [15,16]. Records of river flow and suspended sediment concentrations at various
temporal and spatial scales are crucial because they show patterns in the effects of both
natural and human-caused changes to watersheds [17]. However, developing countries
such as Ethiopia have few records of the concentration of suspended sediment data.

The majority of Ethiopian rivers lack sediment monitoring stations, and even those
that do have them have very scanty and outdated stations. This is due to the expensive
and time-consuming laboratory analysis that follows the physical sample collection of
suspended sediment concentration [18]. The limited sediment concentration record makes
it difficult to plan watershed management, design dams and plan reservoir operations.
For water resource planning and watershed management modeling, machine learning
and remote sensing techniques can be employed to estimate yearly sediment yield and
locate erosion hotspot areas. Therefore, the main goal of this work was to use hydrological
and sediment modeling in the Andassa watershed to estimate sediment yield from the
watershed and locate erosion hotspot areas with available inadequate data. This study is
intended to support engineers, planners, and professionals involved in the design, planning,
and management of water resources and watershed development works.

2. Materials and Methods
2.1. Study Area

Andassa watershed is part of the headstreams of the Upper Blue Nile River. It is
situated south of Lake Tana between latitudes of 11◦08′ and 11◦32′ N and longitudes of
37◦16′ and 37◦32′ E, respectively (Figure 1). Three administrative districts of the Amhara
region—Bahir Dar Zuria, Mecha, and Adet—share 600.6 km2 of the Andassa watershed.
Andasa is a perennial river that flows to the main Upper Blue Nile River all year round.
The topography of Andassa watershed consists of very rugged hills and valleys, with
the lowest point being 1710 m and the highest point being 3216 m a.s.l. (Figure 1a).
Over half (58%) of the watershed is composed primarily of flat and gently sloping terrain.
The remaining portion of the watershed is primarily hilly and steep. The watershed is
characterized by a humid and sub-humid agroclimatic zone. The mean annual rainfall of
the watershed during 1990–2020 periods was 1341 mm. The most dominant land use in the
watershed (Figure 3) was annual cropland (57%). In comparison to other watersheds in
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the Upper Blue Nile Basin, the Andasa watershed had a comparatively high land cover of
forest (24%) and shrub (16%). The common soil types of the watershed include Vertisols,
Leptosols, and Luvisols which are characterized by clay and clay loam textures (Figure 3).
Basalts from the volcanic center, where Termaber basalts and Ashangi basalts are the
prominent geological formations, make up the geology of the Andasa watershed.
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Figure 1. Location map of the study area (a) Andasa watershed with the location of weather stations
and (b) Ethiopian basins and the point location of Andasa watershed. The background in the Andasa
watershed is the elevation in meters.

2.2. Dataset
2.2.1. Time Series Data

This study used daily meteorological data (1990–2012) from Bahir Dar, Merawi, Mesh-
enti, Adet, Tis Abay, and Sekela stations (Figure 1), which were collected from the National
Meteorological Agency (NMSA). The five SWAT required meteorological variables such as
rainfall, temperature, wind speed, relative humidity, and solar radiation were recorded in
Bahir Dar and Adet stations. The Merawi station contain rainfall and temperature while
the remaining stations record only rainfall data. Daily observed streamflow for the Andasa
River gauging station was acquired from the Ethiopian Ministry of Water and Energy
(MoWE) for the period 1990 to 2012. For sensitivity analysis, calibration and validation
the daily streamflow was aggregated to monthly flow. Data on suspended sediment con-
centration of the Andasa watershed were gathered from MoWE at the same time as the
streamflow (see the data in Table S1 from the supplementary materials). A sediment yield
rating curve was created from the few records of sediment concentration data in order to
generate daily sediment yield from the streamflow data. The power equation was fitted to
the logarithm of discharge and sediment yield (Figure 2). The daily sediment yield data
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from the rating curve was aggregated to monthly for sensitivity analysis, calibration and
validation of the SWAT model.
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Figure 2. The discharge–sediment rating curve of Andasa River prepared for this study.

2.2.2. Spatial Data

The 12.5 × 12.5 m resolution ALOS PALSAR Digital Elevation Model (DEM) was
downloaded from the Alaska Satellite Facility for this study. The Advanced Land Observing
Satellite-1 (ALOS) PALSAR is the L-band Synthetic Aperture Radar (SAR) which is able to
capture the image in all weathers and has day and night observation [19]. The DEM served
as an input for the hydrological model to characterize the watershed, sub-watersheds,
and drainage patterns using geometric parameters including slope, stream length, etc.
The land use/land cover (LULC) for this study was obtained from the Ethiopian Geospatial
Information Center (EGIC) with a 30 × 30 m resolution created in 2016 (Figure 3a). The soil
map and its associated database, with a resolution of 250 × 250 m, were acquired from
African Soil Information Service (AfSIS) in 2014 (Figure 3b). For SWAT modeling, usability
of AfSIS soil database performed well for the watersheds of the Upper Blue Nile basin [20].
The hydrological response units (HRUs) were mapped and characterized using slope,
LULC, and soil data.

