
Citation: Bhusal, A.; Parajuli, U.;

Regmi, S.; Kalra, A. Application of

Machine Learning and Process-Based

Models for Rainfall-Runoff

Simulation in DuPage River Basin,

Illinois. Hydrology 2022, 9, 117.

https://doi.org/10.3390/

hydrology9070117

Academic Editors: Davide Luciano

De Luca and Andrea Petroselli

Received: 30 May 2022

Accepted: 24 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Application of Machine Learning and Process-Based Models for
Rainfall-Runoff Simulation in DuPage River Basin, Illinois
Amrit Bhusal , Utsav Parajuli, Sushmita Regmi and Ajay Kalra *

School of Civil, Environmental, and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive,
Carbondale, IL 62901-6603, USA; amrit.bhusal@siu.edu (A.B.); utsav.parajuli@siu.edu (U.P.);
sushmita.regmi@siu.edu (S.R.)
* Correspondence: kalraa@siu.edu; Tel.: +1-(618)-453-7008

Abstract: Rainfall-runoff simulation is vital for planning and controlling flood control events. Hydrol-
ogy modeling using Hydrological Engineering Center—Hydrologic Modeling System (HEC-HMS)
is accepted globally for event-based or continuous simulation of the rainfall-runoff operation. Sim-
ilarly, machine learning is a fast-growing discipline that offers numerous alternatives suitable for
hydrology research’s high demands and limitations. Conventional and process-based models such as
HEC-HMS are typically created at specific spatiotemporal scales and do not easily fit the diversified
and complex input parameters. Therefore, in this research, the effectiveness of Random Forest, a
machine learning model, was compared with HEC-HMS for the rainfall-runoff process. Furthermore,
we also performed a hydraulic simulation in Hydrological Engineering Center—Geospatial River
Analysis System (HEC-RAS) using the input discharge obtained from the Random Forest model.
The reliability of the Random Forest model and the HEC-HMS model was evaluated using different
statistical indexes. The coefficient of determination (R2), standard deviation ratio (RSR), and normal-
ized root mean square error (NRMSE) were 0.94, 0.23, and 0.17 for the training data and 0.72, 0.56,
and 0.26 for the testing data, respectively, for the Random Forest model. Similarly, the R2, RSR, and
NRMSE were 0.99, 0.16, and 0.06 for the calibration period and 0.96, 0.35, and 0.10 for the validation
period, respectively, for the HEC-HMS model. The Random Forest model slightly underestimated
peak discharge values, whereas the HEC-HMS model slightly overestimated the peak discharge
value. Statistical index values illustrated the good performance of the Random Forest and HEC-HMS
models, which revealed the suitability of both models for hydrology analysis. In addition, the flood
depth generated by HEC-RAS using the Random Forest predicted discharge underestimated the flood
depth during the peak flooding event. This result proves that HEC-HMS could compensate Random
Forest for the peak discharge and flood depth during extreme events. In conclusion, the integrated
machine learning and physical-based model can provide more confidence in rainfall-runoff and flood
depth prediction.

Keywords: rainfall-runoff; HEC-HMS; HEC-RAS; random forest; flood; forecast

1. Introduction

Floods are some of the most common and costly natural catastrophes in the world [1–3].
The magnitude and frequency of extreme flooding events have increased considerably
worldwide over the previous few decades [4]. Climate change, urbanization, and other
anthropogenic activities are causing a flood risk globally [5–7]. Water-related natural
hazards, such as floods, droughts, and landslides, have become the new normal due
to the uncertainty in rainfall patterns and magnitudes caused by climate change and
urbanization [8]. Flooding is projected to become more common in the coming years as the
frequency of extreme precipitation events increases [9–11].

Flood severity has increased, resulting in a large number of flood fatalities, massive
economic losses, and social consequences [12]. Given the negative consequences of flooding,
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developing floodplain management plans to avoid and mitigate flood damage is critical [13].
The estimation of Intensity–Duration–Frequency (IDF) curves and the monitoring of rainfall
intensity are also critical factors in precisely calculating the flood hydrograph and the peak
discharges [14,15]. The flood risk assessment depends on a precise estimation of peak
runoff, calculated by rainfall-runoff simulation [16]. Accurate rainfall-runoff simulation is a
prominent topic in hydrology research [17]. Precise rainfall-runoff modeling is essential for
planning and applying flood control strategies in vulnerable areas to reduce the dangers
to human life and infrastructure during high-precipitation events. Different hydrology
models have been used in the past to perform a rainfall-runoff simulation in a watershed.
The Hydrologic Modeling System (HMS), designed by the Hydrologic Engineering Center
(HEC) of the United States Army Corps of Engineers, is a popular rainfall-runoff analysis
tool worldwide [18].

