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Abstract: In this study, monthly streamflow and satellite-based actual evapotranspiration data (AET)
were used to evaluate the Soil and Water Assessment Tool (SWAT) model for the calibration of
an experimental sub-basin with mixed land-use characteristics in Athens, Greece. Three calibration
scenarios were performed using streamflow (i.e., single variable), AET (i.e., single variable), and
streamflow–AET data together (i.e., multi-variable) to provide insights into how different calibration
scenarios affect the hydrological processes of a catchment with complex land use characteristics. The
actual evapotranspiration data were obtained from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). The calibration was achieved with the use of the SUFI-2 algorithm in the SWAT-CUP
program. The results suggested that the single variable calibrations showed moderately better perfor-
mance than the multi-variable calibration. However, the multi-variable calibration scenario displayed
acceptable outcomes for both streamflow and actual evapotranspiration and indicated reasonably
good streamflow estimations (NSE = 0.70; R2 = 0.86; PBIAS = 6.1%). The model under-predicted
AET in all calibration scenarios during the dry season compared to MODIS satellite-based AET.
Overall, this study demonstrated that satellite-based AET data, together with streamflow data, can
enhance model performance and be a good choice for watersheds lacking sufficient spatial data
and observations.

Keywords: SWAT; streamflow; MODIS; evapotranspiration; hydrological modeling; multi-variable calibration

1. Introduction

Hydrological models have been extensively utilized to estimate the consequences of
climate variability, land management practices, and policy directions at various temporal
and spatial scales [1]. Model development requires a good comprehension of the watershed
characteristics to achieve accurate model simulation [2,3]. Nonetheless, most basins are
ungauged or inadequately gauged [4]. The absence of adequate observations affects the
calibration process and further model improvement [5].

Hydrological model calibration is typically achieved with flow data at the outlet of the
basin by choosing the most suitable values for input parameters and comparing simulated
outcomes with observed data [6]. However, calibration focused on one variable only may
aggregate all watershed processes together and intensify the occurrence of the equifinality
problem (i.e., multiple parameter sets can reproduce a similar output) [7–9]. Using multiple
variables (e.g., streamflow, evapotranspiration, soil moisture) in the calibration process
attempts to overcome equifinality across multiple parameter sets [10–12].

In addition, unknown procedures to the modeler, such as unidentified discharges, agri-
cultural activities, and dumping of construction materials, interfere with the natural behav-
ior of the system and increase the uncertainty in streamflow calibration [13,14]. Therefore,
incorporating remote sensing data in model calibration can increase model accuracy, cap-
ture the spatial and temporal heterogeneity of hydrological processes, and be a promising
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alternative for catchments lacking sufficient observations [13,15,16]. Satellite-based actual
evapotranspiration (AET) data can be used to constrain hydrological parameters associated
with the water balance [17,18]. For instance, a study in southern India [13] used MODIS
satellite-based AET data to calibrate the SWAT model and suggested that satellite-based
AET data with a monthly temporal resolution can be used to reduce equifinality obtained
from traditional streamflow calibration. In addition, a study in Myanmar [16] calibrated the
SWAT model using (Global Land Evaporation Amsterdam Model (GLEAM) satellite-based
AET data and measured streamflow. This study suggested that constraining the model with
actual evapotranspiration and streamflow data (i.e., multi-variable calibration) can produce
good results for both variables. Finally, a study in a catchment in Michigan [18] calibrated
the SWAT model using observed streamflow data and remotely sensed based AET data
from the Simplified Surface Energy Balance (SSEBop) model and the Atmosphere-Land
Exchange Inverse (ALEXI) model. The results of this study suggested that incorporating
satellite-based AET data in the hydrological model calibration can maintain a satisfactory
performance for streamflow while improving evapotranspiration estimations.

