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Abstract: Early prediction of rainfall is important for the planning of agriculture, water infrastructure,
and other socio-economic developments. The near-term prediction (e.g., 10 years) of hydrologic
data is a recent development in GCM (General Circulation Model) simulations, e.g., the CMIP5
(Coupled Modelled Intercomparison Project Phase 5) decadal experiments. The prediction of monthly
rainfall on a decadal time scale is an important step for catchment management. Previous studies
have considered stochastic models using observed time series data only for rainfall prediction, but
no studies have used GCM decadal data together with observed data at the catchment level. This
study used the Facebook Prophet (FBP) model and six machine learning (ML) regression algorithms
for the prediction of monthly rainfall on a decadal time scale for the Brisbane River catchment in
Queensland, Australia. Monthly hindcast decadal precipitation data of eight GCMs (EC-EARTH
MIROC4h, MRI-CGCM3, MPI-ESM-LR, MPI-ESM-MR, MIROC5, CanCM4, and CMCC-CM) were
downloaded from the CMIP5 data portal, and the observed data were collected from the Australian
Bureau of Meteorology. At first, the FBP model was used for predictions based on: (i) the observed
data only; and (ii) a combination of observed and CMIP5 decadal data. In the next step, predictions
were performed through ML regressions where CMIP5 decadal data were used as features and
corresponding observed data were used as target variables. The prediction skills were assessed
through several skill tests, including Pearson Correlation Coefficient (PCC), Anomaly Correlation
Coefficient (ACC), Index of Agreement (IA), and Mean Absolute Error (MAE). Upon comparing the
skills, this study found that predictions based on a combination of observed and CMIP5 decadal data
through the FBP model provided better skills than the predictions based on the observed data only.
The optimal performance of the FBP model, especially for the dry periods, was mainly due to its
multiplicative seasonality function.

Keywords: Facebook Prophet; rainfall; prediction; month; decade

1. Introduction

Rainfall is a very important climate variable and precious natural resource which
affects livelihood and agriculture in many dimensions. An early and accurate prediction of
rainfall enables a more efficient management of floods, agriculture, water resources, power
development, and the planning and development of infrastructure [1–4]. However, the
prediction of this most important hydrological aspect has become a very challenging task
in terms of accuracy due to its peculiar variation over time and space. Due to ongoing
climate change, the temporal and spatial variations of rainfall have intensified in the past
few decades. Over the past few years, rainfall prediction has become a greater concern
to the climate research community [5–11]. Rainfall prediction approaches are broadly
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classified into two main categories: (i) knowledge-driven approaches; and (ii) data-driven
approaches. Knowledge-driven approaches use scientific understanding, thermodynamic
balance, and physical mechanisms of hydrological processes such as General Circulation
Models (GCMs). GCMs predict climate variables of coarse spatial resolution on a global
scale. However, the knowledge-driven approach needs extensive data and computational
facilities that are sometimes unavailable [12]. The data-driven approach is the stochastic
and/or empirical statistical modelling approach that is widely used in rainfall prediction at
a local level based on the observational relationship of the predictand variable. Data-driven
approaches have some limitations, and all approaches do not perform well in predicting
longer time spans as they cannot capture the non-linearity and dynamic behaviour of
rainfall over time [13,14]. Several statistical/stochastic methods have been used for rainfall
prediction and most of them are based on regression analysis, such as simple regression
analysis (SRA), exponential smoothing, decomposition, and auto-regressive integrated
moving average (ARIMA). Every individual method has its strengths and weaknesses.
For instance, ARIMA is a popular stochastic model for time series prediction with great
flexibility. However, as a stochastic model, it needs the stationarity of data [15] and its
presumed linear form of the associated data sometimes makes it inappropriate for complex
nonlinear time series data, such as rainfall [14]. This is why a better output from ARIMA
heavily depends on the expertise of the modeller [15]. Dastorani et al. [16] compared
different forms of the ARIMA model and concluded that the model parameters need to be
tuned to obtain a certain level of accuracy based on location and data type.