Process-based physical models are typically employed to calculate runoff in a particu-
lar catchment area. By integrating regional variability in the watershed, a physical-based
model such as HEC-HMS can compute an actual hydrology system [19]. Hydrology model-
ing using the HEC-HMS model can be used to investigate urban floods, flood frequency,
flood warning systems, and the effectiveness of spillways and detention ponds over a
watershed [20]. The HEC-HMS model is made up of four essential components. An an-
alytical method is first applied to compute direct discharge and reach routing. Secondly,
a basin model with interactive components is employed for depicting hydrology aspects
within a catchment. Third, data are entered, edited, managed, and stored via a system.
Fourth, the simulation results are reported and illustrated using a functional system [21].
Finally, the calibration procedure, which compares simulated results to observed data, can
help to enhance the model’s precision and predictability. With the regional and temporal
variety of catchment features, rainfall patterns, and the number of variables applied in
modeling physical processes, the connection between precipitation and discharge using
HEC-HMS is challenging [22]. A physical-based model such as HEC-HMS necessitates a
large amount of data, such as land use and land cover data, soil group data, and infiltration
data, and a significant amount of time to calibrate to ensure the correctness of the model [23].
Furthermore, there are drawbacks to using a physical-based hydrology model, owing to
the difficulties in completely understanding the complicated, nonlinear, and inter-related
hydrology [24,25]. A hydrology model that uses HEC-HMS may be unsuitable for a larger
watershed with scarce data. Therefore, as a complement to the physical model, recently, the
application of machine learning and data-driven models has been used across hydrology
domains [26,27].

Machine learning (ML) is a kind of artificial intelligence that can make an accurate
prediction by training and testing datasets. ML provides a solution to a real-world prob-
lem by studying previously observed data and has been effective in generating accurate
results [28]. ML provides adequate computation power [29,30] and is used in a wide
variety of research and applications in hydrology. Some examples of ML applications in the
hydrology domain are rainfall-runoff prediction [31–33], flood forecasting [34–36], sedimen-
tation studies [37–39], water quality prediction [40–43], groundwater prediction [44,45],
river temperature prediction [46–49], and rainfall estimation [50,51]. In recent years, ML
algorithms have significantly improved and are also widely used for rainfall-runoff simu-
lation [52,53] thanks to the rapid advancement of computer technology. Recently, many
researchers have performed rainfall-runoff predictions using different machine learning and
data-driven models. Some examples of these models are long short-term memory [54,55],
artificial neural networks [56,57], support vector machines [58,59], and the Random For-
est model [16,60]. Random Forest is a popular machine learning tool, and Breiman first
developed it in 2001 [61]. Random Forest has recently acquired popularity as a powerful
predictive modeling tool, and many researchers are using it in their fields as a potential
method [62]. It is a classification and regression tree-based ensemble learning algorithm [61].
A bootstrap sample is used to train each tree, and optimal variables at each split are chosen
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from a random subset of all variables. Random Forest offers the highest accuracy of any
contemporary method and works quickly on large datasets [63].

Previous studies showed that Random Forest’s performance surpassed other machine
learning and data-driven tools such as artificial neural networks, regression models, and
support vector machines in multiple comparative studies in hydrology [63–67]. However,
Random Forest is the least used for hydrology analysis among the data-driven and machine
learning models [68]. Among the few applications of Random Forest, most of these studies
focused on flood risk hazards [16,69] and mapping [70]. Therefore, this study evaluated
the effectiveness of the Random Forest model for rainfall-runoff simulation. In addition,
the main objective of this research is to determine the suitability of the Random Forest
model for rainfall-runoff simulation in a scarce-data region. Therefore, this research also
used a satellite precipitation product as an input variable for rainfall-runoff simulation and
determined its appropriateness in hydrology research. Furthermore, this study assessed
the appropriateness of using Random Forest generated discharge for hydraulic modeling
using the Hydrologic Analysis Center’s River Analysis Model (HEC-RAS).

HEC-RAS is the most widely accepted model [71] for analyzing channel flow and
floodplain characterization [72]. Users can compute one-dimensional steady and unsteady
flow, two-dimensional unsteady flow, sediment transport, and water quality models by
using HEC-RAS [72]. Regularizing geometric data and identifying and analyzing hydraulic
structures, such as weirs, culverts, reservoirs, pump stations, bridges, levees, and gates,
blockage and ineffective regions, land use, the Manning roughness coefficient, streambed
slopes, and ice cover are achievable with HEC-RAS [73]. The model employs geometric
data and geometric and hydraulic computer algorithms to model natural and artificial
streams. HEC-RAS requires fundamental inputs such as river discharge, channel geometry,
bank lines, flow paths, and channel resistance. The discharge generated by Random Forest
was employed as an input parameter in this study. While the HEC-RAS model has a wide
variety of capabilities, the current research considered its capability to execute 1D river
flow and calculate the flood depth at the most downstream section of the study reach.