2.3. Analysis
2.3.1. Description of SWAT Model

The study employed the Soil and Water Assessment Tool (SWAT) model, which is
useful for simulating major hydrological process, effective at predicting long-term impacts,
and performed well in predicting streamflow and sediment yield in the watersheds of
Upper Blue Nile basin. To predict the runoff, sediment, chemical yields, and crop growth
and yield with varying land use, soil, topography, and land management methods over long
periods of time on a daily basis, the model may be used for both gauged and un-gauged
watersheds [21–23]. The watershed is discretized into a number of sub-watersheds and
HRUs in the model, which enables users to simulate with a high degree of spatial detail.
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2.3.2. Hydrological Modeling in SWAT

In SWAT, the land phase of a hydrologic cycle of a sub-basin is simulated based on the
following water balance equation [24,25].

SWt = SWo + ∑t
i=1(Rday −Qsur f − Ea −Wseep −Qgw) (1)

where SWt is the final soil water content (mm), SWo is the initial soil water content on the
day i (mm), t is the time (days), Rday is the amount of precipitation on the day i (mm), Qsurf
is the amount of surface runoff on the day i (mm), Ea is the amount of evapotranspiration
on the day i (mm), wseep is the amount of water entering the vadose zone from the soil
profile on the day i (mm), and Qgw is the amount of return flow on the day i (mm). Refer
to Neitsch et al. [22] for detailed information and driving equations for each of the water
balance components.

SWAT calculates the surface runoff from daily rainfall by using the modified SCS
curve number method [25] as indicated in Equation (2) below.

Qsur f =

(
Rday − 0.2S

)2

Rday + 0.8S
(2)

where S is the relation parameter in mm and given as

S = 25.4
1000
CN

− 10 (3)
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where CN is the curve number.
SWAT routing phase defines the movement of water, nutrients, sediment and pes-

ticides through the channel network of the watershed into the outlet. In this research,
flow was routed through stream network of the watershed from upland areas to the main
channel by variable storage routing [26]. Continuity equation was the concept behind
storage routing.

For a given reach,
∆Vstored = Vin −Vout (4)

where Vin is the volume of inflow during the time step (m3 H2O), and Vout is the volume of
outflow during the time step (m3 H2O), ∆Vstored is the change in volume of storage during
the time step (m3 H2O). The calculation can be further specified as in the Equation (5).

Vstored,2 −Vstored,1 =
∆t
2
[(qin,1 + qin,2)− (qout,1 + qout,2)] (5)

where qin,1 is the inflow rate at the beginning of time step in m3 s−1, qin,2 is inflow rate
at the end of time step in m3 s−1, qout,1 is the outflow rate at the beginning of time step
in m3 s−1, qout,2 is the outflow rate at the end of time step in m3 s−1, ∆t is the length of
the time step in second, Vstored,2 is the storage volume at the end of time step in m3 H2O,
and Vstored,1 is the storage volume at the beginning of time step in m3 H2O.

The volume of water in the channel was divided by the outflow rate to compute the
travel time (TT).

TT =
Vstored

qout
=

Vstored,1

qout,1
=

Vstored,2

qout,2
(6)

2.3.3. Sediment Modeling in SWAT

SWAT calculates the sediment rate from each HRU by using the Modified Universal
Soil Loss Equation using the following equation [27].

Sed = 11.8 ∗
(

Qsur f ∗ qpeak ∗ Areahru

)0.56
∗ KUSLE ∗ CUSLE ∗ PUSLE ∗ LSUSLE ∗ CFRG (7)

where Sed is the yield of sediment (ton day−1), Qsurf is the volume of surface runoff
(mm ha−1), qpeak is the peak surface runoff rate (m−3s−1), Areahru is hydrologic response
unit area (ha), KUSLE is USLE soil erodibility factor, CUSLE is USLE cover factor, LSUSLE
is USLE topography factor and PUSLE is USLE soil protection factor, and CFRG accounts
for stoniness.

For channel networks, SWAT computes the sediment flow as [22]:

Sedch = Sedchi − Seddep + Seddeg (8)

where Sedch is the amount of suspended sediment in the reach, Seddeg is the amount of
sediment that reenters the reach segment, Seddep is the amount of sediment deposited in
the reach segment, and Sedchi is the amount of suspended sediment in the reach at the
beginning of the time period. The unit of all the parameters in the equation is metric tons.

