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Abstract: In Water Resources Planning and Management, decision makers, although unsure of
future outcomes, must take the most reliable and assuring decisions. Deterministic and probabilistic
prediction techniques, combined with optimization tools, have been widely used to meet the objective
of improving planning as well as management. Bayesian decision approaches are available to link
probabilistic predictions to optimized decision schemes, but scientists are not fully able to express
themselves in a language familiar to decision makers, who fear basing their decisions on “uncertain”
forecasts in the vain belief that deterministic forecasts are more informative and reliable. This
situation is even worse in the case of climate change projections, which bring additional degrees of
uncertainty into the picture. Therefore, a need emerges to create a common approach and means of
communication between scientists, who deal with optimization tools, probabilistic predictions and
long-term projections, and operational decision makers, who must be facilitated in understanding,
accepting, and acknowledging the benefits arising from operational water resources management
based on probabilistic predictions and projections. Our aim here was to formulate the terms of the
problem and the rationale for explaining and involving decision makers with the final objective of
using probabilistic predictions/projections in their decision-making processes.

Keywords: informed water resources planning and management; decision makers; uncertainty;
probabilistic predictions and projections; Bayesian decision

1. Introduction

The availability of water resources varies temporally and spatially, mainly depending
on three factors: precipitation, evapotranspiration, and infiltration into the soil. Precipi-
tation is the main water supply in a watershed, while evapotranspiration, depending on
various factors, including solar radiation, wind, and vegetation, is the main cause of water
loss. Infiltration into the soil and groundwater recharge is not a loss (in the strict sense,
except for surface water) as it can accumulate in aquifers for use at different times and/or
places. The temporal non-uniformity of surface water resources often requires regulating
their availability by means of storage systems, such as reservoirs. For example, in many
cases, abundant fall–winter flows correspond to modest spring–summer regimes. In these
cases, reservoirs of adequate volume are constructed to hold the flows during the period
when they are abundant and to release them during the drier seasons when the resource is
perhaps needed for irrigation or other uses.

In some cases, on a larger scale, a reservoir must not only allow the regularization
of interannual flow fluctuations, but also of multiannual fluctuations to compensate for
droughts that are prolonged over several years. The typical case of such type of manage-
ment is that of the Aswan reservoir, which was designed to regulate the Nile flows for up
to ten years, as the droughts in this system can be very persistent.

In the planning phase, the management rules can be of “empirical” type, namely,
defined either on the basis of empirical rules by the experience of managers or by simple
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deterministic models. Alternatively, management can be of the “optimized” rational
deterministic or stochastic type, controlled by maximizing expected profits (or minimizing
expected losses) over a long period of time by means of stochastic optimization. In many
cases, reservoirs are managed based on a set of operational rules established according
to the current reservoir levels and the prediction of future inputs on one or more-time
scales. If for small tanks the adjustment is carried out in ten-day time steps, in general,
monthly steps are used for large volumes. However, as already stated, most reservoirs are
still regulated on an empirical basis, according to the experience acquired by the managers
in maintaining very high safety margins, and centered on the false impression that, in this
way, the operational rules remain simple and easy to implement. However, it has been
shown that even optimized management rules, and in particular stochastic rules, not only
lead to higher profits, but can also be carried over to simple indications provided by a
decision-support system to the reservoir manager.

Optimized deterministic regulation is derived on the basis of the expected value of
the forecast, but has all the disadvantages mentioned in the previous section because it
implicitly assumes that the predicted value coincides with the value that will occur, which
is usually improbable, and does not assess the consequences of ignoring other possibilities.
On the contrary, the optimized probabilistic regulation, as a function of a decision to
be taken based on probabilistic forecasts, considers the whole range of possible future
events by weighing them by the predictive probability density to evaluate their expected
consequences and chooses the decision that minimizes expected losses and/or maximizes
expected benefits taking into consideration all possible future occurrences [1,2]. Optimized
probabilistic regulation is more complex in the derivation phase but, in the operational
phase, it leads to simple rules comparable to empirical ones, which can be easily integrated
into a decision support system.

In addition, because it is possible to re-evaluate the predictive distributions at each
time step, stochastic probabilistic regulation can adapt to situations of short-term non-
stationarities, like, for instance, the arrival of a flood wave or long-term non-stationarities,
such as those due to climate change.

The benefits deriving from this type of regulation are very high. An example relating
to the regulation of Lake Nasser, the Aswan Reservoir [3], as shown in attached Figure 1,
demonstrates that the benefits of an optimized adaptive stochastic regulation can lead to
more than 65% benefits over those produced by a rule of thumb.