The integration of different models in the sectors of hydrology and hydraulic domains
is gaining global attention and is crucial for flood risk management techniques [74]. The
novelty of this research is to assess the effectiveness of the Random Forest model for
rainfall-runoff simulation using satellite precipitation products in a data-scarce region. This
research work also evaluated the integration of machine learning and a HEC-RAS model
for calculating water depth at the proposed study location during the study period. The
following is an outline of this paper. Section 2 describes the study area, data preparation,
and a physical-based and Random Forest model. Section 3 presents the results of this
research, Section 4 provides a discussion of the results, and Section 5 provides the major
conclusions from the current analysis.

2. Data and Methods

This section describes the methodology used for hydrology and hydraulic analysis in
this research. Random Forest, HEC-HMS, and HEC-RAS are the three models used in this
study. HEC-HMS and the Random Forest model were applied for hydrology analysis, and
HEC-RAS was used for the hydraulic analysis. The complete workflow of the methodology
used in this research work is shown in Figure 1. First, this study started with extracting
and preprocessing the data on basin characteristics, such as digital elevation model (DEM),
land use and land cover (LULC), and soil group data, and meteorological data, such as
daily precipitation and discharge data. The integrated use of Arc-Hydro, HEC-GeoHMS,
and HEC-HMS was employed for hydrology analysis in the upstream catchment area.
Similarly, Random Forest, a machine learning algorithm, was used to predict the runoff for
the training and testing period. After the preparation of the hydrology model, a comparison
was performed between the machine learning model (Random Forest Regression) and
the physical model (HEC-HMS) using the different statistical indexes. Finally, the runoff
obtained from the machine learning model was used as an input variable in the HEC-RAS
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model to calculate the water depth at the downstream location. In conclusion, the modeling
approach determined the effectiveness of Random Forest Regression for hydrology and the
integrated Random Forest and HEC-RAS model for hydraulic analysis.
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Figure 1. Figure portraying the flowchart of hydrology analysis using Random Forest and HEC-HMS
and hydraulic analysis using HEC-RAS.

2.1. Study Area

This research used the East Branch DuPage watershed as a study area. Over the last
twenty years, the study area has observed significant urbanization [75]. The study area has
a history of high-flooding events (1996, 2008, 2013, and, most recently, 2020). In the year
2020, there was significant flooding due to the 178 mm of total precipitation over a period
of five days. The study watershed has an area of 62.2 km2 at the USGS gauging station,
which is around Downers Grove, Illinois. The study area has an elevation ranging from
204 m to 250 m above mean sea level. Geographically, northern latitudes from 41◦50′ to
41◦57′ and western longitudes from 87◦59′ to 88◦6′ bound the study catchment area, as
shown in Figure 2. The study area is highly residential, with an average imperviousness
percentage of about 40%. The range of imperviousness percentages in the watershed is
shown in Figure 3. The average soil permeability over the watershed is 62 mm/h [76]. The
catchment consists of USGS gauge station 05540160 at the watershed outlet. The river reach
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for the hydraulic station lies between the gauging stations 05540160 and 05540228. The
study reach is around 5221 m between two gauging stations. The proposed study area does
not have any existing precipitation gauging station. The history of flooding events and the
unavailability of observed precipitation data in this watershed are the two main reasons
for proposing this watershed as a study area.
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2.2. Data

Watershed characteristics datasets, such as land use and land cover, soil group, and
DEM datasets, and meteorological model data, such as rainfall and discharge data, are all
important data required for hydrology and hydraulic simulation. These datasets were used
to estimate hydrology parameters and sub-basin characteristics and to prepare geometric
data for hydrology and hydraulic analysis. The data types used in this research and their
sources are detailed in Table 1.

2.3. Preprocessing Data

This section describes the extraction of basin characteristics and the meteorological
data that were used for the hydrology analysis.

2.3.1. Digital Elevation Model (DEM)

DEM data are spatial data that provide the characteristics of the watershed. A 10 m
DEM was retrieved from a United States Department of Agriculture (USDA) website and
was clipped for the study catchment using Arc-Map in Arc-GIS.
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Table 1. Data used for this research with their sources.

Data Source

Precipitation
Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks–Cloud
Classification System (PERSIANN-CCS).