Similarly, SWAT calculates the amount of sediment transported out of reach as [22]:

Sedout = Sedch ∗
(

Vout

Vch

)
(9)

where Sedout is the amount of sediment transported out of the reach in tons, Sedch is the
amount of suspended sediment in the reach in tons, Vch is the volume of water in the reach
segment in m3, and Vout is the volume of outflow during the time step in m3.
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2.3.4. SWAT Model Setup, Sensitivity Analysis, Calibration, and Validation

The time series and geographical input data were first created in accordance with the
SWAT model’s specifications. During data preparation, ArcGIS and Microsoft Excel were
also used. Watershed and stream network definition (Figure 4a), HRU analysis (Figure 4b),
and model simulation (Figure 4c) are important steps in SWAT modeling. The SWAT model
output is used for sensitivity analysis (Figure 4d), calibration and validation (Figure 4e)
with the monthly streamflow and sediment yield data using the SWAT Calibration and
Uncertainty Procedures (SWAT-CUP). The discretization for the Andasa watershed is
created in SWAT with an area threshold of 1.3 km2. The watershed discretization provided
21 sub-watersheds for the entire Andasa watershed. The HRU Analysis takes land use,
soil, and slope, to divide each sub-basin into HRUs, with specific combinations of the
three layers.
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Figure 4. Workflow chart showing hydrological and sediment modeling using SWAT (modified
from Adem et al. [20]): (a) watershed delineation and stream discretization using DEM and gauging
outlet, (b) HRU analysis using LULC, soil and slope, (c) SWAT simulation after writing input tables,
(d) identifying sensitive parameters for streamflow and sediment yield, (e) streamflow and sediment
yield calibration and validation, (f) editing initial model parameters with calibrated parameters,
and (g) model restimulation for output discretization.
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The layer produced by this process is crucial to the ultimate analysis performed by
the SWAT model. HRUs determine how land will respond to rainfall, runoff, infiltration,
and other hydrologic processes during the simulation. Each sub-basin can then have
one or more major HRUs within it. HRUs are created by a 10% threshold for slope,
soil, and LULC definition [28]. Accordingly, a total of 406 HRUs are created for the
entire watershed (Figure 4b). After the writing the input tables (terrain, land use, soil and
weather), the model simulates streamflow and sediment yield using the equations indicated
in Sections 2.3.2 and 2.3.3 (Figure 4c). In this study, the Penman–Monteith method of
evapotranspiration estimation was used.

The SWAT model is calibrated using the Sequential Uncertainty Fitting Version-2
(SUFI-2) optimization algorithm included inside the SWAT-CUP. The SUFI-2 algorithm is
selected for its satisfactory performance in the Upper Blue Nile Basin [29]. SWAT model
users frequently face difficulties in obtaining influential parameters for calibration. In such
cases, sensitivity analysis is helpful to identify and rank parameters that have a substantial
effect on specific model outputs of interest. Since certain parameters in this study are
sensitive to both flow and sediment, some are just sensitive to sediment, and others are
only sensitive to flow, the sensitivity analysis for each was conducted independently [30].
Streamflow and sediment yield data from the years 1992 to 2005 are used for calibration
of the Andasa SWAT model, which was then used for validation in the years 2006 to
2012. The streamflow and sediment yield data for the period 1990 to 1991 are used for
model warm-up. The best-fitted parameters during the calibration process were used to
edit the initial model parameters in the Andasa SWAT model (Figure 4f). The model was
re-simulated to obtain streamflow and sediment predictions from the entire watershed and
each sub-watersheds (Figure 4g).

2.3.5. Identification of Erosion Hotspot Areas

Erosion hotspot areas were identified from the calibrated model output to prioritize
the areas for soil and water conservation (SWC) practices. The mean annual sediment
yield of the sub-watersheds is classified using the soil erosion severity class developed
by Tilahun et al. [31]. As a result, the soil erosion level in the Andasa watershed is clas-
sified into four classes, namely, negligible erosion class (≤3 ton ha−1 yr−1), acceptable
erosion class (3 to ≤4.5 ton ha−1 yr−1), moderately eroded class (4.5 to≤9.5 ton ha−1 yr−1),
and severely eroded (>9.5 ton ha−1 yr−1) class categories [31].

2.3.6. Model Performance Evaluation and Statistics

It is essential to assess the predicting model’s performance in terms of accuracy, con-
sistency, and adaptability when making hydrological and sediment predictions [32]. Using
statistical criteria and visual examination, the streamflow and sediment yield prediction
capabilities of the SWAT model were assessed. In order to quantify how well the predicted
results match with the observed data during a certain time period, descriptive statistics
and performance measures including the coefficient of determination (R2), Nash–Sutcliffe
Efficiency (NSE), and percent of bias (PBIAS) were utilized. Performance criteria used in
this study are similar with Adem et al. [20]. The Mann–Kendall trend test was used to
determine whether or not there is a significant trend (p < 0.5) in rainfall, evapotranspiration,
streamflow, and sediment yield in the simulation period (1992–2020).