Applications of machine learning algorithms, including artificial neural networks
(ANNs) of different forms of architecture, are popular for many time series predictions,
including the time series of rainfall and enhancing prediction accuracy [6,8,9,17–20]. Ac-
cording to the level of complexity of the dataset, ANN can be combined with different
types of algorithms due to its highly flexible characteristics. However, based on the needs
and opportunities, different researchers have come up with different research interests and
time scales with the application of ANN. For instance, Wu et al. [21] predicted monsoon
rainfall in China more than 10 years ahead, whereas Chakraverty and Gupta [22] predicted
Indian monsoon rainfall 6 years in advance. To predict the summer monsoon of India
1 year in advance, Chattopadhyay and Chattopadhyay [23] used 129 years of historical
data. Though the ANN is good at capturing nonlinear relationships of data, the presence
of outliers in time series data can critically affect the reliability of ANN, as it is a grey box
model. Thus, ANN requires proper data pre-processing before its application, especially for
climatic data [24,25]. Some other hybrid models have also come into existence and shown
very good skills in rainfall prediction [14,26,27]. However, all of the above-mentioned
data-driven approaches have used historically observed data and performed predictions
for several years ahead based on historical relationships, assuming the climatic conditions
will remain the same in the historical and prediction periods.

Compared to the other climatic variables, rainfall has been affected most due to
ongoing climate change. Over the past few decades, temporal changes and shifts in rainfall
patterns, extreme rainfall during wet periods, longer dry spells during dry periods, and
an overall reduction in total precipitation amount have been very common phenomena
around the globe. In recent decades, these changes have been intensified due to ongoing
climate change [28]. Climate change will continue to change, but the rate of change may
be higher in the future. The future higher rate of climate change may adversely affect
future precipitation and its level of impact may be significant [28]. Therefore, researchers
should not only rely on data-driven approaches (based on historical data only) for future
rainfall predictions. For this reason, this study aimed to predict future rainfall for decadal
time scales by combining the knowledge and data-driven approaches and employing
both GCM-derived precipitation and historically observed data. To complete this, this
study used the Facebook Prophet (description provided later) model, where historically
observed rainfall was used as an input variable and GCM-derived precipitation data
from the decadal experiment of Coupled Model Intercomparison Project Phase 5 (CMIP5)
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(description provided in Section 2.2) were used as additional regressors to guide the Prophet
model in the prediction process. However, the application of the Prophet model in time
series prediction is not new [29–31], but it is rarely found in the literature for predicting
rainfall.

2. Study Area, Data and Methods
2.1. Study Area

The Brisbane River catchment in Queensland (Figure 1) was selected as the study
area. It lies in the eastern states of Australia between the latitudes 26.50 S~28.150 S and the
longitudes 151.70 E~153.150 E. It has an area of 13,549 square kilometres and a sub-tropical
climate where maximum rainfall occurs during summer (December–January–February) and
minimum rainfall in winter (June–July–August) [32]. Monthly observed rainfall (1911–2015)
over the Brisbane River catchment varied from nil to 1360 mm with an annual average
rainfall of 628 mm [33].

Figure 1. Study area.

2.2. Data Collection

Monthly hindcast precipitation data at a decadal time scale from eight (EC-EARTH
MIROC4h, MRI-CGCM3, MPI-ESM-LR, MPI-ESM-MR, MIROC5, CanCM4, and CMCC-
CM) GCMs were downloaded from the CMIP5 data portal (https://esgf-node.llnl.gov/
projects/cmip5/, accessed on 20 June 2018) for the period 1960–2005, and initialized at
1960, 1965, 1970, and so on, i.e., every five years up to 2005. The names of the models,
spatial resolutions, and the available historical runs are given in Table 1.

Table 1. List of models (GCMs) used as additional regressors in this study.