1.1. Management under Stationary Conditions

In a reservoir, the optimized management rules based on stochastic forecasting are
generally derived using Dynamic Stochastic Programming (PDS) which acknowledges the
distribution of the predictive probability from one time step to the next (generally from
month to month) to maximize the expected value of profits or minimize the expected value
of both immediate and future losses, depending on any reservoir release assumption. To do
this, it is necessary to first estimate the probability distribution of future reservoir inflows as
a function of the present value. This procedure, under the assumption of a stationary-type
regime, is performed by constructing a stochastic predictive model, usually a first-order
autoregressive model, otherwise known as a Markov chain, by which it is possible to
derive the probability distribution at a future time step, conditional on the present step.
This model is estimated from all the historical data available under the very restrictive
assumption of stationarity (i.e., the probability distributions do not vary over time) and
ergodicity (whereby is possible to estimate the probability distribution at an instant from
the data observed at different time steps).

Thus, knowing the state of the system, such as the volume stored in the reservoir at
the present time and the inflow of the current month, it is possible to estimate for each
release hypothesis the expected value of future profits or losses. The optimal decision
would, therefore, be the one which minimizes this expected value.
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Figure 1. Losses by the Aswan reservoir accrued over one year, depending on the management
strategy (reprinted from [3]). The thicker solid line (No Forecast) represents the results of management
based on the historical monthly average Nile inflows; the dotted line represents the results of
management based on the hypothetical knowledge of future inputs (Perfect Forecast); the thinner
continuous line represents the results of a management based on imperfect knowledge of future
inputs provided by a simple AR (1) (Uncertain Forecast) forecasting model, while accounting at each
time step for the predictive probability distribution in estimating the volume to be released. Note
that the information produced, even by a very simple model such as the AR(1), leads to significantly
loss reduction (over 65%) by approaching the lower limit of losses obtainable with a perfect forecast,
namely the retrospective perfect knowledge of future reservoir inflows [3].

For many years of the last century, this approach was indeed the best choice. However,
since the 1980s, there has been a sudden change of meteorological regime in many countries,
including the Mediterranean region, which has brought down the validity of the stationarity
hypothesis, thus reducing the effectiveness of the management rules established thus
far. Indeed, adaptive stochastic regulation requires the correct evaluation not only of
the expected future value of water inputs, but also of their entire predictive probability
distribution, which, in the case of climate change, will be very different from that estimated
for the historical period.

1.2. Management under Non-Stationary Conditions

If the stochastic optimization approach of management rules remains valid, what
varies in a non-stationary context is the conditional probability distribution, which en-
counters the following two challenges: (i) it can no longer be derived from historical data,
except under certain restrictive assumptions, and, more importantly, (ii) it cannot be used
as is for the future precisely because of climate change, the evolution of which is unknown
at present.

Regarding the historical period, in order to estimate the probability distributions in
a non-stationary regime, if the evolution is not extremely fast, as under climate change
conditions, it is possible to identify periods that are not too long (say 20–30 years) in which
it is still possible to apply the hypothesis of a weak stationarity (at least limited to the
first two or three moments of the probability distribution) and of ergodicity, to proceed by
analogy as in the stationarity regime (Figure 2).
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Figure 2. The monthly non-stationary water levels of the Nile at Roda’s Nilometer (in cm) during the
period 1871–1971 considered as a weakly stationary stochastic process. We identified two 20-year
sub-periods. Within each period, the stochastic process could be thought of as weakly stationary and
ergodic, while the process over the 100-year period was clearly non-stationary.

However, the problem of extrapolating these probability distributions to the future
remains, since it is no longer possible to establish them for future periods by assuming
stationarity over long periods of time. Due to loss of stationarity, it is no longer possible
to extrapolate outright the estimated probability distributions defined over the historical
period. The only sensible way to proceed is, therefore, that linked to the use of one
or multiple General Circulation Models (GCMs), which make it possible to extend the
chronological series in the future by considering strong non-linearities and the chaotic
nature of the global atmospheric system. Unfortunately, these sets of models are incorrectly
used to estimate future predictive probability distributions without conditioning them
to observations [4]. Only by conditioning the forecasts of one, or better of several, of
these models on the basis of actual observations, can we correctly estimate the predictive
probability distributions, which acknowledge both the non-stationarity, due to climate
change, and the link to the past or current climate. It is finally this probability distribution,
conditioned on models and reality [4] that we propose to use in the stochastic optimization
phase in adjusting reservoir management rules.

