
Citation: Gonzalez, J.M.; Villarreal,

C.; Fasci, A.; Rocco, D.D.; Salazar, S.;

Khalil, A.; Wearden, B.; Oseghale, J.;

Garcia, M.; Portillo, D.J.; et al.

Evaluating the Performance of a

Nonelectronic, Versatile Oxygenating

Perfusion System across Viscosities

Representative of Clinical Perfusion

Solutions Used for Organ

Preservation. Bioengineering 2023, 10,

2. https://doi.org/10.3390/

bioengineering10010002

Academic Editors: Robert M. DiBlasi

and Crescenzio Gallo

Received: 8 November 2022

Revised: 8 December 2022

Accepted: 10 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Evaluating the Performance of a Nonelectronic, Versatile
Oxygenating Perfusion System across Viscosities
Representative of Clinical Perfusion Solutions Used for
Organ Preservation
Jose M. Gonzalez 1 , Carorina Villarreal 1, Anjelyka Fasci 1, David Di Rocco 1, Sophia Salazar 1, Anis Khalil 1,
Brandt Wearden 1, Jessica Oseghale 2, Mariana Garcia 1, Daniel J. Portillo 1,* and R. Lyle Hood 1,2,*

1 Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle,
San Antonio, TX 78249, USA

2 Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle,
San Antonio, TX 78249, USA

* Correspondence: daniel.portillo@utsa.edu (D.J.P.); lyle.hood@utsa.edu (R.L.H.)

Abstract: Introduction: On the United States’ Organ Transplantation Waitlist, approximately 17 people
die each day waiting for an organ. The situation continues to deteriorate as the discrepancy between
harvested organs and the number of patients in need is increasing. Static cold storage is the clinical
standard method for preserving a harvested organ but is associated with several drawbacks. Machine
perfusion of an organ has been shown to improve preservation quality as well as preservation time
over static cold storage. While there are machine perfusion devices clinically available, they are costly
and limited to specific organs and preservation solutions. This study presents a versatile oxygenating
perfusion system (VOPS) that supplies oxygen and pulsatile perfusion. Materials and Methods:
Experiments evaluated the system’s performance with a human kidney mimicking hydraulic analog
using multiple compressed oxygen supply pressures and aqueous solutions with viscosities ranging
from 1 to 6.5 cP, which simulated viscosities of commonly used organ preservation solutions. Results
and Conclusions: The VOPS produced mean flow rates ranging from 0.6 to 28.2 mL/min and
perfusion pressures from 4.8 to 96.8 mmHg, which successfully achieved the desired perfusion
parameters for human kidneys. This work provides evidence that the VOPS described herein has the
versatility to perfuse organs using many of the clinically available preservation solutions.

Keywords: organ preservation; kidney preservation; machine perfusion; transplantation; tissue
preservation; transplantation; static cold storage; viscosity

1. Introduction

Transplantation of organs has increased significantly in the last few years according to
the United States Department of Health and Human Services, with a 5.9% increase between
2020 and 2021, and for the first time, 40,000 organ transplants have occurred in a given
year [1]. However, the deficit between the patients in need of an organ and the number
who receive a transplant has continued to grow [2,3]. As an example, the kidney is the most
transplanted organ worldwide, with a reported number of approximately 25,000 kidney
transplants performed in the United States in 2021; yet the number of transplants performed
in 2021 was approximately four-times less than the number of people on the waitlist in
need of a transplant [1]. Previous studies have shown that approximately 17% of harvested
kidneys are discarded due to being deemed unfit for transplantation [4]. In the United
States, the organ discard rate has been approximately 9% for all organs that were harvested
for transplantation [5]. Organs are discarded for reasons such as donor-related issues
(virology, history, age, etc.), poor organ function, and inadequate preservation techniques
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(poor perfusion, extended cold ischemia times, organ damage, etc.) [6,7]. In addition,
even among successful organ transplants, there remains a wide disparity in organ viability
at the time of transplant that has a fundamental impact on the long-term health of the
organ and recipient [8]. Therefore, organ preservation remains a critical need to ensure
an organ is healthily preserved while being transported safely to the recipient’s location
for transplantation.