Modelling Centre
(or Group)

Resolutions
(Lon × Lat)

Initialization Year (1960–2005)

60 65 70 75 80 85 90 95 00 05

Number of Ensembles

EC-EARTH (1.125 × 1.1215) 14 14 14 14 14 14 14 14 10 18
MRI-CGCM3 (1.125 × 1.1215) 06 08 09 09 06 09 09 09 09 06
MPI-ESM-LR (1.875 × 1.865) 10 10 10 10 10 10 10 10 10 10
MPI-ESM-MR (1.875 × 1.865) 03 03 03 03 03 03 03 03 03 03

MIROC4h (0.5625 × 0.5616) 03 03 03 06 06 06 06 06 06 06
MIROC5 (1.4062 × 1.4007) 06 06 06 06 04 06 06 06 06 06
CanCM4 (2.8125 × 2.7905) 20 20 20 20 20 20 20 20 20 20

CMCC-CM (0.75 × 0.748) 03 03 03 03 03 03 03 03 03 03

An observed monthly gridded rainfall of 0.05◦ × 0.05◦ (5 km× 5 km) spatial resolution
for the entirety of Australia was collected from the Australian Bureau of Meteorology (BoM).

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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The BoM produces the gridded data using the Australian Water Resources Assessment
Landscape model (AWRA-L V5) [34].

2.3. Data Processing

In the first step, all the available ensembles of individual initializations were averaged
to produce a single dataset, and then were subset for the Australian region. Secondly,
the averaged ensembles were spatially interpolated, using the second-order conservative
(SOC) method, into 0.05◦ × 0.05◦ spatial resolution, thus matching the grid used in the
observed data. This study used the SOC method as it conserves the precipitation flux
while sub-gridding the GCM data [35]. It is also marked as the most suitable spatial
interpolation method, especially for the GCM-derived gridded dataset [36]. Then, both
the models and observed datasets were subset for the Brisbane River catchment. Every
initialization spanned a dataset of 10 years that overlapped 5 years with the dataset of the
next initialization. In the third step, the last five years of each initialization, except 2005,
were discarded and the first five years were combined to produce a single time series from
1961 to 2015. For the initialization year 2005 (2006–2015), the whole dataset was taken
instead of the first five years to make the dataset longer.

2.4. Model Description

This study used the FBP model to predict monthly rainfall for a decade (2006 January–
December 2015) and then the performance of the FBP’s predicted values was compared
with the predictions from six different machine learning regression models: Multi-Layer
Perceptron (MLP), Epsilon-Support Vector Regression (SVR), Light Gradient Boosting
(LGB), Extreme Gradient Boosting (XGB), Random Forest (RDF), and a combination of
these five models. The descriptions of all models are given below.

2.4.1. Facebook Prophet

FBP is a fully automatic open-sourced time series forecasting library developed by
Facebook’s core data science team. Though Prophet was built for business purposes, it
works for observed hourly, daily, weekly, and monthly time series data that has strong
seasonality. It predicts time series as a generalized additive model combining the trend
function, seasonality function, holiday effects, and an error term as given in Equation (1)
below.

Y(t) = g(t) + s(t) + h(t)+ ∈t (1)

where g(t) and s(t) represent trend and seasonality, respectively, whilst h(t) presents the
holiday effect and ∈t is the error term. As this study uses the monthly rainfall data as an
input variable, therefore, holiday effect will be invalid here. FBP provides a decomposition
regression model that is extendable and easy to use for time series forecasting with a
wide range of tuneable parameters. It has functionality for cross-validation to measure
forecasting errors and provision to include additional regressors and customize seasonality.
The additional regressor feature enhances forecasting accuracy, makes the prediction pro-
cess more transparent, and helps to tune the prediction process. The additional regressor
must be a separately forecasted variable that should be available for both the training and
prediction periods.

Prophet can handle outliers without any requirement for imputation or missing data,
but the best way to handle outliers is to remove them. Taylor and Letham [37] described
further information about Prophet for simulating historical forecasting. Compared to
other data-driven approaches, Prophet has two main advantages: (i) Prophet automatically
detects changes in trends by selecting change points from the historical data, and it is
much more straightforward to create a reasonable, accurate forecast; (ii) its predictions
are customizable in ways that are intuitive to non-expert users, and it does not need
rigorous data pre-processing. It is easy to use and the components are easily explainable.
Its predictions are decent; however, in some cases, certain parameters need to be tweaked
compared to the default setting, but that can be easily completed.
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2.4.2. Multi-Layer Perceptron (MLP) Regressor

MLP is a class of feedforward artificial neural network (ANN) that utilizes a super-
vised learning algorithm. It learns by training the dataset using backpropagation with no
activation function in the output layer.