Soil United States Department of Agriculture (USDA)
Land Use Land Cover United States Geological Survey (USGS)

Runoff Data United States Geological Survey (USGS) water data

2.3.2. Basin Characteristics

LULC data and soil map data were extracted from a USGS and USDA website, re-
spectively. Both datasets were imported into ArcMap to clip for a study boundary and
converted to the Shapefile from the raster. Composite curve number values were generated
considering pervious and impervious areas. The average curve number of the watershed
was 83.4, and the curve number values ranged from 54 to 100, corresponding to high
infiltration to water bodies, respectively. The basin characteristics of the study area are
shown in Figure 3.
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2.3.3. Precipitation Data

Rainfall data are essential meteorological data for hydrology simulations. The study
area does not consist of any observed precipitation station; therefore, in this study, pre-
cipitation data were obtained from a grid from the Precipitation Estimation from Re-
motely Sensed Information Using Artificial Neural Networks–Cloud Classification System
(PERSIANN-CCS). The Center for Hydrometeorology and Remote Sensing (CHRS) devel-
ops it at the University of California, Irvine, and it is a real-time global high-resolution
(0.04◦ × 0.04◦ pixel) satellite precipitation product [77]. The daily time series precipitation
data were extracted from a grid using a python environment from 2006 to 2021.

2.4. Hydrologic Modeling Using Arc-GIS and HEC-HMS

HEC-GeoHMS is an extension of Arc-GIS that helps users to extract the essential
data to develop the HEC-HMS project. The user must pick an outlet position on the river
to begin the extraction procedure. HEC-GeoHMS utilizes terrain preprocessing tools for
flow analysis. HEC-GeoHMS can enhance the sub-basin and stream delineations, collect
physical attributes of sub-basins and rivers, predict model attributes, and create input files
for HEC-HMS. Terrain preprocessing and model development were carried out as shown
in Figure 4.
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2.4.1. Loss Method: SCS-CN for Rainfall-Runoff

The Soil Conservation Service curve number (SCS-CN) is a loss model that can com-
pute the volume of the river flows [78]. Surface runoff excess depends on the precipitation,
soil, and LULC of a particular watershed. Equation (1) is a mathematical expression used
to determine the surface runoff.

Q =
(P− Ia)

2

(P− Ia) + S)
(1)
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where

Q = Runoff (inches);
P = Rainfall depth (inches);
Ia = Initial abstraction, and Ia = 0.2 S;
S = Potential maximum retention.

The potential maximum retention in inches, S, is calculated using Equation (2):

S =
1000
CN

− 10 (2)

2.4.2. Transform Method: SCS Unit Hydrograph

The SCS Unit Hydrograph transforms excess precipitation into a runoff. The SCS
proposed the Unit Hydrograph, which is used in the HEC-HMS model. It is a parametric
model based on the average Unit Hydrograph, which is created from gauged precipitation
and discharge data of various agricultural watersheds collected across the United States. It
assumes that a Unit Hydrograph depicts the constant properties of a watershed. The lag
time is the sole input variable for this method. It is the time distance between the center of
excess rainfall and the hydrograph peak, and HEC-HMS computes it for each sub-basin
using Equation (3).

Tlag =
(S + 1)0.7L0.8

1900 ∗Y0.5 (3)

where

Tlag = lag time (h);
L = hydraulic length of the watershed (ft);
Y = slope of the watershed (%);
S = maximum retention in the watershed (inches).

2.4.3. Routing Method: Muskingum Routing

Discharges from sub-basins were routed through the reaches to the outlet of the
watershed using the Muskingum routing method. X and K are the two main parameters
used in this method. Theoretically, the K parameter is the wave’s travel time through
the reach. These parameters can be approximated using observed inflow and outflow
hydrographs. The X parameter is a weight coefficient of discharge, whose value fluctuates
between 0 and 0.5. The interval between the inflow and outflow hydrographs of an
identical station can be used to determine the parameter K. In this model, routing methods
parameters were used to calibrate the model.

2.5. Hydrologic Modeling Using Random Forest

This study investigated the capacity of a Random Forest algorithm for predicting the
daily discharge using the meteorological and hydrology features. Nonlinear interactions
between a dependent variable and several independent variables can be represented using
regression tree ensembles such as the Random Forest technique. Despite the popularity of
the Random Forest algorithm in a myriad of environmental science fields, its application in
the water sector needs to be further explored [79]. Random Forest is the type of supervised
machine learning algorithm that can be used for classification and prediction. Random
Forest uses the different tree predictors, and the random vector determines their values [61].
Random Forest is a collection of decision trees, where each tree is slightly different from the
others. Ensemble learning combines all the decision trees and the average values predicted
by each decision tree, solving the regression problem. This algorithm addresses the problem
of training data overfitting in decision trees [80]. Random Forest has good performance in
large datasets, and its features do not need to be scaled [81]. It is advantageous for features
with different scales. Random Forests are appealing for both classification and regression
tasks, are computationally fast, are efficient for unstable prediction, and perform well with
high-dimensional features [82,83]. This algorithm’s key idea is that each tree might make
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a fair prediction on its part; however, overfitting seems to occur on some of the data. If
numerous trees are built, they will work and overfit in various ways. The average of these
results will assist in the reduction of overfitting while holding onto the predictive power of
decision trees.