The complexity of spatially distributed model applications in mixed land-use water-
sheds (i.e., blended combinations of land use) has been explored in past studies [19–23].
Nevertheless, the use of remote sensing data for hydrological model calibration in mixed
land-use watersheds has not yet been thoroughly analysed. Urban and peri-urban environ-
ments are characterized by high variability in land use, soil types, management practices,
and diverse hydrological processes, which increase issues of model uncertainties and make
the calibration process challenging [20,24]. The SWAT model is a physically-based model
that incorporates the spatial distribution of land use, topography, and soil and allows dif-
ferent hydrological processes in a watershed to interconnect [6]. This makes the model able
to estimate how the hydrological components are affected by land management methods in
catchments with complex land uses and heterogeneity in soil formations. This study used
streamflow and satellite-based actual evapotranspiration (AET) data to calibrate the SWAT
model of an urban/peri-urban catchment characterized by a typical Mediterranean climate.
Three calibration scenarios were developed using (i) streamflow data, (ii) AET data, and
(iii) both streamflow and AET data. This study aims to (i) investigate which parameters
are more sensitive in the single variable and multi-variable scenarios; (ii) assess the model
performance of the different scenarios; (iii) examine the outcomes of major hydrological
components between the single-variable and multi-variable scenarios, and (iv) evaluate the
suitability of remote sensing data for streamflow simulation. This study is the first attempt
to simulate the hydrological components of an experimental sub-basin with complex land
use characteristics and will provide insights into how different calibration scenarios affect
the hydrological processes for sustainable water resource management. The major innova-
tion of the proposed methodology is that it has been developed for a typical Mediterranean
peri-urban area and can be easily applied to catchments with similar hydrological and
geomorphological characteristics.

2. Materials and Methods
2.1. Description of the Study Area

The study site is a sub-basin (140 km2) of the Kifissos River basin (380 km2), Athens,
Greece (Figure 1). The Kifissos River’s route is almost 22 km, of which at least 14 km are
within an urban area [25]. The elevation varies from 1399 m in the northern part to 94 m
in the southern part. The study area has as mild Mediterranean climate [26]. The mean
annual temperature is 16.4 ◦C, and the mean annual rainfall is 643 mm [27]. The mean
annual actual evapotranspiration is 483 mm. The annual evapotranspiration ranges from
551 mm (upstream) to 395 mm (downstream) (Figure 2a).
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Figure 2. Kifissos River sub-basin (a) MODIS average annual evapotranspiration, (b) land use, and
(c) soil types. The study area includes 25 sub-basins of which the sub-basin numbers (1–11) indicate
the sub-basins used for actual evapotranspiration calibration.

The sub-basin is an urban/peri-urban area. The dominant land cover types are resi-
dential areas (34.1%), shrubland (15.9%), and agriculture (12.4%) (Figure 2b) [28]. Table A1
displays the land use categories of the study area at catchment level and Table A2 displays
the land use categories of the study area at sub-basin level. The major soils are Cambisols,
Regosols, Leptosols, and Luvisols [29]. These formations are generally high in clay and
sand contents with good soil permeability (Figure 2c).

2.2. Data Sources

The input data include a digital elevation model (DEM) at 30 m resolution from the
website of the US Geological Survey [30], a land use map from the 100 m 2018 Corine
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Land Cover map [28], a soil map from the Food and Agriculture Organization Digital
Soil Map of the World (30 arcseconds resolution) [31], and meteorological data from the
National Observatory of Athens [27]. Daily rainfall data were obtained from 2015 to 2019.
The daily measured streamflow data at the basin outlet (Monastiri gauging station) were
available from 2018 to 2019 and were retrieved from Open Hydrosystem Information
Network [32]. The actual evapotranspiration (AET) data were collected from the Moderate
Resolution Imaging Spectroradiometer Global Evaporation [33] with a pixel resolution of
500 × 500 m [34].

2.3. The SWAT Hydrological Model

The SWAT (Soil and Water Assessment Tool) program is an open-source, physically
based, continuous-time river basin model developed to estimate the influence of manage-
ment practices on discharge, sediments, and agriculture in large complex basins [6,35]. The
model runs on a daily time step, and its main variables are hydrology, weather, soil, land
use, sediments, nutrients, bacteria, and pathogens.

In SWAT, the basin is divided into sub-basins, then into hydrologic response units
(HRUs) with unique land use, soil, and slope characteristics [36]. The water balance is
computed separately for each hydrologic response unit [37]. The water balance equation is
estimated using the following (Equation (1)):

SWt = SWo + ∑t
i=1

(
Rday − Qsur f − Ea − Wseep − Qgw

)
, (1)

where SWt is the soil water content (mm), SWo is the soil water content on day i in the
previous period (mm), t is the time step (days), Rday indicates the amount of precipitation
on day i (mm), Qsur f represents the surface streamflow on day i (mm), Ea indicates the AET
on day i (mm), Wseep is the percolation and bypass flow on day i (mm), and Qgw represents
the return flow on day i (mm).