2.4.3. Epsilon-Support Vector Regression (SVR)

SVR is also a supervised learning algorithm that acknowledges the presence of non-
linearity in the data and provides a proficient prediction using the similar principle of
Support Vector Machines (SVMs). The basic idea of SVR is to find the best-fit line that
has the maximum number of points. To fit the best line within a threshold, SVR tries to
minimize the errors between the real and predicted values.

2.4.4. Gradient Boosting

Boosting is a strategy that combines several simple models into a composite single
model. Gradient boosting is a type of boosting and a very popular supervised machine
learning technique for regression problems. Light Gradient Boosting (LGB) uses histogram-
based learning algorithms following a leaf-wise splitting approach whilst XGB (Extreme
Gradient Boosting) uses a level-wise tree growth approach. XGB is a more regularized form
of gradient boosting that delivers a more accurate prediction by using the strengths of the
second-order derivative of the loss function.

2.4.5. Random Forest Regressor (RDF)

RDF is a supervised learning algorithm that uses the ensemble learning method for
regression problems. RDF builds multiple decision trees during the training period and
merges them to obtain a more stable and accurate prediction. To control the overfitting
problem, a bootstrap technique is used in RDF.

In addition to the five regression models, another combined regression model was
developed by stacking the above-mentioned five regression models (referred to as STC)
and was used to predict the rainfall for the same period of 2006–2015.

For the predictions, at first, all models were trained from 1911/1961 to 2005 and then
predicted for 2006–2015. This study considered two different cases: (i) only the observed
data, to demonstrate the data-driven approach (Case-I); (ii) observed data along with
GCM-derived precipitation data as the additional regressor (Case-II) to demonstrate the
combination of the data and knowledge-driven approaches. For ease of comparison, each
of these two cases was further divided into two different subcases; Case-I (a, b) and Case-II
(a, b). For Case-I, the FBP model was trained from 1911 (referred to as Case-I (a)) and
1961 (referred as Case-I (b)). For Case-II, two different modes of additional regressors
were added to FBP. The first additional regressor was the arithmetic mean of the best five
GCMs: MIRCO4h, EC-EARTH, MRI-CGCM3, MPI-ESM-LR, and MPI-ESM-MR (henceforth
referred to as MMEM) among the eight considered GCMs in Table 1. The arithmetic mean
of these five models showed comparatively better performance compared to the arithmetic
mean of the other combinations of the selected models [38]. FBP with MMEM as an
additional regressor is referred to as Case-II (a), whilst FBP with all eight GCMs (in Table 1)
as eight individual regressors (together) is referred to as Case-II (b). As the CMIP5 decadal
data are available since 1961, Case-II and all regression models were trained from 1961 to
2005. For training the regression models, GCM-derived precipitation (MMEM) was used
as the independent variable (feature) and corresponding observed data were used as the
dependent variable (target variable). After training the regression model from 1961 to 2005,
GCM-derived data from 2006 to 2015 was given to the trained regression models to predict
the dependent variable (the observed data).

However, to train the model, the most important task was to optimize the model
parameters. To optimize the models’ parameters, a wide range of parameter values were
given and the best parameters combinations were chosen based on the minimum Mean
Absolute Errors (FBP) using the Scikit-learn parameter grid function. For FBP, the opti-
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mization of the parameters’ values was performed at a single grid point (latitude 27.50 S
and longitude 153.050 E, henceforth referred to as Point-I). The same parameter values
were then applied to the two other points. The multiplicative seasonality function with cap
and floor values of 600 mm and 0 mm, respectively, was used for PFB prediction. For the
regression models, parameters were optimized for all three points and MMEM was used for
training and prediction purposes. In the training process, the regression models eventually
developed transfer functions (GCMs to observed values) using the best combination of the
used parameters (see Table S1) based on the minimum mean squared errors after going
through cross-validation 10 times. These transfer functions, obtained from the training
period, were then used to transfer the GCM data (2006–2015) to the target variable (referred
to as predated data).