2. Basic Concepts
2.1. Decisions under Uncertainty

Traditionally, most water resources management rules and decisions are based on
deterministic criteria, such as exceeding a threshold by an observed parameter. For exam-
ple, reservoir releases are increased if the stored volume exceeds an upper limit volume
or reduced if the stored volume drops below a lower limit volume. All this is fine, if the
quantity, which triggers the decision, is observed and thus known, except for small mea-
surement errors which are insignificant for decision-making and which make it possible to
assume a “perfect knowledge” of the quantity itself. An example can be the issuance of
river flood alerts based on progressive level thresholds that trigger the different phases of
attention, guard, and alert. Measurement errors of a few centimeters are in fact irrelevant
for subsequent decisions and the levels can be considered perfectly known. However, this
approach is only useful for large rivers, where the rate of rise of the levels is low enough
to allow for the implementation of actions planned and programmed in each of the risk
mitigation phases. On the other hand, when dealing with small rivers, where the rate of
level rise is high and the time left to overflow short, the decision-making method based
on real-time measurements cannot be adopted, because, when a threshold is exceeded, it
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is often too late for a correct implementation of mitigating actions. In these cases, instead
of measurements, predictions of future levels are compared against the trigger thresh-
olds of the different phases. Unfortunately, the uncertainty associated with predictions is
significantly higher than the one of measurements, resulting in a significant decrease in
efficiency and robustness of subsequent decisions. Likewise, when it is necessary to decide
how much water to release from a reservoir in the upcoming 10–30 days, without exact
knowledge of how much the natural inflow will be, it is necessary to base the decision
on an estimate or, even better, on a forecast of what the state of the reservoir will be at
the end of the time horizon of interest. This involves basing decisions on predictions and
not on recorded reservoir levels by considering the uncertainty of the future state of the
system. Unlike measurements, forecasts provide much more imprecise knowledge about
future reservoir levels, with errors (the difference between what is predicted and what
will happen) that by far exceed those from measurements and, in particular, to an extent
that is non-negligible for decision-making purposes. Therefore, we are in a situation of
having imperfect knowledge of the future, and hence the pre-set release levels alone do not
provide all sufficient information to correctly make the most optimal decision.

The predicted quantities, such as, for instance, future reservoir levels, represent only
expected values, but do not provide additional information, such as how they are dis-
tributed and, in particular, an estimate of the spread of the future levels around the forecast
values. In other words, the probability of occurrence of values lower or higher than the
expected ones is high. On the contrary, probabilistic predictions aim at fully describing,
through a probability distribution or an ensemble, the lack of knowledge on the future
outcomes, which is the essential information to assess the expected benefits or losses
descending from any taken decision.

To better understand this concept, consider the case of deciding whether to release
a volume of water from a reservoir in the face of a forecasted flood inflow. If we base
our decisions exclusively on a “deterministic” prediction, then, if not explicitly, we still
implicitly assume that the future volume will always be “exactly” the same as expected,
with the obvious result that each time the future volume substantially differs from the
expected value, we inexorably make major decision errors.

Figure 3 shows the case of a reservoir of set storage capacity. If the volume does not
exceed a predetermined maximum level, the losses caused by the overspill of the reservoir
are zero, otherwise they increase following a second-order power law, as expressed by
the cost function. By relying on a forecast, if we assume that the expected value of the
volume provided by the forecast is a deterministic quantity, the expected loss estimate
Losses(E{V}) = 0 will be zero, as shown in the left pane (a) in Figure 3, because the
predicted value of the volume does not exceed reservoir capacity. However, the forecast
expresses an expected value, meaning that “on average” the future value will be equal to
the expected value, but it could also depart from that value with extremely high or low
levels being less likely. Therefore, to complete the information, it is necessary to predict not
only the expected value, but also the entire density function, which allows one to assess the
consequences of events that lie besides the mean, by weighting them with their occurrence
probability. This concept is explained in Figure 3. The left pane (a) shows the calculation
of spillage losses resulting from the expected value of the reservoir levels (deterministic
forecast); here the losses are zero because the single predicted deterministic value triggers
no spillage. On the contrary, the right pane (b) shows the expected value of the forecast
as well as the entire predictive probability distribution. The probability of excess volumes
leading to reservoir spillage (blue-shaded area) is non-zero.

To prevent the exclusion of all those excess reservoir volumes that could potentially
induce losses, one needs to estimate the probability-weighted losses instead of those
corresponding to an expected value of the reservoir level as in the left pane. In the latter
case our evaluation does not acknowledge the uncertainty of the forecast, leading to a no-
spillage prediction, that is often proved wrong. To correctly decide whether to release water
ahead of an event, we need to estimate the “expected losses”, defined as integral between
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the spill gate level volume and infinity of the product losses (the function indicated by a
black curve in Figure 3) times the probability of occurrence of the corresponding volume
(the function indicated in blue):

E{Losses} =
∫ ∞

Vmax
Losses(V) Prob(V) dV > 0 (1)

The expected value of the losses will differ significantly from zero, as visible in
the left pane (a) of Figure 3, because one cannot exclude the occurrence of water levels
that are sufficiently high to cause downstream losses. It is obvious that the expected
value of losses E{Losses} is something other than the value of losses Losses(E{V}) cal-
culated using the expected value of the reservoir volume. While the latter is zero, the
same losses estimated by acknowledging the uncertainty that values larger than the reser-
voir capacity may occur is non-zero. They may even be substantially larger than zero,
i.e., E{Losses} >> Losses(E{V}) = 0.
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Figure 3. Comparison between the expected losses estimated (a) deterministically, according to the
expected value of the volume forecast, and (b) probabilistically, by integrating the product between
losses and their predictive probability of occurrence.