Unfortunately, the transport process proves to be a challenging endeavor with many
hurdles and considerations. Traditionally, static cold storage (SCS) at approximately
4 ◦C [9–12] is the clinical standard for maintaining organs during transport from donor to
recipient [13,14]. SCS involves flushing donor organs to remove as much of the donor’s
blood as possible and storing the organ in an ischemic (restricted or reduced blood flow)
and hypothermic state. However, during the duration of the ischemic state, excessive
inflammatory response from oxidative stress and other factors can result in cellular degra-
dation [15]. Furthermore, significant organ ischemia can cause lasting effects to recipient
patients. As an example, many recipients of lung transplants have demonstrated poor
oxygen exchange and pulmonary infiltrates post-surgery [16]. As cold ischemia causes con-
stant degradation, the time in which organs can be kept in this state is limited; if organs fall
outside of this time range they may no longer be viable for transplantation [17]. In addition,
vascular injury can occur when flow is reintroduced after a donor organ is transplanted,
and together with ischemic injury, is referred to as ischemic reperfusion injury (IRI) [18].
Given these negative effects, the need for an organ preservation method that limits cellular
degeneration, extends preservation times, eliminates or limits cold ischemic time, and
prevents poor reperfusion is imperative for providing recipients with the healthiest organ
possible while preventing organs being discarded [6].

Machine perfusion (MP) is a promising organ preservation method with the aim
to eliminate or reduce the shortcomings that are associated with SCS [19]. MP involves
cannulation of the major blood vessels and perfusion of a preservation solution using
constant or pulsatile flow [20]. This perfusion method has been shown to improve organ
viability by promoting early graft function compared to SCS [21,22]. In large animal
studies, MP had better outcomes in cold preservation than SCS [23]. A study by Patel
et al. demonstrated that the rate of delayed graft function was significantly less for organs
preserved via MP (34.2%) compared to SCS (42.0%) [24]. Furthermore, the study identified
that creatinine levels were at a more desirable concentration in patients who received
organs preserved by MP as compared to SCS one-year post-transplantation. MP has
also been shown to improve the health of organs that were previously deemed unfit for
transplantation [25]. From these studies, the benefit of MP over SCS is becoming more
widely recognized. However, current MP devices are expensive, with pricing being above
USD 10,000 [26]. In addition, a subset of the devices in the preservation market lacks
portability or does not supply oxygen to the organ being preserved [26]. MP devices are
also limited to a specific organ and preservation solution that can be used, demonstrating
a lack of flexibility and versatility [27,28].

MP systems have been developed to work with the many different solutions devel-
oped and studied for organ preservation. Solution selection has a fundamental impact on
the efficacy of organ preservation as some preservation solutions benefit renal, liver, and
pancreas transplants while other solutions may cause harm such as pancreatitis [29]. The
University of Wisconsin preservation solution (UW) is one of the most frequently used me-
dia. It includes hydroxyethyl starch (HES), which has the benefit of inhibiting edema [30].
However, the starch has been shown to cause red blood cell aggregation in humans [31].
Another compound used in preservation solution is polyethylene glycol (PEG). The use
of PEG has been shown to inhibit immune response to injury caused by kidney ischemia,
improve renal function, as well as improve liver clearance and bile production [30]. How-
ever, PEG and other preservation solutions may not combat excess calcium buildup in cells,
which has been shown to lead to heart cell apoptosis and necrosis [32]. Given the variety of
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solutions available for preservation, it is important to understand how different solutions
would affect the performance in newly developed MP devices.