Model Development

Many decision trees with bootstrap aggregation are used to minimize the overfitting
issue [84]. A Random Forest Regressor consisting of 100 decision trees, as n-estimators,
were applied to this dataset. The max depth parameter defines the maximum depth of
the tree. The max depth of the model was fixed to be 100. The max depth by default was
‘None’, which signifies that the nodes were enlarged until all the leaves had fewer than
min_samples_split samples. Min_samples_split means the total number of samples needed
to break the internal node. Since we were trying to maintain the number of decision trees
at only 100, max features was set to ‘auto’, which means that max features was equal to n
features (the number of features seen during the model fitting). The parameter max-leaf
nodes = None refers to an unlimited number of leaf nodes, leaving the decision trees to
grow to best fit the model. All of the daily hydrology and meteorological feature samples
from 2006 to 2021 were used for training and testing the algorithm. A total of 80% of the
dataset was used for the training, and 20% of the dataset was used for the testing of the
Random Forest model.

A box plot of daily discharge was created to visualize the patterns of daily discharge
as shown in Figure 5c. Daily runoff was checked by plotting the autocorrelation and
partial autocorrelation factors. Figure 5a,b show the autocorrelation plot and the partial
autocorrelation plot of historical daily runoff observations, respectively. These plots helped
us identify a suitable lag period for flow prediction in a watershed [84]. Five sets of
discharge values at a lag time of 1 to 5 days were selected to predict the discharge. Similarly,
six sets of precipitation at 1 to 5 days of lag time were selected. Table 2 represents the
combination of input features used to train the Random Forest Regression. In addition,
the cumulative precipitation for 5 days and the day on which the rainfall was greater than
12.7 mm were considered as additional features for predicting the runoff at the outlet of the
watershed. NumPy, Pandas, Matplotlib, stats model, Sklearn, and seaborn are the python
libraries that were used during data processing, training, and visualization.
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Table 2. The combination of inputs for runoff prediction using Random Forest Regression.

Lag (Days) The Structure of the Input Output

5

Discharge of 1 day to the 5-day lag period,
Precipitation of 1 day to the 5-day lag period,

Sum of 5 days of precipitation (P5 days),
Days since last precipitation greater than

0.5 mm. (p > 0.5)

One day ahead discharge

The autocorrelation function and the 95% confidence interval are shown in Figure 5a. A
strong correlation was found up to 20 lags. The decay of autocorrelation shows the strength
of the autoregressive process [29]. Similarly, the partial autocorrelation and 95% confidence
interval were calculated. The partial autocorrelation depicted a strong correlation up to a
5-day lag period. Therefore, a lag period of 5 days was selected for the input [29].

2.6. Hydraulic Modeling Using HEC-RAS

Hydraulic modeling using HEC-RAS uses adequate geometry and flow data inputs
for an excellent hydraulic model. The 1D HEC-RAS model is commonly employed to
analyze flow in mainstream channels and predict the flood extent. Although the 1D model
has limited applications, it is cost-effective, durable, and favored when determining flow
pathways [85]. When speed is required and flood plain geometry data are scarce, 1D
modeling is chosen [86]. HEC-RAS calculates the energy expression using Equation (4),
which is based on Saint Venant’s equation.

Z2 + Y2 +
α2V2

2
2g

= Z1 + Y1 +
α1V2

1
2g

+ he (4)

where

Y1 and Y2 = water heights at cross-sections,
Z1 and Z2 = elevations of the stream reach,
α1 and α2 = velocity weighting coefficients,
V1 and V2 = average velocities,
g = acceleration due to gravity, and
he = energy head loss.

River Geometry Generation

Hydraulic analysis with HEC-RAS starts with extracting the river section geometry
data using the RASMAP, which is available in the HEC-RAS model. The process involved
in the hydraulic analysis using HEC-RAS is illustrated in the flowchart in Figure 1. The
Lidar 1 m DEM for the hydraulic model was obtained from the USGS website. The DEM
data were imported into the RAS Mapper tool in the HEC-RAS model and converted into
a Digital Terrain Model. In addition, the georeferenced projection file was assigned in
RASMAP for the consistent coordinate system. In the RASMAP, the river centerline, bank
lines, flow path lines, and cross-section lines were digitized. The Manning’s n value was
assigned to each cross-section in the entire reach. After the creation of the river geometry
and applying the Manning’s n value, the steady discharge was used as input data for the
steady flow simulation. The water depth achieved from the simulation was then compared
to the water depth at gauging stations downstream of the study reach. The Manning’s n
values at the main channel and over banks were adjusted for the calibration of a model.

2.7. Statistcal Performance Indicators

The performance of each model should be examined to determine the best models
among different model alternatives. The five evaluation metrics (RMSE, RSR, NSE, PBIAS,
and R2) recommended by [87] and the NRMSE were used in this research to assess the
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performance of the hydrology model. The criteria used to evaluate the proposed model’s
performance are listed in Table 3.