This is a general result in the presence of uncertainty, when the relation between the
decision variable (in this case the losses) and the predicted value is of nonlinear or discon-
tinuous type, as in the case of the reservoir, due to the presence of a threshold Vmax and
the activation of the nonlinear loss-volume relation for V > Vmax. Deciding not to release
water ahead of an event, given that a supposedly deterministic forecast suggests zero-loss,
leads inevitably to weak and often wrong decisions, because many alternative values with
non-negligible probability of occurrence are a priori excluded. To correctly estimate the
expected value of the profits (or losses) resulting from decisions when we are not sure about
the future, we need to estimate and provide the entire predictive probability distribution
and not just the mean value; then, we need to use the assessed predictive distribution to
calculate the expected value of profits or losses. What mostly occurs in practice in the
context of probabilistic forecasting is to rather estimate the predictive distribution only to
provide an indication of the uncertainty by means of classical confidence limits and rarely
to derive stochastically optimized management rules. In practice, the information provided
by the entire predicted probability distribution, which can add valuable information if
properly used in a decision-making scheme, is replaced by using two values only, the
maximum and the minimum. These two extreme values are supposedly representative of
the dispersion of the population which have the unwanted collateral effect of fomenting a
negative perception among decision makers towards considering uncertainty.

This can be shown through the example shown in Figure 4. The left pane (a) provides
information on the average daily temperature across different months in the form of
probability densities which, in the event of damage exceeding predetermined thresholds,
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make it possible to calculate their expected value. On the right pane (b), however, the
same information is provided as an average value ± 1 standard deviation. Here the only
information that can be obtained is that the average is uncertain, and that the uncertainty
varies across months. However, if the predictive distribution is not Gaussian, we have
no way of calculating the expected values of the quantities that interest us for informed
decision-making. This approach, instead of increasing the confidence of decision makers,
generates a sense of indeterminacy and unwarranted additional uncertainty.
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Figure 4. In pane (a), the representation of uncertainty, or rather our knowledge, in the form of
probability density allows its informative use in decision-making schemes. In (b), where the expected
value surrounded by the limits of ± 1 standard errors are plotted, only the information on the
dispersion of the observations is provided, which gives a measure of the uncertainty, but does not
allow us to use it in the decision-making phase.

The reason why we speak of unjustified lack of confidence is related to the fact that in
reality the uncertainty is reduced (say “marginalized”) by the calculation of the expected
value of the profits (or losses), which aims at reducing, as far as possible, the effects of
chance by integrating the product of profits (or losses) by their corresponding probability
of occurrence. To give an idea of this point, one needs to bear in mind that the estimate
of the mean value of a sample is less uncertain by a factor 1/

√
n, than the individual

observations of the original sample, with n the number of observations. In case of a sample
of observations, we start from the definition of the expected value:

E{x} =
∫ ∞

0
x f (x) dx (2)

Then, noting that the probability distribution is no longer continuous, but discrete, we
go from the integral to the summation and marginalize the uncertainty by assuming that
each observation has the same probability of occurrence p(xi) = 1/n, to obtain the classical
estimator of the expected value (the mean):

E{x} =
n

∑
i=1

xi p(xi) =
1
n

n

∑
i=1

xi (3)

For reasons given above, this value is inherently less uncertain than individual ob-
servations. Essentially by taking the expectation over the observations sample we have
marginalized the original uncertainty. If we deal with normally distributed variables the
mean and the variance fully qualify the probability distribution, but apart from yearly
average values most natural variables, and in particular precipitation and discharge, show
clear skewed and more complex distributions when sampled at seasonal, monthly, or
shorter time intervals. Hence the need to marginalize uncertainty by using the information
provided by the predictive density requires the entire probability distribution, not only the
mean and at most two confidence limits, to be considered if there are to be robust decisions.
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2.2. The Mathematical Representation of Knowledge

Various forms of mathematical approaches exist for the quantification of information
about knowledge and its opposite, uncertainty, due to lack of knowledge. Different ways of
characterizing knowledge have been proposed, ranging from fuzzy sets [5] to grey sets [6]
and are widely used when it comes to non-commensurable quantities. However, when we
want to express knowledge of measurable quantities, such as discharge and water volumes,
it is useful to define knowledge according to statistical probability density functions.