The versatile oxygenating perfusion system (VOPS) is a device developed by our
group that aims to tackle the current shortcomings of MP devices. The VOPS device
aims to be able to preserve a variety of organs with a chosen preservation solution. The
VOPS device is frugal (USD 300 material cost), portable (15.2 × 39.2 cm), lightweight
(6.8 kg loaded), and able to provide oxygenation to a cannulated organ [26]. A length of
silicone tubing in the pump chamber provides oxygenation and perfusion circulation
by cyclical inflation and deflation with compressed oxygen. The VOPS device was
demonstrated to be able to reach perfusion pressures, flow rates, and oxygenation rates
required to preserve a variety of organs [26]. That ability, along with the VOPS’s low
cost, addresses key shortcomings of the clinically available MP systems.

Previous work has successfully shown the potential to address key shortcomings
but needed to be tested with varying preservation solutions. The objective of this study
was to evaluate the preservation potential of the VOPS device across a range of solution
viscosities representative of the most commonly used preservation solutions in clinical
care. To achieve this objective, an aqueous solution was created to mimic a range cov-
ering the previously discussed range of viscosities. Flow rates and perfusion pressures
were gathered at each different viscosity with varying oxygen supply pressures.

2. Materials and Methods
2.1. VOPS Device Design

The VOPS device was comprised of two primary compartments: the pump and
organ chamber. The pump chamber was composed of the top cap, helical silicone
tubing (Silastic® Laboratory Tubing, DuPont de Nemours, Inc.), fastening lid, and resin
fixture. The silicone tubing was arranged into a helix; the resin fixture was designed to
prevent pinch points and maintain flow. The organ chamber consisted of two parts: the
base cap and cylindrical acrylic walls. The organ chamber was machined with threaded
holes on the sides to attach ports for data collection [26]. The organ storage chamber
has a height of 28.5 cm and inner diameter of 12.7 cm, these dimensions were chosen
to able to fit a human-sized kidney, partial living donor liver, and a heart [33–35].
The organ storage chamber is able to be manufactured to different sizes for inclusion
of varying sized organs. A previous iteration of the VOPS device was described in
Portillo et al., while the VOPS device used in this study has several improvements.
These improvements included improved fittings and gaskets for achieving a better seal,
simplified access to the organ chamber, and removal of threaded components in favor
of latches to provide compression for the seals. The changes increase ease of access
to the organ chamber while maintaining security in the pump chamber where access
should be minimized for optimal performance. Additionally, a conical shape was
implemented for the organ chamber and pump chamber to improve gas elimination.
The top cap, pump chamber and base cap were made of 6061 aluminum, the silicon
tube holder was 3-D printed in-house (Clear Resin, Form 2, Formlabs), and the organ
chamber was machined from acrylic and epoxied in place with medical grade sealant.
A rendering of the previous device and the current device are shown in Figure 1.
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2.2. VOPS Device Operation and Experimental Setup

The VOPS device operates using pulsatile, pressurized oxygen to cyclically inflate and
deflate silicone tubing immersed in a preservation solution. This enables both oxygenation
of the solution through the permeable silicone and pumping of the solution through the rest
of the system. As the pressurized oxygen entered the tubes (inflation), the pressure within
the pump chamber increased above the hydrostatic pressure in the main organ chamber.
This pressure variance forced a bolus of oxygenated fluid from the pump chamber into the
main organ chamber through a perfusion port [26]. As the pressure dropped, the silicone
tubing deflated, subsequently dropping the pressure in the pump chamber beyond the
pressure in the main organ chamber. This caused a bolus of oxygenated fluid to return
to the pump chamber; this process allowed for a pulsatile flow throughout the device.
The silicone tubing contained nanopores in its microstructure that prevented free liquid
molecules from entering the silicone tubing but allowed oxygen transport [36]. Thus,
the pressurized oxygen used in the system diffused into the solution used in the VOPS
device. Specified lengths of flexible polyvinyl chloride (PVC) tubing were used to mimic the
vascular resistance of a kidney. Pressure transducers (PX309-030G5V, Omega Engineering,
Inc., Norwalk, Connecticut, USA) were attached to the inlet of the vascular resistance-
mimicking PVC element and the main organ chamber; the measured difference between
the pressures at these tubes indicated the perfusion pressure. In addition to the perfusion
pressure, the flow rate was measured by a sensor (2PXL-TS410, Transonic Systems Inc.,
Ithaca, New York, USA) attached to a flow loop located outside of the device. The pressure
transducer and flow sensor data was recorded via a LabVIEW virtual interface (NI 9221
and NI USB-9162, LabVIEW 2019 SP1, National Instruments, Austin, Texas, USA) and
analyzed in MATLAB (MATLAB R2020a, The MathWorks, Inc., Natick, MA, USA). The
entire VOPS experimental setup is visualized in Figure 2.
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2.3. Viscosity Theory and Criterion Determination