Table 3. List of statistical indexes used to determine the performance of models.

Indices Mathematical Expression Satisfactory Range

Root Mean Square Error (RMSE) RMSE =

√
∑N

i=1(Qs,i−Qo,i)
2

N

Nash–Sutcliffe efficiency
coefficient (NSE) NSE = 1−

[
∑N

i=1(Qo,i−Qs,i)
2

∑N
i=1(Qo,i−Qo)

2

]
0.5 < NSE ≤ 1

Coefficient of
Determination (R2) R2 =

(∑N
i=1(Qo,i−Q0,i)∗(Qs,i−Q0,i))2

∑N
i=1(Qo,i−Q0,i)

2∗∑N
i=1(Qs,i−Q0,i)

2 >0.5

Standard Deviation Ratio (RSR) RSR = RMSE
standard Deviation 0 < RSR < 0.7

Percentage bias (PBIAS) PBIAS = ∑N
i=1(Qo,i−Qs,i)∗100

∑N
i=1 Qo,i

−25% < PBIAS < +25%

Normalized Root Mean Squared
Error (NRMSE) NRMSE =

1
N ∑N

i=1(Qs,i−Qo,i)
2

Mean ≤30%

where Qo,i represents the observed data, Qs,i represents the simulated data from the model, Qo,i, represents the
mean value of the total number of observed data samples, and n represents the total number of data samples.

3. Results and Discussion

This section describes the results of the study, and it covers four main topics. In
this section, the results of the precipitation product, hydrology, and hydraulic analyses
are presented.

3.1. Precipitation

The rainfall data applied in this research were extracted from satellite-based rainfall
products for a time period of 16 years (2006–2021). The daily rainfall data obtained for
the studied time period are shown in Figure 6a. The daily precipitation data pattern was
consistent with the daily observed discharge data. The result shows that the time of peak
rainfall data matched the time of peak discharge data. For example, in this watershed outlet,
the highest peak discharge of 33.7 m3/s was observed on 14 September 2008 and, similarly,
the extracted precipitation product produced the highest precipitation of 61 mm on the
same day. In addition, the validation of the extracted precipitation data was supported by
the results of the hydrology analysis, which are presented in the following section.

3.2. HEC-HMS Models

Integration of the Arc-Hydro tool and HEC-GeoHMS successfully generated all the
sub-basin parameters needed for the hydrology analysis. HEC-GeoHMS is a sophisti-
cated tool that can be used to delineate natural watersheds and perform automatic basin
parameter extraction for the HECHMS model construction. Table 4 lists the basin param-
eters obtained from HEC-GeoHMS, including sub-basin area, slope, curve number, and
basin lag.
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Table 4. Geographic characteristics of the study watershed.

Sub-Basin Basin Area (km2) Basin Slope (%) Curve Number (CN) Basin Lag (min)

W220 4.3 2.6 85.8 150
W210 7.0 2.8 84.7 135
W200 3.6 3.1 83.6 133
W190 6.2 1.9 83.9 84
W180 5.9 3.5 83.2 90
W170 0.3 4.5 86.7 84
W160 3.7 2.6 82.3 81
W150 5.5 3.5 83.7 98
W140 7.4 4.5 83.0 86
W130 5.3 2.2 84.2 20
W120 13.0 3.4 84.0 76

The calibration and validation of the HEC-HMS model in this research were performed
by adjusting the Muskingum parameters. The measured discharge from the gauging station
was compared to the yearly peak discharge produced from an HEC-HMS simulation. Event
1 January 2006 to 31 December 2018 was considered for the model calibration, and Event
1 January 2019 to 31 December 2019 was used for the model validation. The accuracy of the
hydrology model using HEC-HMS was determined using a statistical index. The discharge
generated using HEC-HMS for the study period is presented in Figure 6b. The root mean
square error is one of the most-used methods for evaluating the validity of predictions. The
RMSE value during calibration and validation was 1.45 m3/s and 2.45 m3/s, respectively,
which is considered a good result. The RSR is calculated by dividing the RMSE by the
standard deviation of the measured data, and a value less than 0.7 is considered a good
result [88]. The RSR values for the HEC-HMS model were 0.16 and 0.35. The NSE is
extensively used in measuring the model performance in hydrology. It ranges from −1 to
1, with 0.5 to 1 being the best values. The NSE method is used to calculate the residual
variance in relation to the variance in the measured data. The NSE values were 0.97 and
0.87, respectively, which are close to 1.