Total absence of knowledge (i.e., full ignorance) is represented by a uniform probability
density of infinitesimal value over the entire field of existence (in the most general case
between negative infinity and positive infinity), which indicates that any value has the same
probability of being correct, but without knowing the right one [7]. An example of a uniform
distribution is given by the left pane in Figure 5. Perfect knowledge (i.e., the complete
absence of ignorance) is represented by a mathematical operator of infinite magnitude
and infinitesimal thickness over the exact value called the Dirac delta [8] (Dirac, 1958). It
represents the fact that all information is concentrated in this value and is shown in the
right pane in Figure 5. Each intermediate case of imperfect knowledge (or partial ignorance)
is represented by a classical probability density function, usually bell-shaped (middle pane
in Figure 5). This curve indicates that we know approximately the correct value, which we
expect to coincide with the mean, but that we are unsure about because the exact value
could be higher or lower than the mean, and is, in other words, dispersed around the mean.
The probability density function describes how the probability mass is distributed across
the variable range, over which we acknowledge uncertainty, knowing that the actual value
is located somewhere within.
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To better grasp this concept, suppose we need to measure the width of a table in a
dimly lit room with a measuring instrument (e.g., a tape measure) that is not very readable,
so that it is easy to get a wrong reading. If we repeat the readings after measuring the
same length, we will find that the measured values will probably differ from each other
and that the frequency of observation is distributed according to the bell-shaped Gaussian
probability density function, which becomes the most complete representation of our
knowledge. The mean of the observations will also be uncertain, although its uncertainty
decreases as the number of observations increases, until it collapses into a Dirac delta
function on a single value, when an infinite number of observations is reached. This
is equivalent to saying that we are in a situation of perfect knowledge. This value will
obviously only be exact if our measuring instrument is unaffected by systematic errors, and
would, otherwise, be biased.

All this shows that in most situations we possess imperfect knowledge. This means
that to be able to provide correct information, this knowledge must be described by a
probability distribution and not by a single value, such as the population mean.

2.3. Deterministic versus Probabilistic Forecasts

To better understand the concept of “forecasting” in the context of planning and
managing water resources, especially the risks associated with droughts and floods, it is
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necessary to consider “forecasting” as the only “measure” (or rather “pseudo-measure”)
available of the future state of a system. In other words, what is of interest is not the forecast
itself, given by one or multiple predictive models, but the actual state in which the quantity
of interest (e.g., the volume of the reservoir) will be found at the end of the time horizon, as
the only information, in the form of a “pseudo-measure”, albeit uncertain, provided by a
single or multiple models.

Indeed, it is uncertain that the evolution of forecasting models in the future will
correctly mimic the evolution of the real system, because of their implicit simplified and
approximate representation of system complexities. This concept is visualized in Figure 6,
where we show how the actual current state, such as the state of the atmosphere or a water
resources system, evolves over time to reach a future state following a given trajectory
(green line). The figure also shows a shaded area, which indicates other potential points
that are “physically” reachable by the natural (real) system starting from the current state.
However, when making a decision, we not only do not know the value, which will be
reached by the state variable, but we also do not have a description of all the points towards
which the real system can potentially evolve (green shaded zone).
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Figure 6. Uncertainty in the evolution of a chaotic physical system (Real World) and its modeled
representation (Virtual World of Models). In green the evolution from the current state to the actual
future value (solid line) and to possible alternative future states (green zone). In red, the evolution
of the current state to the expected value of the future state (solid line) while the evolution of the
model’s predictions from the present to the future (orange zones), is not necessarily coinciding with
the real future states (redrawn from [4]).

To get an idea of what may occur, we adopt one or multiple models describing the
evolution of the physical system, knowing that the future states reached by the models
will most likely not coincide with the true ones and that the possible future states of the
models (orange shaded zone) will hardly coincide with potential real future states (green
shaded zone). From this, two aspects emerge. The first concerns the fact that only the actual
future states, and not the future states predicted by the models, will provide information
about the uncertainty of the future system state. The second is that a deterministic forecast
will neither allow the uncertainty of the future states of the models to be described nor,
more importantly, that of the real future states, which is essential when estimating potential
benefits or losses.
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The benefits or damages are produced by the actual and not by the expected triggering
variables. Therefore, estimating the expected value of the consequences of future states
requires involving the probability distribution of the actual future states, and not the
uncertainty of the states generated by the models. We, therefore, need to build a kind of
“translation dictionary” which converts forecast uncertainty estimated by models (orange
shaded zone) into the corresponding forecast uncertainty of real future states (green shaded
zone). This “translation dictionary” is called “conditioning”. In other words, we must find
the probability distribution of real future states depending (conditional) on the knowledge
of the probability distribution provided by the models.

3. Probabilistic Predictions
3.1. Short Term Probabilistic Forecasts

Short term forecasts are essential for the day-to-day operation of reservoirs as well
as for flood risk management. The forecasting horizon varies from a few hours to several
days depending on the time required to assess the effects of decisions to be taken based on
the forecasts and the time needed to implement them.

Accuracy of forecasts decays with the length of the forecasting horizon which is limited
by the characteristic concentration time of the upstream catchment. Accurate short-term
deterministic forecasts can be provided on large rivers using flood routing hydraulic models
with upstream flow or water level measurements when the travel time of the flood waves
is long enough. Longer forecasting horizons may require a cascade of catchment rainfall-
runoff and flood routing models with a corresponding loss of accuracy. When the required
forecasting horizon becomes larger, one also requires the use of quantitative precipitation
forecasts to extend predictions beyond the concentration time of the catchment, which adds
additional degrees of uncertainty.