The VOPS was previously studied using a single fluid, phosphate-buffered saline
(PBS) [26]. A prominent property of fluids, that often dictates how a fluid will flow within
a fluid system, is viscosity [37]. The dynamic viscosity of the fluid, µ, or just viscosity, is
often what is thought of when viscosity is referenced. Kinematic viscosity, also known as
the momentum diffusivity, is a ratio of the dynamic viscosity (µ) of a fluid over the density
of the fluid (ρ), shown in Equation (1).

ν = µ ÷ ρ, (1)

When measuring viscosity, the kinematic viscosity is often the output of certain
viscometers, thus requiring density to convert it to a dynamic viscosity for ease of use.
Viscosity measurements are also affected by a variety of factors, such as the temperature of
the liquid, the pressure of the gas, and low-pressure gasses are affected by temperature, and
accuracy of measurements are poor near critical points of fluids [38]. At room temperature,
the dominant force on viscosity in a liquid is temperature, thus pressure effect on viscosity
was able to be neglected.

VOPS characterization based on viscosity was important due to the variety of organ
preservation solutions used clinically. Table 1 exhibits several preservation solutions and
their viscosities identified in the literature [39–46]. Preservation solutions were removed
from consideration if they were no longer being manufactured or if no viscosity data
were available.
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Table 1. Viscosity Range of Preservation Solutions.

Preservation Solution Viscosity Temperature

PBS 1.0 cP [39] 25 ◦C
Celsior 1.3 cP [40] 5 ◦C
IGL-2 1.4, 1.7 cP [41,42] 4 ◦C, N/A

STEEN 1.5, 4.5 cP [43] 37, 4 ◦C
HTK 1.8, 2.0 cP [40,44] 5 ◦C

Polysol 1.8 cP [40] 5 ◦C
BMPS 2.4, 2.6 cP [41,42] 4 ◦C, N/A

Blood * 3.5–5.0 cP [45] N/A
ET-K 4.0 cP [46] 4.5 ◦C
UW 5.5, 5.7, 6.2 cP [40,44,46] 4.5, 5, 1·◦C

* Included for reference.

To encompass the viscosities of the preservation solutions found in the literature,
a range of viscosities between 1–6.5 cP were chosen to be tested. An aqueous calcium
chloride solution was identified as being Newtonian and capable of attaining the range of
viscosities desired [47]. Calcium chloride dihydrate (Flinn Scientific, Inc, Batavia, IL, USA)
was mixed at mass percentages of 1, 2, 3, 4, 5, 10, 15, 20, 30, and 40%. A Cannon-Fenske
Viscometer (CANNON Instrument Company, State College, PA, USA) was used to find
the viscosity of the aqueous solutions with the varying mass percentage. The fluid was
allowed to reach temperature equilibrium inside the viscometer. Five tests were performed
at each mass percentage and the resulting viscosity data were output in centiStokes. The
average of these 5 tests was obtained as the viscosity at the respective mass percentage.
The density of the solution was gathered at each experiment set by measuring the mass of
the calcium chloride dihydrate and the volume of the fluid. Using these measured values
as well as the density of water (ρ = 0.998 g/mL) and density of calcium chloride dihydrate
(ρ = 1.85 g/mL) at 20 ◦C, the density was found using the Equation (2).