3. Results
3.1. Streamflow Sensitivity Analysis, Calibration, and Validation

During the study period, 23 streamflow parameters (Table S2 from the supplementary
material) were tested for sensitivity, and the result revealed that 14 parameters are more
sensitive (Table 1). When compared to the selected parameters, the effect of the remaining
nine parameters on the model output was minor. The first four highly sensitive parameters
for the streamflow were the SCS runoff curve number (CN_2), soil available water content
(SOL_AWC), depth from the soil surface to the bottom layer (SOL_Z), and threshold depth
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of water in the shallow aquifer required for return flow to occur (GWQMN). Streamflow
calibration was conducted using the selected 14 sensitive parameters tabulated in Table 1.
The fitted parameter values that obtained from the calibration process at the same model
inputs can be used for future watershed applications.

Table 1. Sensitive parameters for observed streamflow, initial range, and fitted value. In the parame-
ters list, r_ stands for the operation of the existing parameter value multiplied by (1+ given value),
v_ is for the operation of the existing parameter value to be replaced by a given value, and a_ is for
the operations of a given value added to the existing parameter value.

Parameters with
Operation Description Fitted Values

(Sensitivity Rank)
Parameter

Initial Range

r_CN2 SCS runoff curve number 0.042 (1) −0.2–0.2
r_SOL_AWC Available water capacity of the soil layer, mm H2O/mm soil −0.006 (2) −0.2–0.2
r_SOL_Z Depth from the soil surface to the bottom of the layer, mm −0.156 (3) −0.2–0.2

a_GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur, mm H2O −588 (4) −1000–1000

v_RCHRG_DP Deep aquifer percolation fraction 0.565 (5) 0–1
a_GW_DELAY Groundwater delay, days 14.8 (6) −30–60
v_GW_REVAP Groundwater “revap” coefficient 0.146 (7) −0.036–0.2

v_ALPHA_BF_D Base flow alpha factor for groundwater recession of the deep
aquifer, 1/days 0.144 (8) 0–1

a_CANMX Maximum canopy storage, mm H2O 0.112 (9) 0–10
v_CH_K2 Effective hydraulic conductivity in the main channel alluvium, mm/h 12.15 (10) 0–15
v_ALPHA_BF Base flow alfa factor, days 0.46 (11) 0–1
v_SURLAG Surface runoff lag time, days 3.313 (12) 0–10
v_BIOMIX Biological mixing efficiency 0.433 (13) 0–10
v_ESCO Soil evaporation compensation factor 0.991 (14) 0–1

The SWAT model performed well in both the calibration and validation periods
in the Andasa watershed, with coefficient of determination (R2) of 0.88, Nash–Sutcliffe
efficiency (NSE) of 0.88, percent of bias (PBIAS) of 6.4 (Figure 5a) and R2 of 0.81, NSE
of 0.80, PBIAS of 9.9, respectively Figure 5b). Positive values of PBIAS indicate that the
model underpredicts the observed streamflow. During the calibration and validation
period, the slope of the trend line in the scatter plot of observed versus the simulated
was between 0.9 and 0.82 (Figure 5). The calibration intercept was less than 0.5 and the
validation intercept was greater than 0.5 (Figure 5). The simulated streamflow hydrograph
also best described the observed streamflow during the calibration period (Figure 6a).
The SWAT model best predicted observed flow in the majority of the hydrograph’s low
flow, rising, and falling limbs (Figure 6a). The model underpredicted the peaks of the
observed streamflow. The model responds to multiple rainfall peaks than the observed
flow in a single year (see 1997, 1998 and 2006 in Figure 6a). Despite satisfactory model
performance during the validation period, the model underpredicted the low flows and
overpredicted the peak flows (Figure 6b). There is no well-defined prediction for the
rising and falling limb of the hydrographs, with under-predicting in some years and
over-predicting in other years (Figure 6b).
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Figure 5. Scatter plot of observed versus simulated streamflow during (a) calibration and (b) valida-
tion periods. R2 is the coefficient of determination; NSE is the Nash–Sutcliffe efficiency, and PBIAS is
the percent of bias.
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Figure 6. Observed and simulated streamflow with rainfall during (a) calibration and (b) valida-
tion periods.
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3.2. Water Balance Components before and after Calibration