Sometimes data-driven models, such as artificial neural networks, are also used for
short term forecasting with apparently reasonably good results. Nonetheless, there are
two reasons that make deterministic models preferable. First, while deterministic models,
particularly the ones based on detailed topographic description and mass and energy
balance equations, such as the flood routing models, can extend their validity beyond their
calibration range, data-driven models often become unreliable. The second reason relates
to the fact that when dealing with flood risk attenuation measures, it is common practice to
compare the effects of alternative interventions, which may modify the topology or, more
generally, the internal structure of the systems under control, such as allowing waters to
invade water detention areas or activate a bypass, etc. This is relatively simple to simulate
using physically based models, but rather impossible to do if using data-driven models
without a time-consuming re-calibration process, which is not possible under the stress of
the incoming events.

As discussed in Section 2, deterministic forecasts, which may be considered as expected
values, are not sufficient to take informed decisions, a process requiring the assessment
and use of the full predictive density. Accordingly, several uncertainty processors were
developed in the past decades to describe the predictive distribution function, namely
the probability distribution function of the future “real” occurrence conditional on a de-
terministic forecast, which is now taken not as the real future outcome but rather as
its uncertain “pseudo-measurement”. Several uncertainty processors have been devel-
oped from the Model Output Statistics approach [9,10], to the Bayesian Model Averaging
due to Raftery [11], the Bayesian Forecasting System developed by Krzysztofowicz [12],
the Quantile Regression approach due to Koenker [13], and, more recently, the Model
Conditional Processor [14].

Most of the above-mentioned approaches deliver the predictive distribution condi-
tional on the “deterministic” prediction, namely the expected forecasted value produced
by the predictive model is used, which can be of any type: physically based, conceptual or
data driven.
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The new generation of uncertainty processors also allows the combining several
predictive models of different types [15], as well as accounting for time dependence in
predictions (e.g., [16–19]).

3.2. Medium Term Probabilistic Forecasts

Medium term forecasts of reservoir inflow can be obtained by different approaches,
depending on the size of the river basin, data availability and the predictability of the
flood wave propagation in the flow channel. The use of the following are possible options:
(i) autoregressive models; (ii) rainfall-runoff models, that are forced by long-term weather
forecasts; (iii) seasonal forecasts.

Auto-regressive (AR) models [20] establish a linear stochastic relationship between
a stochastic process variable and p time-lagged copies of itself, hence the name “auto-
regression”. The number of lagged series used in the regression determines the order p of
the autoregressive model used. The chosen time-lag is process-dependent and varies for
river flow processes between several hours to days or months. The number of predictors
at previous time steps that are used to describe the dependency with the predictand are
the “order” of the autoregressive model. The AR model can also include the dependency
on additional process variables, so-called exogenous variables, leading to ARX models.
In the case of flow forecasts on large rivers with slow flood propagation, an ARX model,
which uses up-stream stations as exogenous input, works well, because the flood propaga-
tion is usually highly predictable. Such data-driven model approaches are operationally
used all over the world to forecast the rise of flood waves in slow-varying systems. For
instance, the annual flood wave of the lower river Niger caused by seasonal precipitation
in the far-distant headwater basins of equatorial West Africa, and flood waters traveling
multiple thousands of kilometers on very mild slopes, can be predicted with high accuracy
based on pure ARX modeling. The same can be said for the Nile or other large-scale
river systems. A major advantage of autoregressive flow modeling is the data-driven
approach, which demands only modest computational resources as no solution of physical
governing equations.

Other types of regression-based models, like the moving average (MA), have been
proposed for flow modeling. MA models base the forecast on a linear combination of
lagged forecasting residuals that are added to the long-term observed average with a white
noise component. In combination with an AR model, one obtains the so-called ARMA
models that can be extended to include exogenous variables (ARMAX). Nevertheless, the
ARMAX models are not well suited for flow forecasting applications, as the predictive skill
of the MA component collapses in the absence of recent observations and auto-regressive
models with exogenous variables (ARX) are then preferred.

If flow observations are too scarce to set up data-driven models, flow forecasts can be
obtained with the use of hydrological models that simulate the rainfall-runoff process in the
river basin. These parameterized models need to be calibrated over a historical period with
observed precipitation and discharge data. In prognostic operation, hydrological models
are forced by medium- and extended-term numerical weather predictions (NWP) that are
produced by national meteorological services and are available at different temporal scales.
Medium-range forecasts cover typical forecasting horizons up to 15 days, extended-range
ones up to 6 weeks. Medium- and extended-term forecasts provide predictions of how
the average atmospheric ocean and land surface conditions over areas and periods of time
are likely to deviate from the average and provide the atmospheric states as means over
several days. Smaller-scale temporal resolutions of the variables are also available or can
alternatively be obtained by temporal disaggregation of the mean product. The choice of the
right forecasting time horizon for medium- to extended-range hydrological flow forecasts is
primarily dependent on basin size and concentration time. For small to medium-sized river
basins, medium-range precipitation and temperature forecasts may be sufficient for flow
forecasting. Continental-sized basins, on the other hand, can have concentration times with
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lengths of multiple weeks to months, thus requiring extended-range weather predictions
or long-range forecasts addressed below.