ρsolution = (mCaCl2 dihydrate + mwater) ÷ (VCaCl2 dihydrate + Vwater), (2)

The product of the water’s volume and the density of the water results in the mass
of the water (mwater) and the value of the calcium chloride dihydrate’s mass divided by
the density is the volume of the calcium chloride dihydrate (VCaCl2 dihydrate). Multiplying
the measured viscosities in centiStoke with the density at each respective mass percentage
achieved unit consistency with the viscosities found in the literature by converting every-
thing to dynamic viscosities. Mass percentage values were found at each viscosity by a 5th
order polynomial curve that tracked the plotted viscosity values that were measured with
a high degree of accuracy (polynomial fits of various orders are shown in Table A1).

Viscosities to be tested are shown in Table 2. With the determined viscosities, the
vascular resistance element lengths were able to be calculated for the experimental setup.
The lengths of these vascular resistance elements had to be found for each viscosity as
they varied with the value of viscosity. The kidney’s vascular resistance was used in the
Hagen-Poiseuille equations to find the appropriate length of the PVC element [48], by
plugging Equation (3) into (4) and solving for length resulting in Equation (5).

Q = ∆p × (πr4) ÷ (8µL), (3)

∆p = Q × R, (4)

L = (Rπr4) ÷ 8µ, (5)

where Q is flow rate, ∆p is the pressure difference, r is radius, µ is viscosity, L is length, and
R is vascular resistance. The kidney mimicking vascular resistance had an inner radius of
0.75 mm. The lengths of these PVC tubes were calculated to be 27.5, 9.1, 5.5, and 4.2 cm at
1, 3, 5, and 6.5 cP, respectively.
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Table 2. Determined Mass Percentages.

Viscosity Desired Mass Percentage Required

1 cP 0%
3 cP 31.53%
5 cP 37.47%

6.5 cP 39.99%

The range of viscosities being tested indirectly covers the impact of temperature on
the device’s performance. The range of values from the literature includes solutions such
as a solution with a viscosity of 6.2 at 1 ◦C. While the VOPS has not been tested at 1 ◦C, the
fluid will behave as it is at 1 ◦C due to the viscosity.

2.4. Determining Tuned Pulse Rates

Similar methods were used to tune the pulse rates as Portillo et al. [26], with the aim
to increase the perfusion flow rates produced by VOPS. In brief, pulse profiles of each
trial (n = 50) were averaged together to create an average pulse profile. The ideal time
for an oxygen delivery valve to be closed was determined to be when the pressure in the
organ storage chamber returned to 2% of the initial pressure [26]. To maximize the flow
rate, the ideal amount of time for oxygen to be delivered was needed. This was found
by integrating the average flow profile of the trial, with the ideal closed time accounted
for. The combination of these two times provided the tuned pulse frequency by being the
open/close time (also on/off). These tuned rates were used at the varying viscosities and
oxygen pressures.

The tuned timings were implemented via a pneumatic circuit (Clippard) as described
in another study by Portillo et al. [49]. Briefly, the current study utilized a VOPS config-
uration without any electronic control, but instead leveraged a pneumatic circuit tuned
with manual dials to achieve desired on/off times. A 20 second test trial was conducted,
gathering pressure data of the VOPS device. A MATLAB script was written to determine a
maximum and minimum pressure of the test trial which were then averaged to create a
threshold pressure value. The script determined when the pressure readings were above or
below the threshold value and output a square waveform reflecting those values. The time
location when the square wave is at a maximum or minimum was used to calculate the
average on and off time of the test trial [49]. These test trials were conducted to achieve the
2 second on, 2 second off baseline trials as well as the timing required in the tuned trials.