The mean annual water balance components differed significantly before and after
calibration, owing to the calibration process’s goal of minimizing the difference between the
predicted and observed streamflow (Table 2). After calibration, the simulated surface runoff
was 21% higher than before calibration. This is due to a decrease in evapotranspiration,
baseflow (return flow), and percolation following model calibration. The decrease in
baseflow is a direct result in percolation to the shallow aquifer. The model calibration
process significantly reduced the shallow aquifer evaporation from 46 to 0.2 mm (Table 2).
After calibration, approximately 80% (37 mm) of the evaporation from the shallow aquifer
was retained as recharge. In other words, recharge to the deep aquifer was increased from
5 mm (before calibration) to 42 mm after calibration (Table 2). Before calibration, the water
balance shows that evapotranspiration accounts for 72% of the mean annual rainfall, surface
runoff accounts for 19% of the mean annual rainfall; lateral flow accounts for 8.7% of the
surface runoff, and baseflow flow accounts for 21% of the surface runoff. The ratio of total
streamflow (surface runoff, lateral and baseflow), to rainfall in the Andasa watershed was
0.25 prior to the model calibration (Table 2). This means that 25% of the rainfall was flowing
out from the watershed in the form of streamflow. After calibration, average surface runoff,
streamflow water yield, percolation from the soil layer, and evapotranspiration account
for 24.2%, 31.3%, 5.5%, and 68.9% of the watershed’s mean annual rainfall, respectively.
Baseflow accounts for 10% of the mean annual surface runoff, while the mean annual soil
water storage accounts for 12% of the mean annual rainfall.

Table 2. Mean annual water balance component before and after calibration in millimeter depth.

Hydrological Component Before After

Rainfall 1341.2 1341.2
Evapotranspiration 964.4 924.7
Surface Runoff 256.73 324.65
Lateral flow 22.35 19.96
Percolation to the shallow aquifer 99.86 74.63
Return flow 53.71 32.49
Recharge to the deep aquifer 4.99 42.15
Revap from the shallow aquifer 45.57 0.02

3.3. Sediment Yield Sensitivity Analysis, Calibration, and Validation

To assess the quantity of watershed sediment yield, initial sediment parameters were
examined and ranked by the global sensitivity analysis procedure using the sediment yield
data (Table 3). The sensitivity analysis result revealed that the USLE cover factor (USLE_C),
USLE soil erodibility factor (USLE_K), and Channel erodibility factor (CH_COV1) are
the first three and most sensitive parameters for the sediment yield data generated using
sediment rating curve. The other parameters also impact the sediment yield prediction and
are utilized for calibration; see the detail sensitivity rank in Table 3. All the parameters that
potentially influence sediment prediction were used for calibration in this investigation.

SWAT model predicted sediment yield with R2 of 0.79, NSE of 0.72, and PBIAS of
2.7 during the calibration and with R2 of 0.7, NSE of 0.66, and PBIAS of −8.6 during
the validation periods (Figure 7). In contrast to the streamflow, the PBIAS indicated that
the model over-predicted the sediment yield generated from the sediment yield rating
curve over the validation period. In comparison to the stream flow calibration, the PBIAS
during the calibration was minimal. The trend equation’s lower slope and the higher
intercept indicated a bias in the predicted sediment yield compared with the predicted
streamflow (Figures 5 and 7). The hydrograph of the simulated sediment yields, similarly
to the streamflow prediction, accurately described the sediment yield from the rating curve
throughout the calibration period (Figure 8a). In low flow times, there was extremely high
agreement between the predicted and observed rating curve sediment yield. Except for
the peaks of 1992, 1998, 2000, and 2003, the model over-predicted the sediment yield in
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the sediment hydrograph peaks, falling limbs, and rising limbs (Figure 8a). The model,
similarly to the streamflow prediction, responds to multiple rainfall peaks (zigzag line
in the peaks of Figure 8a,b). Despite acceptable model performance over the validation
period, the model overpredicted the sediment yield with the exception of the 2006, 2010,
and 2011 peaks (Figure 8b).

Table 3. Sensitive parameters for sediment yield, initial range, and fitted values. In the parameters list,
r_ stands for the operation of the existing parameter value multiplied by (1+ given value); and v_ is
for the operation of the existing parameter value to be replaced by a given value.

Parameters with
Operation Description Fitted Values

(Sensitivity Rank)
Parameter

Initial Range

v_USLE_C The minimum value of the USLE C factor for land cover/plant 0.183 (1) 0.001 to 0.5
v_USLE_K USLE soil erodibility (K) factor, ton/m2 h 0.510 (2) 0 to 0.65
v_CH_COV1 Channel erodibility factor 0.225 (3) 0 to 1

r_SPCON Linear parameter for calculating the maximum amount of sediment
that can be re-entrained during channel sediment routing 0.0092 (4) 0.008 to 0.01

v_ADJ_PKR Peak rate adjustment factor for sediment routing in the sub-basin
(tributary channels) 1.768 (5) 0 to 2

v_USLE_P USLE support practice factor 0.295 (6) 0 to 1
v_CH_COV2 Channel cover factor 0.705 (7) 0 to 0.6

v_SPEXP Exponent parameter for calculating sediment re-entrained in
channel sediment routing 1.028 (9) 1 to 1.5
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Figure 7. Scatter plot of sediment yield from the rating curve versus simulated streamflow during
(a) calibration and (b) validation periods. R2 is the coefficient of determination, NSE is the Nash–
Sutcliffe efficiency, PBIAS is the percent of bias, and Ktones stands for thousands of tons.