Seasonal prediction scales are covered by long-range forecasts with typical time hori-
zons between 6 to 7 months. For instance, the rather novel SEAS5 ensemble product
for operational seasonal climate forecasting by the European Centre for Medium-Range
Weather Forecasts (ECMWF), which replaces the older ECMWF System 4 with a large
international community of users, constitutes a new attractive development at the seasonal
scale. The research in [21] carried out verifications of SEAS in forecasting precipitation and
daily minimum/maximum temperature for the Australian continent, based on 36 years of
re-forecast data, pointing out the predictive capabilities. While the benefits of these types
of products for small watersheds are limited, due to the high degree of spatial uncertainty,
they provide added value in long-term predictions for extensive systems, especially when
future liquid precipitation, as well as snow cover area and depth, need to be estimated
with sufficient lead time. Such information is especially valuable for the management of
large irrigation schemes or for estimating hydropower energy production potential for the
upcoming season.

Potential users of short- to long-term weather forecasts must consider that NWP
model output is inherently uncertain. In combination with the parameter and initial
conditions uncertainty of the hydrological model, this leads to flow predictions that are
affected by uncertainty to different degrees, manifesting itself in the spread of the predictive
distribution. Various approaches exist to sharpen [22] the predictive distribution. Data
assimilation with the aid of Kalman filtering (e.g., [23]) can be used to update model states
and, hence, sharpen the posterior distribution of predicted flow.

3.3. Long-Term Probabilistic Climate Projections

For predictions at very long climatic time scales, the only option is to rely on the pro-
jections of Earth-system models, which simulate, as realistically as possible, the interaction
of atmosphere, land, ocean and sea-ice processes. The solutions of the physical governing
equations are sensitive to model uncertainties, owing to the fact that complex non-linear
thermodynamic processes are simulated in an approximate way, and that the equations are
resolved on a finite grid. The time integration of Earth-system models driven by different
Representative Concentration Pathways (RCPs) leads to an ensemble of projections that
can be used to estimate the response of the Earth’s climate to radiative forcing [24]. We
note here that the term ‘projection’ is used instead of ‘prediction’, because future inte-
grations that extend beyond a few years are mainly driven by the particular radiative
forcing scenario adopted, rather than by the initial conditions, as is the case with medium
range to seasonal weather predictions. Several multi-model ensemble simulations of fu-
ture climate have been performed as part of the Climate Model Inter-comparison Project
(CMIP), which, to date, includes multiple executive phases [25–28]. One also needs to bear
in mind that the principal difference between handling climate projections versus classical
short- and medium-range forecasts is that presently available climate projections may be
capable of preserving the statistical properties of the simulated Earth-system variables,
but not their observed auto- and cross-correlation structures [29] as in medium-range
to seasonal weather predictions. Hence, only projections at annual seasonal, or at least
monthly, scale are of interest for decision-making processes, while daily-scale fluctuations
are near meaningless in a climatic context.

Figure 7 shows post-processed ensemble projections for RCP4.5 seasonal temperature
projection, March-April-May, averaged over the river Po basin, Italy. The left-hand side win-
dow is the 1979–2005 control period used for data calibration against observations, whereas
in the middle and on the right the 2040–2060 and 2080–2100 prognostic windows are visible.
The two horizontal dashed lines represent the mean of observations and the predictive
means for the two prognostic windows. Figure 8 visualizes the post-processed ensemble
projections of precipitation for the pessimistic RCP 8.5 scenario in a CMIP5 1◦ × 1◦ ref-
erence cell. While temperature in the river Po valley is clearly increasing, precipitation
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remains overly stable during the 21st century. Figure 9 displays the probability densities
of the predictive means and observations for the control period and the two prognostic
windows. It is using these predictive densities that one can estimate the expected losses as
per Equation (1).
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Figure 9. Probability density functions of observed and projected precipitation means (in mm) for
a 1◦ × 1◦ reference cell centered in 8.08◦ E and 45.32◦ N, river Po basin, Northern Italy. Observa-
tions (blue dashed), post-processed control period (blue), prognostic window 2035–2065 (red) and
2070–2100 (green) projections, for the summer quarter June, July, August (JJA).

4. Attracting the Interest of Decision Makers

One of the primary objectives of hydrologists involved in prediction is to attract the
interest of decision makers to the explained probabilistic aspects. The main reason is that in
the case of hydrological predictions, it is only rarely the case that predictions expressed in
the form of predictive densities have been fully understood, accepted and introduced in the
decision-making process. In most cases, they have been merely used to attach a measure
of reliability to a “deterministic” forecast based on the mean (mean forecast, mean of an
ensemble of forecasts, etc.).