2.5. Test Matrix for VOPS Characterization

To characterize the performance of the VOPS platform, fluid parameters were varied
in experimental trials, which included solution viscosity (cP), oxygen pressure (kPa),
and pulse rate (Hz). The temperature of the solution remained constant throughout
all trials (20 ◦C ± 1 ◦C). The viscosities of various concentrations of aqueous calcium
chloride within the device included 1, 3, 5, and 6.5 cP. A constant vascular resistance of
0.22 mmHg/mL/min was used to simulate the typical hydraulic resistance measured in
human kidneys [24]. Oxygen pressures assessed included 27.6, 55.2, 82.7, and 110.3 kPa,
which were introduced into the device top chamber via tuned pulse rates. The silicon tube
length housed within the top chamber was held constant throughout the test matrix as well
to determine the variable impact of viscosity to the device peak perfusion pressure, mean
flow rate, and oxygenation rate during each trial. A silicone tube 6.1 m in length was used
for each trial as previous work showed this length produced the widest range of acceptable
perfusion pressures and flow rates [26,49]. The testing matrix is shown in Table 3.
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Table 3. Testing Matrix.

Length of Tubing Vascular Resistance Oxygen Pressure Viscosity

6.1 m 0.22 mmHg/mL/min 27.6 kPa 1 cP
55.2 kPa 3 cP
82.7 kPa 5 cP
110.3 kPa 6.5 cP

3. Results
3.1. Current Device Performance

The current VOPS device, due to changes in the pump chamber geometry, had different
mean flow rates and peak perfusion pressures than the previous iteration of VOPS. The
changes in performance were compared with the first iteration of VOPS at equivalent
experimental configuration. The silicone tubing length was approximately 6.1 m in both
setups, PBS was used as the working fluid, and the experiments were both at 20 ◦C.
Both experimental setups were carried out at four varying oxygen supply pressures. The
performance differences are presented in Table 4.

Table 4. Current Device Performance.

Mean Flow Rate
(mL/min) Difference Peak Perfusion

Pressure (mmHg) Difference

27.6 kPa 3.5 45.7% ↑ 37.2 52.2% ↑
55.2 kPa 6.8 44.1% ↑ 59.1 42.8% ↑
82.7 kPa 10.9 46.8% ↑ 86.2 45.6% ↑
110.3 kPa 11.8 28.8% ↑ 89.9 16.1% ↑

The current iteration of the VOPS device had mean flow rates that were between
28.8 to 46.8% greater than the performance of the previous iteration of VOPS. The current
iteration had mean flow rates between 3.5–11.8 mL/min. The peak perfusion pressures
of the current device were between 16.1 and 52.2 percent greater than the previous VOPS
device. The peak perfusion pressure of the current device was between 37.2–89.9 mmHg

3.2. Calcium Chloride Dihydrate Viscosity Range

Calcium chloride dihydrate was mixed at mass percentage ratios ranging from 1%
to 40%. The range of viscosities measured successfully covers the range of viscosities
necessary to cover the range of preservation solution viscosities presented (1.00–6.20 cP)
and are presented in Figure 3.
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3.3. Current Device Performance
3.3.1. Baseline Data

The baseline data was gathered to determine the effect of viscosity on the pulsatile
perfusion pressure and flow rate through a consistent vascular resistance and silicone tube
length in the pump chamber. The effect that the viscosity of the solution had at four varying
oxygen supply pressures, with all other variables equal, are presented in Figure 4.
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At a viscosity of 1 cP, mean flow rates ranged between 2.5± 0.10 to 13.2 ± 0.63 mL/min
at oxygen supply pressures between 27.6 to 110.3 kPa. Peak perfusion pressures varied
between 29.3 ± 1.67 and 96.8 ± 8.42 mmHg. At equal oxygen supply pressures, the 3 cP
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viscosity had mean flow rates between 5.0 ± 0.33 and 16.0 ± 0.11 mL/min and peak perfu-
sion pressures between 17.2 ± 1.98 and 47.5 ± 6.01 mmHg. A viscosity of 5 cP produced
mean flow rates and peak perfusion pressures between 1.5 ± 0.04 to 12.7 ± 2.12 mL/min
and 8.6 ± 1.16 to 49.2 ± 3.25 mmHg, respectively. The highest viscosity tested, 6.5 cP, had
mean flow rates between 0.6 ± 0.07 and 5.7 ± 0.54 mL/min and peak perfusion pressures
between 4.8 ± 0.74 and 30.1 ± 4.08 mmHg. Overall, as viscosity increased, the peak perfu-
sion pressures experienced by VOPS decreased at all different oxygen supply pressures.
As viscosity increased, the mean flow rates initially increased between 1 and 3 cP, but then
saw a decrease between 3 and 6.5 cP.