3.4. Temporal Variability of Sediment Yield in the Andasa Watershed

The SWAT model estimate, the mean monthly sediment yield between 1992 and 2020,
revealed that the sediment yield was higher in the months with more rainfall (Figure 9).
In June, July, August, and September, the total annual sediment yield was about 80%
(Figure 9). Only 20% of the sediment yield was contributed by the remaining months of the
year. Although the rainfall and streamflow peaked in July, August was the month with the
highest sediment yield. In accordance with the 368.7 mm of mean monthly precipitation
that fell in July, 104.7 mm of mean monthly streamflow and 4.9 t ha−1 month−1of mean
monthly sediment yield were recorded. In August, the average monthly yield of sediment
was 5.52 t ha−1 month−1, but the corresponding rainfall and streamflow were 288 mm and
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102 mm, respectively. Concentrated streamflow was observed at the beginning of the rainy
season, similar to other watersheds of the Ethiopian highlands.
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Figure 8. Observed and simulated sediment yield with runoff during (a) calibration and (b) validation
and periods. Ktones stands for thousands of tons.
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Following model calibration, the average annual sediment yield (1992–2020) at the
watershed outlet ranged from 5.9 to 50.6 t ha−1yr−1 with an average of 17.9 t ha−1yr−1

(Figure 10). Rainfall and streamflow directly influenced the Andasa watershed’s annual sed-
iment yield. For instance, the highest streamflow (721 mm) and annual rainfall (1852 mm)
occurred in the year 2006, resulting in an average sediment yield of 50.6 t ha−1yr−1, the high-
est yield during the study period (1992–2020). On the other hand, the year 2009 had the
lowest annual rainfall (1079.6 mm), the smallest relative streamflow (216 mm), and the
highest annual sediment yield (9.6 t ha−1yr−1). This is directly connected to the fact
that sediment yield and streamflow and rainfall have a positive relationship (Figure 11).
However, compared to the correlation between the rainfall and sediment yield (R2 = 0.62),
the correlation between streamflow and sediment yield was stronger (R2 = 0.98). However,
none of the trends were statistically significant (p 0.5), despite the fact that the annual
rainfall of the watershed was increasing and the streamflow and sediment yield were
decreasing (Figure 10). The increase in water loss in the form of evapotranspiration was
the cause of the declining trend in streamflow and sediment yield (Figure 10).
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Figure 10. Annual rainfall, evapotranspiration, streamflow, sediment yield, and the corresponding
trend lines for the entire simulation period.
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3.5. Spatial Distribution of Sediment Yield in the Andasa Watershed

The spatial distribution of sediment yields in the Andasa watershed indicated that
4 and 10 of the 21 sub-watersheds were severely and moderately eroded, respectively
(Figure 12). The remaining seven sub-watersheds had acceptable and barely negligible
rates of erosion. In the seven severely eroded sub-watersheds of Andasa, cultivated land
in Luvisols and Vertisols made up 21% of the watershed (Figure 12). On the steep slopes
of these watersheds, there were also shrub lands with shallow Leptosol soil depths and
degraded soils. The D hydrological soil group, which has high potential for runoff and low
rate of infiltration, dominates the four sub-watersheds since the soils of the watershed are
characterized by clay and clay loam (Figure 3). The majority of these erosion hotspot areas
are found in the middle and lower slopes of the Andasa watershed (Figure 12). The Bahir
Dar Zuria district is home to 84% of the sub-watersheds. The Andasa watershed was
moderately eroded in more than half (55%) of its area (Figure 12). Even though water-
shed management strategies for erosion-prone areas should be prioritized, conservation
efforts for moderately eroded areas should also be prioritized to prevent further degrada-
tion. The central and northwestern regions of the Andasa watershed contain 23% of the
watershed’s areas that are not at risk for erosion.
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4. Discussion
4.1. SWAT Model Performance in the Upper Blue Nile Basin

In this study, the SWAT model prediction between 1992 and 2012 revealed that the
model did a good job of predicting the hydrology and sediment yield in the Andasa
watershed (Figures 5 and 7). The model’s prediction performance values agreed with
published studies in the Abbay (Upper Blue Nile) basin watersheds (Table 4). Table 4
shows that the model performed well for both small and large watersheds (areas ranging
from 1.13 to 174,166 km2). The model performed well in every watershed during all of the
calibration and validation phases. Most of the data used in these studies were collected from
the Ministry of Water and Energy (MoWE) of Ethiopia. The results did not show the SWAT
model performance for recent years because the watershed data had not been updated for
more than ten years. The predicted and the observed streamflow and sediment yield of
the watersheds were out of sync in the majority of the studies indicated in Table 4. This is
attributed to the model’s limitations in simulating peaks [33] or inadequate representation
of the rainfall with weather stations in the watersheds [34,35]. Therefore, the SWAT model
needs enhancements in peak flow predictions, even though it is a promising long-term
continuous simulation model in watersheds of the Upper Blue Nile basin [33].