2.4. Model Setup

The QGIS interface of the SWAT model was utilized for model configuration [38]. The
watershed was delineated into 25 sub-basins and 386 hydrological response units (HRUs).
A 10% threshold was used for land use, soil, and slope to limit the influence of minor soil
and land use types for each sub-basin. The Corine Land Cover land use classes [28] were
converted to the SWAT land use classes [6]. The model was simulated from 2015 to 2019
and run on a daily time step. Two years (1 January 2015–31 December 2016) were set as
a warm-up period. The potential evapotranspiration was calculated using the Penman–
Monteith method, the surface runoff was estimated using the curve number method [39],
and the channel routing was computed using the variable storage coefficient method [40].

2.5. Model Calibration and Sensitivity Analysis

The model was calibrated using the Sequential Uncertainty Fitting Algorithm (SUFI-2)
in the SWAT-Calibration and Uncertainty Program (SWAT-CUP) [41]. In SUFI-2, the
calibrating parameters are set according to literature and sensitivity analysis, and then the
parameters sets are generated using Latin hypercube sampling (LHS) [14]. The significance
of each parameter is defined with a t-test. Parameters with large t-stat and small p-value
(p-value < 0.03) are identified as sensitive parameters [42].

Three calibration scenarios were conducted using monthly time series of streamflow
from one station at the outlet of the study site and the MODIS satellite-based actual
evapotranspiration (AET) from eleven sub-basins based on data availability [33]. The
daily streamflow was converted to monthly for comparison reasons. The monthly average
values were calculated by a resample function, and the missing values were estimated
by an interpolation function using the linear method (Python pandas library). The actual
evapotranspiration data from MODIS were in a geotiff format (raster). In addition, to
compare the MODIS satellite-based AET (pixel values) to the SWAT simulated AET, an
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area-weighted averaging approach in QGIS (zonal statistics) was performed to create the
aggregated monthly values for each sub-basin [23,43].

The scenarios include: (i) streamflow calibration (i.e., single variable), (ii) AET calibra-
tion (i.e., single variable), and (iii) both streamflow and AET calibration (i.e., multi-variable).
Based on data availability, streamflow was calibrated from 2018 to 2019, and evapotran-
spiration was calibrated from 2017 to 2019. All the available data were used for model
calibration to represent the wet and dry conditions properly (2017: 487 mm, 2018: 675 mm,
2019: 765 mm). The calibration process used 20 parameters linked to streamflow and
evapotranspiration (Table 1), and their sensitivities were estimated. The original value
ranges of the parameters and their sensitivities for each calibration scenario are displayed
in Table 2. In the single variable calibrations, the two variables (i.e., streamflow and ac-
tual evapotranspiration) were calibrated separately, and the performance of the second
variable was evaluated. In the multi-variable calibration the two variables were calibrated
together using a multi-variable objective function and assigning equal weights to each
variable [16,44]. The Nash–Sutcliffe model efficiency (NS) was used as an objective function,
and 900 simulations per iteration were performed and up to three iterations.

Table 1. Calibrated parameters. The method “r” (relative) indicates multiplying the current parameter
value by a given value, the method “v” (replace) indicates replacing the current parameter value, and
the method “a” (absolute) indicates adding a given value to the current parameter [14].

Category Parameter Description

Surface runoff r_CN2.mgt Curve number
v_SURLAG.bsn Surface runoff lag coefficient

Groundwater/Baseflow v_ALPHA_BF.gw Baseflow alpha factor
a_GW_DELAY.gw Groundwater delay
v_RCHRG_DP.gw Deep aquifer percolation fraction

v_REVAPMN.gw Threshold depth of water in the shallow aquifer for
“revap” to occur

v_GW_REVAP.gw Groundwater “revap” coefficient

v_GWQMN.gw Threshold depth of water in the shallow aquifer
required for return flow to occur

Lateral flow r_LAT_TTIME.hru Lateral flow travel time
r_HRU_SLP.hru Average slope steepness