3.3.2. Data with Tuned Parameters

Peak perfusion pressures and mean flow rates that were gathered during the baseline
trials and the tuned data trials are shown in Figure 5. Each respective data point is a mean
value (n = 5) of the pump configuration of a 20 ft silicone tube with a vascular resistance of
0.22 mmHg/mL/min. In addition to the mean flow rates and peak perfusion pressures,
Figure 5 displays the top range and bottom range of peak perfusion pressures and mean
flow rates used by previous groups for the preservation of a kidney. The minimum and
maximum of the peak perfusion pressures are represented by the bottom and top of the
box, respectively, and the minimum and maximum of the mean flow rates are represented
by the left and right side of the box, respectively.
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Figure 5. Peak Perfusion Pressure and Mean Flow Rate produced by VOPS (vascular resistance of
0.22 mmHg/mL/min). Box represents the range of values utilized in previous preservation studies [50].

Tuning the pulse frequencies and duty cycles used in the VOPS experimentation
tended to decrease the peak perfusion pressures and increase the mean flow rates. At
a viscosity of 1 cP, mean flow rates ranged from 4.0 ± 0.11 to 19.4 ± 0.42 mL/min and
peak perfusion pressures ranged between 15.5 ± 1.06 to 70.0 ± 4.89 mmHg. A viscos-
ity of 3 cP used in the VOPS device produced mean flow rates between 6.4 ± 0.06 and
28.2 ± 0.26 mL/min alongside a range of peak perfusion pressures between 22.4 ± 1.19
to 83.8 ± 1.05 mmHg. The VOPS device, at a viscosity of 5 cP, produced mean flow
rates between 5.2 ± 0.07 and 26.8 ± 0.24 mL/min and peak perfusion pressures between



Bioengineering 2023, 10, 2 11 of 15

11.8 ± 0.96 and 54.5 ± 1.17 mmHg. At the highest viscosity of 6.5 cP, VOPS produced flow
rates between 1.4 ± 0.23 and 12.6 ± 0.10 mL/min and peak perfusion pressures ranging
from 5.3 ± 0.67 to 24.2 ± 1.30 mmHg. The results from the kidney specific vascular resis-
tance established the VOPS device’s ability to supply mean flow rates and peak perfusion
pressures within the target ranges obtained in previous porcine kidney preservation studies
conducted by Urbanellis et al. at all viscosities tested [50].

3.3.3. Study Limitations

Vascular resistances represented in this study are limited to one value, when the
same organ in a group of individuals may have unique vascular resistances. The vascular
resistance element also lacks the compliance that the vasculature in an organ would have,
likely resulting in a different behavior as the PVC element in this study did not contract
and expand. The vasculature resistance of an organ will also vary with temperature and
the preservation time. Using a vascular resistance mimicking element with compliance
as well as broadening the range of vascular resistance values tested on the VOPS device
would further improve the study and the understanding of how the VOPS device could
potentially aid in organ preservation.