The reasons for this mostly descend from the following general aspects:

1. inappropriate definition of predictive uncertainty;
2. misunderstanding of the meaning of predictive uncertainty and of its role in decision-making;
3. unclear role and use of epistemic uncertainty (such as parameter uncertainty), which

is often confused with predictive uncertainty;
4. incorrect use of ensembles in the assessment of predictive uncertainty;
5. misunderstanding of the mechanism and of the advantages for using predictive

uncertainty in the Bayesian decision-making process.

All these points have been discussed at length in the hydro-meteorological litera-
ture [3,30–36], but the most important point on the list, relevant to the Bayesian decision
approaches [37], remains number five, because if decision makers could fully grasp the
benefits, in terms of increased decision reliability in conjunction with reduction of ex-
pected damages and increase of expected benefits, they would unavoidably turn in favor
of probabilistic forecasting.

To clarify point number 5, Figure 10 shows a generic example where environmental
losses occur if the volume in a reservoir falls below the lower operational limit of 200 Mm3

while environmental, social, and economic losses rapidly increase when the volume over-
tops the upper operational limit of 600 Mm3. The utility function in Figure 10, expressed in
monetary terms (€), is generally set up in cooperation with the decision maker to reflect his
or her subjective views and risk propensity.
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Figure 10. A simplified example of how a probabilistic forecast (thin black bell-shaped predictive
density) can be used to derive appropriate decisions for reservoir releases. For a given probabilistic
prediction (grey bell-shaped solid line), the expected loss, namely, the integral of the product of the
density times the utility function of Equation (1) (solid thick black curve), is rather large. By releasing
water, thus, reducing the volume in the reservoir, the probabilistic forecast of the cumulated volume
is shifted downwards and is represented by the solid line bell shaped curve. As can be noticed, the
expected utility value now becomes negligible. The appropriate amount to be released will then be
found by comparing the expected utility function value to the cost of lack of future water availability
(redrawn from [2]).

A forecast of the future stored volume is available at the end of the forecasting horizon
in the form of a Gaussian predictive probability density with mean 750 Mm3 and standard
deviation 80 Mm3. As can be visually noticed from Figure 10, the integral of the product
between the predictive density, represented by the thin, grey, bell-shaped curve, and the
utility function gives a large expected loss of about 1 million €. By releasing water from the
reservoir, although there would be loss of precious water volume, expected losses could be
dramatically reduced. Releasing water is equivalent to shifting downwards the predictive
density by the released quantity. The situation of Figure 10 after releasing 350 Mm3 shows
that the updated predictive density, represented by the black solid line bell shaped curve,
is shifted downwards and the expected losses (∼ 30 €) become practically null.

Prior to clarification with the decision maker, and with regards to the other four
and more technical points of the above list, we strongly recommend setting up a simu-
lation environment capable of retrospectively comparing the results of many successive
informed decisions obtained through the probabilistic Bayesian scheme against the results
obtained using rigid deterministic operating rules commonly used by decision makers. In
this way the decision makers would immediately become aware of the advantages and
disadvantages of the proposed innovative approach of taking operational decisions by
acknowledging the importance of the information introduced through a correct description
of the predicted uncertainty.
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5. Conclusions

Operational water management is a conservative business, which relies on simple
and well-proven rules, whose immediate and long-term consequences must be easily
comprehendible for stakeholders and political decision makers. Nevertheless, such rigid
rules very often lead to suboptimal water use and poor management of the resource. Over-
exploitation of a multi-purpose reservoir leading to lack of water during critical periods is
a classic example.

Growing global stresses concerning water resources, partly due to climatic changes,
partly due to increasing water demand, make poor management practices increasingly
unaffordable and support the concept that more flexible water resources management
approaches need to be adopted, in which the use of an increasingly scarce and variable
resource is optimized, and bankable benefits reached.

Such an approach must abandon the rigid decision schemes, based on deterministic
system predictions, independent of the time horizon, and instead acknowledge the ran-
domness of the forecasted natural flow processes, known as aleatoric uncertainty. The latter
outweighs by far the epistemic uncertainty attributable to intrinsic limitations and process
parameterizations of numerical models used in forecasting.

Certainly, state variables such as precipitation, temperature and surface water flow that
are retrospectively predicted by climate and hydrological models, need to be conditioned
on observations first, hence removing biases and adjusting variances, to become useable
with more confidence as predictors for the yet to be observed future state variables. The so-
obtained predictions are uncertain and characterized by predictive probability distributions.
In conjunction with a cost utility function, these predictive distributions enable a probability-
weighted expected estimate of management consequences to be traded-off against actual
costs, thus supporting objective decision-making.

Without communicating and integrating uncertain weather, climate, and surface
water information routinely into the decision processes, objective and cost-effective water
resource management decisions will remain an elusive endeavor. This brings us to the
need to develop strategies aimed at approaching decision makers by guiding them to
recognize the benefits descending from informed decisions. We need to also support them
in understanding the indispensability of the proposed approaches with increased water
scarcity and climate change impacts.
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