Channel r_OV_N.hru Manning’s coefficient for overland flow
r_SLSUBBSN.hru Average slope length
v_CH_N2.rte Manning’s coefficient for the main channel
v_CH_K2.rte Hydraulic conductivity of the main channel alluvium

Soil v_ESCO.bsn Soil evaporation compensation coefficient
v_EPCO.hru Plant uptake compensation coefficient
v_CANMX.hru Maximum canopy storage
r_SOL_K.sol Saturated hydraulic conductivity
r_SOL_BD.sol Moist bulk density of the soil layer
r_SOL_AWC.sol Soil available water storage capacity

The model performance of each scenario was further analyzed using the coeffi-
cient of determination

(
R2
)

[45], Nash–Sutcliffe efficiency (NSE) [46], and percent bias
(PBIAS) [47], as shown in Equations (2)–(4).

R2 =

[
∑n

i=1
(
Qobs(i)− Qobs

)(
Qsim(i)− Qsim

)]2
∑n

i=1
(
Qobs(i)− Qobs

)2
∑n

i=1
(
Qsim(i)− Qsim

)2 , (2)

NSE = 1 −
[

∑n
i=1(Qobs(i)− Qsim(i))

2

∑n
i=1
(
Qobs(i)− Qobs

)2

]
, (3)
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PBIAS =

[
∑n

i=1(Qobs(i)− Qsim(i)) ∗ 100
∑n

i=1 Qobs(i)

]
, (4)

where Qobs is the measured streamflow, Qsim is the simulated streamflow on the day i, Qobs
is the mean of measured streamflow, and Qsim is the mean of simulated streamflow. R2

varies from 0 to 1, where 0 indicates no correlation and 1 means perfect correlation and
less error variance. NSE can vary from −∞ to 1, where values ≤ 0 show that the model is
unreliable and values closer to 1 indicate a perfect fit between simulated and measured data.
The best PBIAS value is 0. Positive values show that the model results are underestimated,
and negative values show that the model results are overestimated. Model performance
can be assessed as “satisfactory” for a monthly time step if R2 > 0.60, NSE > 0.50, and
PBIAS ≤ ±15% for watershed-scale models [48].

Table 2. SWAT calibrated parameters and their sensitivities for each calibration scenario. Numbers in
bold indicate the parameters with the highest sensitivity (p-value < 0.03).

Parameters
Initial Ranges Flow Calibration AET Calibration Flow and

AET Calibration

Min Max t-Test p-Value t-Test p-Value t-Test p-Value

CN2 −0.10 0.10 −0.85 0.40 1.25 0.21 −0.53 0.59
SURLAG 0.00 10.00 0.38 0.70 0.64 0.53 1.23 0.22

ALPHA_BF 0.00 1.00 −0.07 0.95 0.47 0.64 −0.46 0.65
GW_DELAY −30.00 90.00 9.89 0.00 −0.82 0.41 9.70 0.00
RCHRG_DP 0.00 0.50 2.78 0.01 −1.24 0.21 2.61 0.01
REVAPMN 800.00 1900.00 0.53 0.60 0.05 0.96 −0.35 0.73
GW_REVAP 0.02 0.20 1.17 0.24 −1.47 0.14 −1.30 0.19
GWQMN 0.00 500.00 0.18 0.86 0.69 0.49 −0.34 0.73

LAT_TTIME 0.00 180.00 18.98 0.00 −0.02 0.99 22.12 0.00
HRU_SLP −0.50 3.00 6.09 0.00 −7.58 0.00 −8.84 0.00

OV_N −0.50 3.00 −0.59 0.56 0.37 0.71 0.66 0.51
SLSUBBSN −0.20 0.20 −2.23 0.03 2.15 0.03 0.17 0.86

CH_N2 0.01 0.30 0.35 0.72 1.56 0.12 1.21 0.23
CH_K2 0.00 127.00 −1.52 0.13 −0.47 0.64 1.60 0.11
ESCO 0.50 0.95 1.70 0.09 29.33 0.00 4.98 0.00
EPCO 0.50 0.95 −0.74 0.46 −5.50 0.00 −0.64 0.52
SOL_K −0.80 0.80 8.43 0.00 −8.24 0.00 −7.85 0.00

SOL_BD −0.30 0.30 10.46 0.00 −7.70 0.00 −8.45 0.00
SOL_AWC −0.05 0.05 −0.34 0.73 0.35 0.72 2.52 0.01

3. Results
3.1. Sensitivity Analysis

The most sensitive parameters for each calibration scenario are shown in Table 2.
Sensitive parameters are identified by p-value less than 0.03. Figure A1 shows the relative
changes of the five most sensitive parameters for each calibration scenario versus objective
function. Most variations of NSE values were found to be in the calibration with streamflow
rather than single evapotranspiration and multi-variable calibrations.