4. Discussion

The VOPS device was updated to better improve sealing, simplify access to the organ
chamber, and improve the geometry of the pump chamber. These changes were significant,
requiring a comparison in peak perfusion pressures and mean flow rates to the previous
iteration of the VOPS device. This test was performed to see how the changes, primarily
the sealing and pump chamber improvements, would affect the mean flow rates and peak
perfusion pressures. All variables were held constant between this test and testing of the
previous iteration of the VOPS device, aside from the described changes in design. When
compared to the previous iteration of the VOPS device, the updated model had an increase
in performance at all oxygen supply pressures. Mean flow rates increased between 28.8
and 45.7% over the previous iteration of the VOPS device and peak perfusion pressures
increased between 16.1 and 52.2% [49]. The redesigned VOPS device produced mean
flow rates between 3.5 and 11.8 mL/min and peak perfusion pressures between 37.2 and
89.9 mmHg.

The calcium chloride dihydrate aqueous solution was chosen as a mimic for clinically
used preservation solutions as it is Newtonian and mixtures at different concentrations
were able to capture the range of viscosities exhibited by those solutions [51–57]. The latter
was validated through viscometry, demonstrating the 1–40% aqueous calcium chloride
solution could span 1–6.5 cP. The viscosities measured followed a similar trend to pure
calcium chloride aqueous solutions found in the literature, which validated the exponential
behavior documented [58].

The VOPS device successfully reached the perfusion parameters needed to preserve
a kidney [50]. Using a silicone tube length of 6.1 m, all viscosities had an oxygen supply
pressure that met the necessary parameters. A viscosity of 1 cP had produced desirable
perfusion parameters at a pressure of 82.7 kPa. At 3 cP, the VOPS device had perfusion
parameters desired at 55.2 kPa. At a viscosity of 5 cP, supply pressures of 55.2 and 82.7 kPa
produced mean flow rates and perfusion pressures that fell in the range of perfusion
parameters for a kidney. At the highest viscosity of 6.5 cP, a supply oxygen pressure
of 110.3 kPa produced perfusion parameters that were desired. Previous work by other
groups has demonstrated the benefits of MP [20,21,24,28,30,50,59–63]. The VOPS device
being able to reach target perfusion parameters at varying viscosities indicates that the
VOPS device may be able to improve the viability of organs transplanted, the quality of the
transplanted organs, as well as improving the organ preservation time with a variety of
different preservation solutions of varying fluid viscosities.

Future alterations can include geometric changes to the pump chamber, altering
the dimensions of the silicone tubing, as well as altering the length and quantity of the
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silicone tubing used in the pump chamber. The VOPS device will also need to be tested
at hypothermic and normothermic temperatures, as it has been previously demonstrated
that some organs benefit from preservation at different temperature ranges [64]. Ex vivo
studies are planned and will test the preservation capabilities of the VOPS device for a
variety of solid organ grafts, such as kidneys, hearts, and livers. The process of simulating
a computational model of the VOPS device is work that is being planned. The purpose of
performing simulation tests is to predict how various variable configurations might affect
the results and to reduce physical benchtop testing.

5. Conclusions

The VOPS device has benefits over current organ preservation devices due to its porta-
bility, versatility, low cost, and ability to be operated either electrically or non-electrically.
The experiments performed show an ideal viscosity that would be preferable for the VOPS
device where most of the oxygen supply pressures tested reached desirable perfusion
parameters for the preservation of a human kidney. While the VOPS device met the perfu-
sion parameters at more oxygen supply pressures with one tested viscosity, all viscosity
solutions tested reached the flow parameters necessary for kidney preservation. This indi-
cates that VOPS is highly versatile as it can potentially be used with several preservation
solutions to suit clinical need.
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Appendix A

Table A1. Polynomial Fits of Viscosity Data.

1st Order 2nd Order 3rd Order 4th Order 5th Order

b5 2373.786
b4 698.1803 −1561.11
b3 215.5589 −347.005 394.9193
b2 52.69206 −76.6822 65.46186 −33.4869
b1 11.27494 −8.927 10.24144 −1.74879 3.106763
b0 0.429868 1.32782 0.84621 1.063192 1.001567

R Square 0.7783 0.9693 0.9971 0.9996 0.9998
RSME 0.8483 0.3377 0.112 0.0432 0.039
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