As Prophet performs better without outliers, the monthly rainfall values above 250 mm
in the observed dataset were set to 250 and zero values were replaced by 1.0 mm. Note that
Prophet starts prediction from its training period and continues to predict the future values
for the specified period. In addition to the predicted values, it also provides upper and
lower limits of the predicted values along with other statistical parameters. The preliminary
results revealed that FBP could not reproduce upper (in summer) and lower extreme
rainfall (in winter). It also had a correction factor of 0.85 for July and August, 1.15 for
December, and an average of the upper limit and the predicted values were employed for
January and February. These correction factors were selected based on a trial-and-error
basis as well as the performance of the FBP model with the historical prediction (training
period) at different randomly selected grids within the Brisbane River catchment. The
final predicted values were then examined using four different skills: Pearson Correlation
Coefficient (PCC), Anomaly Correlation Coefficient (ACC), Index of Agreement (IA), and
Mean Absolute Error (MAE). A brief description of the skill tests is given below, and the
detailed descriptions can be found in [39].

2.5. Skill Tests
2.5.1. Pearson Correlation Coefficient (PCC)

PCC is a very commonly used performance metric that measures the linear correlation
between two datasets. Here, it is used to measure the linear correlation between the
predicted and observed values. Its value varies between −1 and 1 (perfect correlation).

PCC =
∑N

t=1
(

Pt − P
)(

Ot −O
)√

∑N
t=1
(

Pt − P
)2
√

∑N
t=1
(
Ot −O

)2
(2)

where P and O present the predicted and observed values, respectively, and this notation
will be the same for the following skill tests also. Bars over the predicted

(
P
)

and observed
(O) values represent the mean of the predicted and observed values, respectively. N is the
maximum lead time (e.g., the maximum number of months—120).

2.5.2. Anomaly Correlation Coefficient (ACC)

ACC was suggested by Wilks [40] for measuring the correlation between the anoma-
lies of two datasets. Here, ACC is used to measure the temporal anomaly correlation
between the anomalies of the predicted and observed values. Anomalies are calculated by
subtracting the mean (C, mean of the observed values over the entire prediction period)
from both the predicted and corresponding observed values.

ACC =
∑
{
(P− C)−

(
P− C

)}
∗
{
(O− C)−

(
O− C

)}√
∑(P− C)2

√
∑(O− C)2

(3)

ACC values range from zero to 1.0 and higher values of ACC do not represent the
higher accuracy of the prediction values but the anomalies.
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2.5.3. Index of Agreement (IA)

Wilmot [41] suggested the IA for measuring the accuracy of predicted data based on
the corresponding observed values. IA values are bounded between 0 and 1 where the
value closer to 1 presents the more efficient prediction.

IA = 1− ∑N
t=1(Pt −Ot)

2

∑N
t=1 (|Pt −O′|+ |Ot −O′|)2 (4)

Here, O′ presents the mean of every individual year of the predicted period.

2.5.4. Mean Absolute Error (MAE)

MAE measures the average magnitude of errors and the differences between the
predicted and observed values. MAE values range from 0 to ∞ where the lower value
indicates higher accuracy and vice versa.

MAE =
1
N

N

∑
t=1
|Pt −Ot| (5)

3. Results and Discussion

There are 496 grids of 5.0 × 5.0 km spatial resolution available in the Brisbane River
catchment. This study predicted monthly rainfall for a decade at three different locations
(see Table 2) closest to the automated weather stations operated by the Australian Bureau
of Meteorology. Rainfall predictions for a few months, seasons, and to some extent, for a
few years are commonly seen in the literature. This study predicted rainfall for a decade
because of the additional regressor for a decadal time scale that was derived through the
GCMs that contributed to the decadal experiment of CMIP5. In Section 1, FBP’s predictions
of different cases are compared and assessed through different skill tests. In the second
part, the performances of FBP for the monthly rainfall predictions are compared with the
performance of six different regression models.

Table 2. Comparison of skills and total rainfall prediction among the different cases of FBP models.