The PBIAS shows the average inclination of the calculated data. For a good model,
PBIAS values must approach zero or should be between ±25% [89]. Positive numbers
suggest that the model is underestimated, whereas negative values indicate that the model
is overestimated [90]. The HEC-HMS model overestimated the peak discharge by 5.3% and
9.8% during calibration and validation, respectively. The R2 is used to determine the
correlation between calculated and measured flow rates. An R2 greater than 0.5 indicates
satisfactory performance. For the calibration and validation, the R2 values were 0.99 and
0.96, respectively. The R2 values close to 1 for the HEC-HMS model validated the accuracy
of the model.

3.3. Random Forest Regression Model

Random Forest Regression provided good insights into the prediction of daily dis-
charge data. Figure 6c illustrates the observed discharge data and the Random Forest
predicted data during the study period. The scatter plot in Figure 6d demonstrates that
the Random Forest prediction data were clustered near the regression line under low- and
normal-flow conditions. However, Random Forest Regression slightly underestimated
the high discharge value, which can also be termed an extreme event. Table 5 shows the
evaluation matrix for Random Forest Regression. The RMSE, RSR, NSE, PBIAS, R2, and
NRMSE values were 0.29 m3/s, 0.23, 0.94, −0.75%, 0.94, and 0.17 for the training period
and 0.47 m3/s, 0.56, 0.69, +1.76%, 0.72, and 0.260 for testing period, respectively, as shown
in Table 5. The statistical index revealed that the Random Forest model’s performance
was superior during data training. The values of the statistical index dropped sharply
during the testing period. The PBIAS values during training and testing were close to
0%, representing the average inclination of the predicted discharge towards the observed
discharge. The values of R2 dropped sharply from 0.94 during training to 0.72 during test-
ing. However, the values of the statistical index were within acceptable ranges during the
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testing period. Scatter plots were used to analyze the prediction performance of Random
Forest Regression with the observed data. In the scatter plot between the observed and
predicted values, the more significant deviation was observed for the higher discharge
value, which also demonstrates the lower effectiveness of the Random Forest model for
peak discharge estimation. The non-peak discharge was more accurately predicted by the
machine learning model.

Table 5. Calibration and validation statistics of the HEC-HMS and Random Forest models.

Statistical Index
HEC-HMS Model Random Forest

Calibration Validation Training Testing

RMSE (m3/s) 1.45 2.45 0.29 0.47
RSR 0.16 0.35 0.23 0.56
NSE 0.97 0.87 0.94 0.69

PBIAS −5.30% −9.80% −0.75% +1.76%
R2 0.99 0.96 0.94 0.72

NRMSE 0.06 0.10 0.17 0.26

Random Forest Regression was used for the prediction of discharge for the given input
precipitation. The feature selection based on the lag period of precipitation and discharge
was used. The validated results of HEC-HMS and Random Forest were compared to
determine their ability to predict the discharge for the study period. After the comparison,
we observed that the conventional HEC-HMS model needed more parameter optimization
than Random Forest Regression. Similarly, the aim of study was also to prove the suitability
of the discharge data predicted by Random Forest for hydraulic analysis. The scatter plot
shown in Figure 6e shows the observed gauge height in the gauging station versus the
simulated gauge height from the HEC-RAS model. During high-flooding events, the water
depth predicted by the hydraulic model using the Random Forest generated discharge
was slightly underestimated compared with the observed water depth. As the model
showed good performance in generating the water depth under non-flooding conditions,
the integration of Random Forest and HEC-RAS could be used to derive useful information
while planning the water resource infrastructure and flood control measures in the selected
study area. As the performance of a watershed model relies on the precision, robustness,
and application of the model under other site conditions, the proposed approach could be
tested and analyzed for multiple catchment locations, so that the parameters could be fixed
to increase the reliability of the result.

3.4. HEC-RAS Model

The hydraulic analysis was carried out for the East DuPage watershed’s downstream
reach. For calibration purposes, historical discharge data from flood events in 2020 and
2021 were used, and the results are displayed in Table 6. The study reach consists of only one
USGS gauging station at the most downstream location of the study reach with gauge height
data beginning from 2020. The hydraulic model was calibrated using water depth data from
various flooding events in 2021 and 2022. Figure 6e shows the comparison of simulated
and observed data at most downstream stations of the study reach. The Manning’s n
value was adjusted to calibrate the hydraulic model. The water depth produced from the
simulation was similar to the observed water depth at the gauging station, as shown in
Figure 6e; this result demonstrates the model’s consistency and allows it to be used for
further investigation. At the upstream cross-section of the reach, daily discharge data from
Random Forest were used to calculate the water depth at the downstream reach. The scatter
plot in Figure 6e shows that the discharge calculated using Random Forest Regression can
be utilized to calculate the flood depth in a river stream. Compared with the observed
water depth at the gauging station, the model underestimates the simulated water depth
generated from the study.
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Table 6. The difference between the observed and simulated water depth.