Table 4. Performance of SWAT model in predicting watershed hydrology and sediment yield in
watersheds of the Abbay (Upper Blue Nile) basin in a monthly time step. The superscript D in some
watershed names indicates the daily time step of the modeling.

Watershed Area, km2
Calibration Validation

Source
R2 NSE PBIAS Period R2 NSE PBIAS Period

Streamflow
Abbay at Eldiem 174,166 0.85 0.83 −4.7 2001–2009 0.89 0.88 8.3 2010–2014 [36]
Abbay at Kessie 64,728 0.81 0.68 −10.8 2001–2009 0.93 0.89 9.7 2010–2015 [36]
Rib 1316 0.83 0.78 7 1996–2007 0.7 0.41 53 2008–2013 [20]
Gumara 1464 0.87 0.76 3.29 1998–2002 0.83 0.68 −5.4 2003–2005 [37]
Awramba 7 0.98 0.94 −16.4 2014–2017 0.97 0.96 −0.1 2017 [38]
Gilgel Abay D 1654 0.8 0.77 - 1996–2004 0.76 0.75 - 2005–2008 [39]
Nashe 946 0.89 0.82 5.7 1987–1999 0.88 0.85 8.6 2000–2008 [40]
Gomit 3.59 0.7 0.63 14 2015–2017 - - - - [20]
Main Beles 3485 0.82 0.81 −8.4 1995–2002 0.8 0.78 1.84 2003–2010 [41]
Anjeni 1.13 0.9 0.89 - 1984–1988 0.91 0.89 - 1989–1993 [42]
Koga 287 0.65 0.58 24.5 1992–2001 0.67 0.58 8.8 2002–2007 [43]
Minchet 1.13 0.94 0.93 - 1986–1998 0.92 0.92 - 2010–2014 [44]
Guder 7011 0.75 0.73 −12.9 1990–2004 0.81 0.79 11.4 2005–2008 [45]

Sediment yield
Abbay at Eldiem D 184,560 - 0.88 −0.05 1990–1996 - 0.83 −11 1998–2003 [34]
Gumara 1250 0.68 0.67 −6.1 1995–2002 0.7 0.69 −11.2 2003–2007 [28]
Gilgel Abbay D 1654 0.59 0.58 - 1996–2004 0.56 0.51 - 2005–2008 [46]
Main Beles 3485 0.81 0.8 5 1995–2002 0.79 0.75 5 2003–2010 [41]
Anjeni 1.13 0.85 0.81 28 1984–1988 0.8 0.79 30 1989–1993 [42]
Koga 287 0.75 0.73 7.8 1991–2000 0.8 0.79 6.4 2002–2007 [43]
Minchet 1.13 0.71 0.53 - 1986–1998 0.86 0.84 - 2010–2014 [44]
Guder 7011 0.8 0.78 −12.3 1991–2004 0.84 0.81 14.24 2005–2008 [45]

There were few suspended sediment concentration data in Ethiopian rivers, and the
majority of the records were taken in the rainy season. This is attributed to the financial
and time constraints of the country. The data limitation in time and space challenges
engineers, planners, and practitioners in designing, planning, and management of water
resource and watershed development works. This study demonstrates how to use the
SWAT model to estimate the sediment yield and locate erosion hotspot areas with sparse
sediment concentration data. Both globally [47–49] and in Ethiopia [27,40,42,44,45], similar
approaches were used. The SWAT model accurately predicted the sediment yield from the
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rating curve in all watershed sizes of the Upper Blue Nile basin (Table 5). The model slightly
overestimated the mean annual sediment yield of the watersheds with the exception of the
Anjeni watershed. This study also confirmed the satisfactory performance of the SWAT
model in predicting sediment yield in the Andasa watershed between 1992 and 2012.
According to Table 5, the mean annual sediment yield of Andasa watershed ranged from
5 to 28 t ha−1 yr−1.

Table 5. Predicted and observed mean annual sediment yield prediction of SWAT model in wa-
tersheds of the Abbay (Upper Blue Nile) basin at a monthly time step. The superscript D in some
watershed names indicates the daily time step of the modeling.