In the streamflow calibration, the parameters with the highest sensitivity were lateral
flow travel time (LAT_TTIME), moist bulk density of the soil layer (SOL_BD), groundwater
delay time (GW_DELAY), saturated hydraulic conductivity (SOL_K), and average slope
steepness (HRU_SLP). These parameters were connected to groundwater flow, runoff
generation, and channel routing. In the AET calibration, the parameters with the highest
sensitivity were soil evaporation compensation coefficient (ESCO), saturated hydraulic
conductivity (SOL_K), moist bulk density of the soil layer (SOL_BD), average slope steep-
ness (HRU_SLP), and plant uptake compensation coefficient (EPCO), which are mostly
related to soil properties. In the multi-variable calibration, the most sensitive parameters
were lateral flow travel time (LAT_TTIME), groundwater delay time (GW_DELAY), aver-
age slope steepness (HRU_SLP), moist bulk density of the soil layer (SOL_BD), saturated
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hydraulic conductivity (SOL_K), and soil evaporation compensation coefficient (ESCO).
These parameters referred to both groundwater flow and soil properties.

3.2. Model Performance Evaluation

The model performance was assessed with criteria recommended by Moriasi et al. [48].
In all three calibration scenarios, the deviations from the observed values start to increase
during the dry season and decline during the wet season. Table 3 displays the model
performance for all three scenarios for all the sub-basins. Figure 3 presents the measured
and simulated hydrographs at the outlet of the catchment (Monastiri gauging station) for
all three scenarios. Finally, Figure 4 shows the measured and simulated AET for the entire
study area at a catchment scale.

Table 3. Model evaluation statistics for each calibration scenario; (a) Streamflow calibration, (b) AET
calibration, and (c) Multi-variable calibration. The location of the sub-basins 1–11 is indicated
in Figure 2a–c.

Variable Station/Sub-Basin
NSE R2 PBIAS (%)

(a) (b) (c) (a) (b) (c) (a) (b) (c)

Streamflow Monastiri station 0.71 0.38 0.70 0.84 0.84 0.86 5.60 8.29 6.10

Evapotranspiration

Sub-basin 1 0.27 0.49 0.18 0.58 0.75 0.57 11.68 11.60 16.70
Sub-basin 2 0.30 0.33 0.28 0.72 0.76 0.76 10.96 12.70 13.80
Sub-basin 3 0.11 0.36 −0.10 0.59 0.69 0.55 15.81 15.00 21.70
Sub-basin 4 0.37 0.34 0.42 0.73 0.75 0.75 8.48 12.50 13.60
Sub-basin 5 0.09 0.28 0.15 0.80 0.78 0.81 3.07 6.10 5.30
Sub-basin 6 0.22 0.35 0.26 0.64 0.74 0.68 9.00 10.70 14.50
Sub-basin 7 −0.17 −0.14 0.19 0.87 0.80 0.86 −12.72 −5.30 −8.40
Sub-basin 8 0.57 0.56 0.69 0.82 0.82 0.83 2.46 6.40 5.40
Sub-basin 9 0.42 0.51 0.56 0.83 0.82 0.79 2.69 7.00 7.00

Sub-basin 10 0.44 0.58 0.52 0.80 0.87 0.81 1.19 6.00 4.00
Sub-basin 11 0.34 0.54 0.63 0.84 0.82 0.83 −0.53 7.70 2.90
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3.2.1. Streamflow Calibration

The streamflow calibration showed good results in general for streamflow (NSE = 0.71;
R2 = 0.84; PBIAS = 5.6%) (Table 3). The results regarding evapotranspiration were unsat-
isfactory for NSE (NSE within −0.17 to 0.57), except for sub-basin 8 (NSE = 0.57), and
satisfactory for R2 and PBIAS (R2 > 0.58; PBIAS within −12.7% to 15.8%). Figure 3 desig-
nates a satisfying match between measured and simulated streamflow except for low flows
during the dry season. However, the temporal dynamics of the hydrograph were generated
correctly. Figure 4 indicates differences between observed and simulated AET. Stream-
flow calibration underestimated evapotranspiration in the wet season and overestimated
evapotranspiration at the beginning of the dry season.