Event Discharge
(m3/s)

Observed Water
Depth (m)

Simulated Water
Depth (m)

Difference
(m)

11 January 2020 8.78 2.79 2.68 0.11
30 March 2020 3.11 2.09 1.98 0.11
29 March 2020 5.07 2.33 2.58 −0.25
30 April 2020 16.03 3.40 3.02 0.38
18 May 2020 26.42 4.41 3.85 0.56

23 October 2020 6.57 2.45 2.91 −0.46
12 December 2020 8.04 2.52 2.61 −0.09

19 March 2021 2.83 1.96 2.03 −0.07
26 June 2021 10.96 2.90 3.27 −0.37

27 August 2021 2.21 1.81 1.89 −0.08
26 October 2021 8.38 2.50 2.48 0.02

4. Discussion

The results of the hydrology simulation provide strong support for the effectiveness of
the satellite precipitation product for the hydrology simulation in an ungauged catchment.
Both the HEC-HMS and Random Forest models accurately recreated the discharge charac-
teristics, such as the flood peak and timing, during the study period. These findings are
consistent with those of previous studies that showed that PERSIANN-CCS precipitation
products could effectively simulate the hydrology in ungauged watersheds [91,92]. The
statistical index in Table 5 from the model calibration and validation suggests that Random
Forest can be effectively applied for estimating the daily discharge at watershed outlets.
The good performance of Random Forest for the hydrology analysis proved its appropri-
ateness for rainfall-runoff simulation in data-scarce regions. The results of Random Forest
are in agreement with a previous study’s finding of good performance as an alternative
prediction method in the hydrology domain [93]. The statistical index in Table 5 proved
the suitability of both Random Forest and HEC-HMS for rainfall-runoff simulation. The
results illustrate that Random Forest slightly underestimated the peak discharge during the
high-flooding events; however, during the non-flooding period, the discharge predicted
by Random Forest was better than that predicted by the HEC-HMS model. Figure 6e
provided good support for the effectiveness of the Random-Forest-generated discharge for
hydraulic simulation. The result indicates that the water depth simulated by HEC-RAS
at the most downstream cross-section was slightly underestimated compared with the
observed water depth at the gauging station. This result may be due to the use of the
slightly underestimated peak discharge obtained from the Random Forest model. The
overall result of this research work supports the integration of machine learning and a
physical-based model for rainfall-runoff and flood depth prediction in data-scarce regions.

5. Conclusions

This study evaluated the feasibility of HEC-HMS and Random Forest for rainfall-
runoff simulation and an integrated approach of machine learning and HEC-RAS for
hydraulic analysis. HEC-HMS requires a large number of input variables, which may not
always be available in a data-scarce region. In this scenario, the Random Forest model
can be used for the prediction of discharge in the watershed. In addition, the Random
Forest model is simple to build and takes less time. In this study, a PERSIANN-CCS
NetCDF file was used to generate time-series precipitation data. The result supports the
usage of PERSIANN-CCS daily precipitation data for rainfall-runoff simulation. Based on
the models’ reasonably strong performance, the obtained precipitation, LULC, DEM, and
SSURGO soil input data are sufficiently dependable for discharge simulation. Because the
data sources employed in this study yield reasonably reliable results, they are recommended
for hydrology investigations. The continuous simulation of rainfall-runoff processes in the
basin using physical and machine learning models yielded good results. Peak flows were
underestimated in the Random Forest model and slightly overestimated in the HEC-HMS
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model. An integrated HEC-RAS and Random Forest Regression model yielded good results
in predicting the runoff flood depth downstream of a watershed. Given these findings, it is
possible to say that the Random Forest model could aid in rainfall-runoff simulation as a
complement to the physical model. This discharge could be used in hydraulic modeling
for flood depth and flood extent analysis, which could be helpful to researchers in further
research. The model’s accuracy in predicting the flow can be increased by removing the
outliers; high flood values are considered here in order to compensate for the prediction
of the high flood values from Random Forest Regression. In the future, researchers could
work in the following areas:

1. In this study, we used the PERSIANN precipitation product, and future work may
be more accurate if there is a precipitation gauging station. Furthermore, researchers
could also use other precipitation products, such as Next-Generation Weather Data
(NEXRAD) and Climate Hazards Group Infrared Precipitation (CHIRPS);

2. In this study, precipitation was only used as an input variable for the Random Forest
model; other variables, such as temperature, infiltration, evaporation, and radiation,
could be used in future work. In addition, feature selection of input variables could
be performed for the most accurate selection;

3. Other machine learning and data-driven models, such as support vector regres-
sion (SVR), long short-term memory (LSTM), and artificial neural networks (ANNs),
could be used as prediction models. Future research directions could be guided by
the selection of the best machine learning model in terms of accuracy, robustness,
and reliability;

4. Although the study area is a small watershed in DuPage County, future research
could focus on a more dynamic, heterogeneous, and meteorologically unique basin.
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