Watershed Area, km2 Observed, t
ha−1 yr−1

Predicted, t
ha−1 yr−1 Data Type Period Source

Abbay at Eldiem D 184,560 6.3 7.1 Observed 1998–2003 [34]
Gumara 1250 19.7 - Rating curve 2003–2007 [28]
Gilgel Abay D 1654 19 20.8 Rating curve 2005–2008 [46]
Main Beles 3485 4.8 5.5 Rating curve 2003–2010 [41]
Anjeni 1.13 28.6 24.6 Observed 1989–1993 [42]
Koga 287 24.3 - Rating curve 2002–2007 [43]
Minchet 1.13 19.3 21.8 Observed 2010–2014 [44]
Guder 7011 7.5 - Rating curve 2005–2008 [45]
Andasa 600.6 17.9 18.1 Rating curve 1992–2012 This study

4.2. Spatial and Temporal Variability of Soil Erosion

Soil erosion spatial variability assessment is crucial in planning and implementation
of watershed management strategies [34,50]. Recent studies used the SWAT model to
map the spatial variability of sediment yield in various areas of the world [51–54] as well
as in Ethiopia [55]. In the Upper Blue Nile basin, studies by Betrie et al. [34], Asres and
Awulachew [37], and Ayele et al. [43] assessed spatial variability of sediment yield in varies
watersheds. A study by Betrie et al. [34] in the entire Upper Blue Nile basin indicated that
from the total 15 sub-basins 8 of them were extremely and severely eroded while 7 sub-
basins were moderate and low erosion areas. Most of the extremely and severely eroded
areas were located in the steep slope areas, where SWC practices were recommended [34].
The spatial variability of sediment yield in the Gumera watershed conducted by Asres and
Awulachew [37] showed that out of the total 30 sub-watersheds, 18 of them produced a
mean annual sediment yield ranging 11–22 t ha−1 yr−1, located in the upstream areas of
the watershed. Meanwhile, the bottom slope and wetland areas were characterized by a
low sediment yield ranging from 0 to 10 t ha−1 yr−1 [37].

In Koga watershed, the adjacent watershed to Andasa watershed, Ayele et al. [43]
showed that the downstream part of the watershed was severely eroded and prioritized
for SWC than the upstream part of the watershed where the area was slightly eroded.
The severely eroded sub-watersheds were characterized by Luvisols, cultivated land,
and a slope ranging from 2 to 8% [43]. In general, results of the global and local studies
demonstrated that steep slope watersheds and cultivated land dominance were recognized
as severely eroded areas that require priorities for soil and water conservation (SWC)
practices. This study also confirmed that sub-watersheds dominated by cultivated land
were identified as erosion hotspot areas. Because of this, it is recommended that the
methodology used and similar ones be applied to identify erosion hotspot areas as a
planning input for the prioritization of SWC practices. This is crucial to save the natural
resources and money on unnecessary investments.

Studies throughout the world agreed that the high soil loss and sediment yield pro-
duction was directly linked with the records of storms in the wet seasons [56–58]. Similarly,
in the case of Ethiopia, a study by Yesuf et al. [59] on the Maybar watershed showed that a
high amount of sediment yield was recorded in the month of August when high amounts
of rainfall and runoff was recorded. In addition, 1985 and 1981 were the years of high and



Hydrology 2022, 9, 167 18 of 21

low rainfall, runoff and sediment yield, respectively [60]. Similarly to the current study,
research by Ebabu et al. [60], Mhiret et al. [61] and Adem et al. [62] also confirmed the
association of the amount and intensity of rainfall with soil loss and sediment yield.

5. Conclusions

This study used SWAT hydrological and sediment modeling in the Andasa watershed
to estimate sediment yield and identify erosion hotspots in areas using a limited amount
of data. Despite the various sources of uncertainty, the SWAT model did well in both the
calibration and validation periods in predicting streamflow and sediment yield. The study
also demonstrated that the SWAT model can generate reliable estimates of the various water
balance components. Between 1992 and 2020, the estimated mean annual sediment yield
of the Andasa watershed was 17.9 which is within the range of sediment yield estimates
for watersheds in the Upper Blue Nile basin. A 132 km2 area in the Andasa watershed
that has been severely eroded requires rehabilitation with soil and water conservation
(SWC) practices as a top priority. Cultivated land and steep slopes were characteristics of
the Andasa watershed’s erosion-prone areas. It is advised to collect sediment data more
frequently in order to increase the precision of sediment estimation and erosion hotspot
area identification. Despite this, the method used in this study is crucial for identification
of erosion hotspot areas and the prediction of sediment yield by integrating rating curves
and modeling in data-limited regions all over the world.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/hydrology9100167/s1, Table S1. Suspended sediment concentration
(SSC) data was used for the discharge-sediment rating curve development, Table S2. Initial streamflow
parameters and their range that was used for sensitivity analysis.
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