Location (Lon/Lat) Cases
Skills Under and Overestimation of Total Rainfall (%)

MAE PCC ACC IA 1Y 3Y 5Y 8Y

Point-I
(153.05 E/27.50 S)

I-(a) 53.6 0.549 0.536 0.615 35.9 14.6 −7.2 −11.2

I-(b) 55.9 0.526 0.418 0.491 11.9 −5.94 −24.6 −28.7

II-(a) 54.9 0.533 0.517 0.622 33.5 15.1 −8.34 −12.8

II-(b) 55.1 0.528 0.488 0.577 24.8 5.25 −16.0 −19.3

MMEM 58.11 0.434 0.433 0.510 48.6 35.6 5.64 −3.1

Point-II
(152.0 E/27.0 S)

I-(a) 40.8 0.497 0.496 0.603 50.2 26.5 2.12 −10.4

I-(b) 41.0 0.484 0.484 0.581 50.7 27.1 2.46 −6.4

II-(a) 40.8 0.489 0.486 0.593 47.3 26.3 0.53 −8.4

II-(b) 39.8 0.519 0.517 0.611 38.5 22.7 −1.42 −8.2

MMEM 41.4 0.494 0.493 0.612 58.2 39.3 13.8 −5.6

Point-III
(152.05 E/27.30 S)

I-(a) 46.1 0..491 0.490 0.588 54.4 24.1 3.4 −6.7

I-(b) 48.1 0.471 0.470 0.583 65.5 32.1 10.6 −0.15

II-(a) 46.9 0.464 0.460 0.567 51.7 23.1 1.1 −9.9

II-(b) 45.2 0.490 0.485 0.580 44.6 18.7 −1.6 −10.2

MMEM 44.7 0.489 0.474 0.571 48.7 23.9 −0.8 −14.2
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3.1. Prediction Using FBP

Figure 2 presents the comparison between observed and FBP-predicted monthly
rainfall values of different cases at Point-I, where Case-I presents the data-driven approach,
MMEM presents the knowledge-driven approach, and Case-II presents the combination of
the knowledge and data-driven approaches. From the comparison, it is evident that FBP
can reproduce seasonal variability with better performance when producing dry events,
but none of the cases of FBP could reproduce the extreme peak values of the observed
rainfall.

Figure 2. Comparison of FBP-predicted monthly rainfall of different cases with the corresponding
observed values.

However, Case-II (a) showed comparatively better performance to catch the upper
peaks, followed by Case-I (a). For the dry events, Case-II showed a considerably better
resemblance with the observed values compared to Case-I. This means prediction skills
improve, especially in dry events, when the combination of the knowledge and data-driven
approaches is employed. These improvements were also observed in the skill tests of all
considered cases. Table 2 presents the different skill test results and the percentage of over
and under prediction of total rainfall, the cumulative sum over the different periods, and
different cases of FBP along with MMEM at three selected points.

Comparing the predicted values and their skill tests at all three points, it is evident that
Case-I (a) showed comparatively better skills and a lower percentage of under/over predic-
tion of total rainfall than Case-I (b). This is due to the higher training period (1911–2015)
of Case-I (a), which was about double the training period of all other cases. This means,
with a higher training period, FBP can reach a better prediction performance. Among the
cases of similar training periods, Case-II (a) showed comparatively better skill scores at
Point-I where the FBP model parameter values were optimized. However, at points II and
III, Case-II (b) showed higher skills than Case-II (a). The better performance of Case-II (b)
may be due to the involvement of a range of climate responses provided by the different
GCMs as individual regressors, or their higher skills than the MMEM. On the contrary, the
better skills of Case-II (a) at Point-I may be either due to the better skills of the MMEM that
guided FBP as an additional regressor, or the tuning of the FBP parameters (at the other
two points, the FBP models’ parameter values were not tuned).