3.2.2. Actual Evapotranspiration Calibration

The AET calibration presented unsatisfactory performance for NSE for sub-basins
2–7 and satisfactory performance for sub-basins 1, 8, 9, 10, and 11 (NSE within −0.14 to
0.58) (Table 3). In respect of R2 and PBIAS, the results were satisfactory for all the sub-
basins (R2 > 0.69; PBIAS within −5.3% to 15%). The performance for streamflow was
unsatisfactory (NSE = 0.38; R2 = 0.84; PBIAS = 8.3%). In particular, the observed and
simulated AET values did not match well. Nevertheless, they showed a well-matched
seasonal variation of evapotranspiration (Figure 4). AET calibration underestimated low
flows and overestimated high flows for the simulation period (Figure 3). Performance
statistics were generally better for streamflow than evapotranspiration in single-variable
calibration scenarios.

3.2.3. Multi-Variable Calibration

The multi-variable scenario, using streamflow and MODIS satellite-based AET, showed
satisfactory performance for streamflow (NSE = 0.70; R2 = 0.86; PBIAS = 6.1%) and un-
satisfactory (sub-basins 1–7) to satisfactory (sub-basins 8–11) performance for evapotran-
spiration (NSE within −0.10 to 0.69; R2 > 0.55; PBIAS within −8.4% to 21.7%) (Table 3).
Simulated and observed streamflow values are much better than those for AET calibration
and similar to streamflow calibration (Figure 3). Results for AET are related to those of
AET calibration, showing underestimation of the simulated values (Figure 4). Compared
to single variable calibration scenarios, multi-variable calibration displayed similar NSE
values obtained from single-variable calibration, and R2 showed good performances (>0.75)
for both variables (Table 3).
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3.3. Major Water Balance Components

The major water balance components (i.e., actual evapotranspiration, water yield, and
precipitation) are displayed in Figure 5. In general, average annual precipitation (643 mm)
was slightly greater than combined water yield (WYLD) and actual evapotranspiration
(AET) values. Actual evapotranspiration contributed a large amount of water loss from the
watershed, about 60% in all scenarios. The total water yield of the multi-variable calibration
is higher than the other two modeling scenarios. In particular, the total water yield was
estimated to be 171 mm for flow calibration, 151 mm for AET calibration, and 186 mm for
multi-variable calibration.
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4. Discussion

In this study, the SWAT hydrological model was used to interpret the behaviour of
an urban/sub-urban environment and analyse its underlying mechanisms. The study
area is a typical Mediterranean catchment prone to natural hazards such as floods, forest
fires and their combined impact. Therefore, the mechanisms governing surface runoff and
the interactions between the hydrological components should be analysed in depth for
these vulnerable areas. The main objective was to investigate which parameters are more
sensitive in a mixed land-use basin and to propose a multi-variable calibration procedure
using both streamflow and satellite-based AET data for SWAT modelling.

The sensitivity analysis results showed that the parameters with the highest sensitivity
for streamflow are connected to groundwater flow, runoff generation, and channel routing,
and for actual evapotranspiration, they are linked to soil properties, respectively (Table 2,
Figure A1). The differences in the sensitivity of the parameters are due to different data
used in the calibration process. Similar outcomes were obtained by Sirisena et al. [16] and
Moriasi et al. [49]. Sirisena et al. [16] concluded that the most sensitive parameters for
evapotranspiration were connected to soil properties. Moriasi et al. [49] pointed out that
the high sensitivity of the soil parameters to AET indicated a connection between actual
evaporation and soil water.