It is difficult to attach here any valid reason behind why Case-II (b) performed better
in the other two points but not at Point-I, as no comparison was conducted during the
performance of MMEM and all selected GCMs between the points. Anyway, Case-II (either
a or b), as the combination of the knowledge and data-driven approaches, provided better
prediction skills than only the data-driven approaches. From the predicted values and their
skill comparisons at all three selected points, this study reveals that the skill improvement
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of FBP predictions with the combination of the knowledge and data-driven approaches
was due to better capturing the dry events, and doing so even better than the MMEM
(Figure 3). For reproducing the peak values (upper extremes), the knowledge-driven
approach (MMEM) was found to be better than the FBP predictions. From Figure 3, it can
be observed that, for the dry events (lower values), FBP predictions showed a comparatively
better resemblance with the observed values and worse predictions for the upper peaks
(wet events). For capturing the dry events, the combination of the knowledge and data-
driven approaches was found to be better than any of the individual approaches; Case-II
(b) was only slightly better than II (a) in terms of all tested skills, as well as total rainfall
prediction over different time spans.

Figure 3. Comparison of the resemblance of dry and wet events produced by FBP and MMEM.

3.2. Prediction Using Regression Models

A comparison of monthly rainfall prediction at Point-I by five supervised machine
learning regression algorithms and their stacking models (STC) using MMEM as the feature
is presented in Figure 4. From the comparison, it can be observed that the regression
models were also able to reproduce seasonal variations with very little improvement in
reproducing the lower extremes compared to the MMEM. This study also used all selected
models as independent variables, but the results were not as good as the MMEM. For this
reason, only the skills of the regression models using MMEM as a feature are presented
here. From the comparisons, it can be observed that all regression models, except RDF,
showed similar skills in monthly rainfall prediction, among which MLP and SVR were
comparatively better than the others (see Table 3). From the comparison of the predicted
monthly rainfall values and the skills tests, this study finds that the regression models
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showed little improvement in reproducing the lower extremes compared to the MMEM,
and the reverse in reproducing the peak values (upper extremes).

Figure 4. Monthly rainfall predicted from different regression models.

Table 3. Skills comparison of different regression models.

Models
Point-I Point-II Point-III

MAE PCC ACC IA MAE PCC ACC IA MAE PCC ACC IA

MLP 57.1 0.430 0.371 0.445 39.3 0.480 0.450 0.515 43.5 0.476 0.427 0.494
SVR 57.6 0.430 0.361 0.418 39.3 0.481 0.447 0.516 43.5 0.478 0.430 0.487
LGB 56.6 0.432 0.374 0.442 39.5 0.469 0.432 0.510 43.7 0.466 0.425 0.493
XGB 57.2 0.427 0.370 0.439 39.7 0.451 0.417 0.503 44.1 0.444 0.410 0.484
RDF 57.2 0.426 0.369 0.441 39.9 0.427 0.372 0.433 44.0 0.421 0.359 0.412
STC 57.1 0.434 0.365 0.435 39.1 0.483 0.425 0.475 43.4 0.464 0.405 0.464

FBP(II-a) 54.9 0.533 0.517 0.622 40.9 0.489 0.486 0.593 46.9 0.464 0.460 0.567
MMEM 58.1 0.434 0.433 0.510 41.4 0.494 0.493 0.612 44.7 0.489 0.474 0.571

In reproducing the lower extremes, FBP showed better performance than the regression
models, and this was the same even for the upper extremes. Note that the correction factors
are employed in FBP predictions, but no such correction factors are considered for the
regression models. However, the reason behind the better performance of FBP to catch
the dry events could be due to employing the correction factor or due to choosing the
multiplicative seasonality function, or a combination of both, enabling FBP to reproduce
wider seasonal variation compared to the regression models [42]. The skill test results
showed little weak prediction where IA values varied between 0.5 and 0.62, and MAE
values varied between 40 and 50. The main reason behind these weak skills was that there
were very frequent extreme peaks in the observed values (see Figure 2 or Figure 4) which
were used to measure the skills. Another reason may be the comparatively shorter training
period (1960–2005) where FBP was not familiar with the rainfall values above 250 mm for
the target variable during the training process, as these were set to 250 mm to remove the
outliers from the observed datasets.

Upon comparing Figures 3 and 5, it can be seen that FBP and the regression models
showed a comparatively better resemblance of the lower extreme values (dry events) than
the MMEM. Note that GCMs are imperfect replicas of real-world phenomena and contain
systematic biases [43]. They intend to overestimate the wet events and underestimate the
dry events [44,45]. GCM outputs need rigorous correction before application [46–49]. This
study reveals that rainfall prediction at the local level using FBP, using a combination of
both GCMs and observed data, would enhance the overall prediction accuracy. A longer
training period using a longer period of GCM-derived hindcast data may enable FBP to
provide better skills in reproducing dry events, which was seen in the first case (Case-I).
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Note that this study used two different types of datasets (GCMs and observed) of the same
time span and followed a supervised training approach where known observed values were
used for both the training and the prediction period (for comparison with the predicted
values). As no real future data were predicted here, one can consider the training period as
verification and the assessed prediction skills as validation.

Figure 5. Comparison of the resemblance of dry and wet events produced by regression models.

Every individual future prediction model, either an ANN or any ML algorithm, is
different, and shows different performance depending on function, tuning parameters, and
the variables considered for predictions. In addition, every individual precipitation time
series is different at different geographical locations. For the prediction purpose, researchers
used different models with different input variables and data pre-processing techniques.
Then, performances were assessed based on the corresponding observed values. That is
why it is difficult to compare and contrast different types of models for different regions
and periods with the results obtained in this study.

The early prediction of upper and lower extremes can help in managing floods and
droughts, respectively. However, in this study, it was observed that neither the FBP model
nor the ML regression model could reproduce extreme wet events. Rather, they could
reproduce the dry events considerably better than the wet events. Reproducing the dry
events is also important to agriculture-dependent countries such as Australia, where the
most variable climate exists. In Australia, a typical major drought in a season may reduce
agricultural production by about 10% and gross national product by 1% [50]. This study will
be beneficial for: water resource managers assessing future water availability; managing
agriculture and agricultural-dependent businesses; and other water-related stakeholders
planning and developing infrastructures.
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4. Conclusions

Rainfall prediction is highly important from both social and economic perspectives.
Predictions through GCMs and other time series models have been seen individually, but
the application of GCM-derived precipitation together with observed values in a time
series model on a decadal scale has not yet been found. On the contrary, as a relatively new
time series forecasting library, the application of Facebook Prophet in rainfall prediction
can hardly be found in the literature. For time series data, which have strong seasonality,
Facebook Prophet works well for future prediction. As climate variables show seasonality
over the cycle of a year, this study aimed to predict monthly rainfall using a combination
of both GCM-derived and observed data through the Facebook Prophet model. In doing
so, this study used historically observed monthly rainfall as the input and GCM-derived
monthly precipitation from the CMIP5 decadal experiment as an additional regressor.
Multiple additional regressors were implemented and compared with the performance of
a single additional regressor. A few correction factors were introduced for the predicted
values of different months that enabled FBP to provide better prediction accuracy. From
the comparison of skills, this study finds that the combination of both GCM-derived and
observed values gives better prediction accuracy compared to predictions based on the
observed data only. Using GCM-derived data as an additional regressor guided the FBP
model for future prediction. GCM-derived data includes not only scientific understanding,
but also the historical records that guided FBP to come up with higher prediction accuracy.
Based on the outlined skills assessments, the following conclusions are drawn.

(i) FBP can reproduce dry events considerably better than wet events. This may be
due to a better understanding of FBP of dry periods through the training and its
multiplicative seasonality function;

(ii) Following the combination of GCM-derived data (as an additional regressor) and the
corresponding observed values, FBP should be able to reproduce future rainfall with
higher prediction accuracy than the predictions based on the observed values only;

(iii) A higher number of regressors will provide comparatively better prediction accuracy
than a single additional regressor. In this case, a longer period of GCM hindcast data
would elicit a higher prediction accuracy.

However, this study compared the performance of FBP with six regression models for
the same places and same datasets, and found that FBP outperformed them. This study
highly encourages the cross-validation of a similar approach by using different forms and
architecture of deep ANNs that may increase prediction accuracy by utilizing different
tuneable features.
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