Both variables present a slightly better performance in the single calibrations with
streamflow and evapotranspiration than in the multi-variable calibration (Table 3). Nonethe-
less, the multi-variable calibration produced satisfactory results for both streamflow and
AET and showed reasonably good streamflow estimations (NSE = 0.70). AET showed
the best performance for forests (e.g., sub-basins 1, 8, 9, 10, 11). This indicates that the
MODIS data probably show better performance at simulating forests and semi-natural



Hydrology 2022, 9, 112 10 of 15

areas than in sub-urban areas, including more complex management systems. In addition,
evapotranspiration algorithms are characterized by resolution issues, misclassification of
land use, and data generation uncertainties [50]. Therefore, these algorithms may not
correctly capture the land use changes (especially in sub-urban areas) and the available soil
moisture on the ground.

In most sub-basins, MODIS satellite-based AET and SWAT simulated AET show that
seasonal patterns match well, although the SWAT model under-predicted AET compared
with the MODIS satellite-based AET during the dry season (Figure 4, Table 3). These results
are consistent with those of other studies [51,52]. A study in Morocco [51] and a study in
Iran [52] suggested that the multi-variable calibration can produce good results for both
variables. Nevertheless, the single variable calibrations showed better performance. The
differences for all three scenarios intensify during the dry season and decline during the
wet season (Figures 3 and 4). The underestimation of AET and the low baseflow, especially
during the dry season (Figure 3), could suggest unknown water contributions in the study
area. These deviations are probably also connected to soil replenishment and the crops’
high water demand during the dry season. Furthermore, it is worth mentioning that
MODIS satellite-based AET could include errors and underestimations or overestimations
of the “true” AET, altering the model’s water balance [53]. For instance, the higher MODIS
satellite-based AET values in the AET calibration scenario led to lower water yield values
than the streamflow calibration scenario (Figure 5). Satellite-based evapotranspiration
datasets use sensor-derived parameters (e.g., surface heat flux, latent heat flux) that may
have several uncertainties. Model misrepresentations, errors in the inputs, and spatial and
temporal scaling decrease the efficiency of the algorithms [54].

For both single variable calibrations, the simulated second variable (i.e., AET for
streamflow calibration and streamflow for AET calibration) is not well represented. The
unsatisfactory performance of the second variable in the single variable calibrations indi-
cates the poor representation of the catchment’s water balance. Many studies support that
incorporating satellite data in the hydrological model calibration improved the estimation
of water balance components regardless of the model performance improvement. A study
in China [55] calibrated the SWAT model with GLEAM AET data and streamflow. Although
streamflow only calibration produced reliable results, this approach grouped the hydro-
logical process. Furthermore, a study by Immerzeel and Droogers [13] pointed out that
incorporating AET data in hydrological model calibration reduces equifinality obtained
from traditional streamflow only calibration. The water balance is best reproduced when
both streamflow and AET are used in the calibration process [52]. Several studies [49,56]
reported that satellite AET data could be used to constrain hydrological parameters that
are highly sensitive to evapotranspiration.

In general, the calibration process is challenging because of the uncertainties that exist
due to model simplification, processes that are not accounted by the model, and processes
that are unknown to the modeler [14]. In this study, the main sources of uncertainty are
connected to inaccuracies (i) in the quality of input data (climate, soil, and land cover reso-
lution), (ii) in the model set up (aggregation and interpolation methods), (iii) in the choice
of objective data and parameterization, (iv) observed data, and (v) processes unknown
to the modeler which interfere with the natural system [42]. Observational errors in the
precipitation data, MODIS actual evapotranspiration, and discharge, as well as the effects
of elevation and topography, increase bias and generate variability. For example, errors
in streamflow measurements can vary from 6% to 19% under different combinations of
channel types and measurement techniques [57]. In addition, poor resolution and data
generation uncertainties in evapotranspiration algorithms can induce biases between AET
simulated values and satellite-based AET [17,50,58]. For instance, a study in Ethiopia [50]
estimated the major water balance components of the Upper Blue Nile basin using the
JGrass-NewAge hydrological system and remote sensing data (GLEAM and MODIS AET).
This study concluded that the satellite-based data introduce bias in estimating the water
budget. Another study by [58] conducted a multi-objective validation for West Africa river
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basins using remote sensing data. The results showed that MODIS satellite-based AET
underestimated SWAT-simulated AET in arid areas. Finally, Dile et al. [17] evaluated AET
outputs derived from AVHRR and MOD16 AET datasets using outputs from a SWAT model
for Ethiopia. This study suggested that datasets did not agree well with the precipitation in
regions with a bimodal precipitation pattern. Therefore, careful consideration should be
given to analyzing data from satellite-based products. Further information is necessary to
estimate the uncertainty in model outputs and improve the calibration results at HRU level.

5. Conclusions

This study used monthly streamflow and MODIS satellite-based AET data to calibrate
the SWAT model. Three calibration scenarios were conducted with streamflow, AET,
and streamflow–AET data to evaluate the simulated outputs. The sensitivity analysis
showed that the most sensitive parameters for streamflow are related to groundwater
flow, runoff generation, and channel routing, and for actual evapotranspiration, they
are all connected to soil properties. The model performance results indicated that the
single variable calibrations showed satisfactory performance only for the first variable that
was simulated. The multi-variable calibration showed satisfactory performance for both
streamflow and AET. The SWAT model generally under-predicted AET in all scenarios
compared to MODIS satellite-based AET.

This research showed that combining streamflow and MODIS satellite-based AET data
in the calibration process can improve model performance regarding streamflow and water
balance and contribute to understanding the hydrological processes in a mixed land-use
catchment. Furthermore, the use of satellite data in model calibration, as presented in
this study, can be utilized in catchments lacking measured data or in catchments with
similar hydrological and geomorphological characteristics. Future work should incorporate
discharge, soil moisture, and HRU level AET data in a combined objective function at
a high temporal resolution.
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Appendix A

The following tables display the land use categories of the study area at catchment
(Table A1) and sub-basin level (Table A2).

Table A1. Land use categories of the study area at catchment level.

Corine Classification SWAT Code SWAT Classification (%) Catchment

Industrial or commercial units UCOM Commercial 11.43
Discontinuous urban fabric URLD Residential-Low Density 34.11

Road and rail networks and associated land UTRN Transportation 4.07
Continuous urban fabric URHD Residential-High Density 1.54

Pastures PAST Pasture 0.31
Land principally occupied by agriculture, with

significant areas of natural vegetation AGRL Agricultural Land-Generic 12.39

Broad-leaved forest FRSD Forest-Deciduous 3.11
Coniferous forest FRSE Forest-Evergreen 9.59

Mixed forest FRST Forest-Mixed 7.51
Sclerophyllous vegetation RNGB Range-Brush 15.94

Table A2. Land use categories of the study area at sub-basin level. Artificial surfaces (i.e., urban
fabric, industrial, commercial and transport units), agricultural areas (i.e., arable land, pastures
and heterogeneous agricultural areas) and forests and semi natural areas (i.e., forests, scrub and
herbaceous vegetation associations).

Sub-Basins Artificial Surfaces (%) Agricultural Areas (%) Forests and Semi Natural Areas (%)

Sub-basin 1 1.88 5.02 93.10
Sub-basin 2 53.36 9.95 36.69
Sub-basin 3 21.83 9.28 68.89
Sub-basin 4 56.11 25.05 18.84
Sub-basin 5 76.91 0.74 22.35
Sub-basin 6 18.31 23.25 58.45
Sub-basin 7 76.43 8.34 15.23
Sub-basin 8 56.77 0.29 42.94
Sub-basin 9 75.28 3.06 21.65
Sub-basin 10 80.65 2.72 16.63
Sub-basin 11 28.65 27.38 43.97
Sub-basin 12 100.01 0.00 0.00
Sub-basin 13 74.16 25.83 0.00
Sub-basin 14 73.29 26.71 0.00
Sub-basin 15 81.90 18.10 0.00
Sub-basin 16 99.33 0.67 0.00
Sub-basin 17 64.20 35.76 0.04
Sub-basin 18 29.88 19.13 51.00
Sub-basin 19 7.98 13.54 78.48
Sub-basin 20 9.29 28.47 62.23
Sub-basin 21 80.42 19.58 0.00
Sub-basin 22 73.64 26.36 0.00
Sub-basin 23 83.87 16.13 0.00
Sub-basin 24 100.01 0.00 0.00
Sub-basin 25 100.00 0.00 0.00

The following figure shows the relative changes of the five most sensitive parameters
for each calibration scenario versus objective function (Figure A1).
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