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Abstract: Radiomics and artificial intelligence have the potential to become a valuable tool in clinical
applications. Frequently, radiomic analyses through machine learning methods present issues caused
by high dimensionality and multicollinearity, and redundant radiomic features are usually removed
based on correlation analysis. We assessed the effect of preprocessing—in terms of voxel size
resampling, discretization, and filtering—on correlation-based dimensionality reduction in radiomic
features from cardiac T1 and T2 maps of patients with hypertrophic cardiomyopathy. For different
combinations of preprocessing parameters, we performed a dimensionality reduction of radiomic
features based on either Pearson’s or Spearman’s correlation coefficient, followed by the computation
of the stability index. With varying resampling voxel size and discretization bin width, for both
T1 and T2 maps, Pearson’s and Spearman’s dimensionality reduction produced a slightly different
percentage of remaining radiomic features, with a relatively high stability index. For different filters,
the remaining features’ stability was instead relatively low. Overall, the percentage of eliminated
radiomic features through correlation-based dimensionality reduction was more dependent on
resampling voxel size and discretization bin width for textural features than for shape or first-order
features. Notably, correlation-based dimensionality reduction was less sensitive to preprocessing
when considering radiomic features from T2 compared with T1 maps.

Keywords: radiomics; cardiac magnetic resonance imaging; T1 and T2 mapping; collinearity;
dimensionality reduction; spatial resampling; discretization bin width; filtering; hyperthophic
cardiomyopathy

1. Introduction

Radiomics is a novel tool allowing the extraction of many quantitative morphological,
histogram-based, and textural characteristics (i.e., radiomic features) from digital medical
images [1]. The underlying idea is that medical images are actually data containing
objective and quantitative information, which is not obtainable from qualitative visual
inspection as usually performed in routine clinical practice. Artificial intelligence (AI)
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methods applied to radiomic data have the potential to become a useful tool in a clinical
setting, supporting clinical practice and, at the same time, medical understanding of
diseases [2]. On the other hand, given the extraction of a large amount of features, AI
methods applied for radiomic analyses present issues of high-dimensionality data [2]. In
addition, while hundreds or thousands of radiomic features can be extracted, the sample
sizes of datasets usually available in clinical studies are much smaller. Therefore, when
the number of dimensions is larger than the number of samples, multicollinearity must
be taken into account as another confounding effect in the analysis [3]. In this case, at
least one of the variables can be expressed as a linear combination of the others. This
kind of correlation among variables could affect the subsequent analyses and the results
interpretation. Indeed, from a computational point of view, a group of highly correlated
features will not bring additional information (or just very few) but will increase the
complexity of the algorithm. Remembering the principle of parsimony (Occam’s razor),
with no significant difference in performance, simpler models should be preferred [4]. In
addition, in the field of medicine, interpretation of results is of paramount importance.
Although some conventional statistical models and machine learning algorithms can appear
simple and interpretable (e.g., decision trees), their results can be biased in the presence of
correlated input features.

For these reasons, redundant radiomic features are usually removed based on the
results of a correlation analysis. This step is critical because the right choice of which
features should be eliminated could either improve the performance and explainability
of the AI model or affect its performance by removing interesting correlations between
features and the study objective [5]. In the previous literature, extensive examples of
dimensionality reduction in radiomic features based on correlation analysis have been
provided [2,6–32].

Image resampling and discretization, as well as filtering, are some steps of the radiomic
workflow that may be performed as preprocessing before radiomic features extraction from
the acquired image data [33,34]. In particular, image interpolation at the same voxel size
is a common and recommended practice (especially in retrospective studies) to reduce
any heterogeneity in acquisition voxel size. In contrast, image discretization is required
to ensure that textural features estimation is computationally less burdensome [33,35].
Moreover, applying filters before radiomic features estimation could allow uncovering fur-
ther tissue characteristics. Previous studies have investigated the dependence of radiomic
features extraction on different image preprocessings for various applications, showing an
appreciable (low or high) sensitivity of radiomic features estimate to preprocessing [36–40].
For instance, Marfisi et al. [37], investigating the effect of image preprocessing (in terms of
image resampling, discretization, and filtering) on radiomic features from cardiac T1 and T2
mapping, have found a remarkable dependence of feature estimates on image filters, while
the sensitivity of many radiomic features to image resampling and discretization was lim-
ited. On the other hand, in computed tomography imaging, the effect of image resampling
can be clearly appreciable for first-order features and relevant for textural features [40].
Traverso et al. have shown that textural features derived from apparent diffusion coefficient
maps appear to be highly or moderately sensitive to image preprocessing [41]. However,
to the best of our knowledge, no work has assessed the dependence of dimensionality
reduction based on collinearity analysis on image preprocessing.

Cardiac magnetic resonance (CMR) has a crucial role in diagnosis, risk stratification,
and treatment planning in hypertrophic cardiomiopathy (HCM) [42], a genetically de-
termined disease that affects about 1 in 500 people in the general adult population [43].
Traditionally, CMR evaluation of HCM patients relied on cine steady-state free precession
images, utilized to define myocardial thickness and to calculate ventricular function, as
well as on late gadolinium enhancement sequences for the identification of focal myocardial
fibrosis, which has been demonstrated to have a negative prognostic value. Moreover, clas-
sic T2 STIR (short tau inversion recovery) sequences can be employed to detect myocardial
edema, which has a role in arrythmic risk stratification.
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In recent years, in addition to the traditional CMR sequences, T1 and T2 mapping
sequences have been developed, allowing a more quantitative evaluation of myocardial
changes, signally fibrosis (T1 maps), and edema (T1 and T2 maps). T1 and T2 mapping
have shown to feature a possible important diagnostic and prognostic role in HCM pa-
tients (see [44] for a review). Radiomic analysis of T1 and T2 maps is hence particularly
attractive, as it could allow overcoming some limitations of T1 and T2 values that have
been demonstrated to suffer possible overlap between different myocardial diseases, as
well as between patients and healthy controls [45–49]. For a proper clinical application
of radiomics, the influence of each step of the radiomic workflow on features estimation
should be considered. Notwithstanding, the effect of preprocessing on radiomic features
selection is not usually considered in clinical studies.

Therefore, in the present study, we aimed to comprehensively assess the effect of
preprocessing—in terms of voxel size resampling, discretization, and filtering—on
correlation-based dimensionality reduction in radiomic features from quantitative car-
diac T1 and T2 maps in a group of patients with HCM.

2. Materials and Methods
2.1. Dataset

Between November 2013 and July 2020, twenty-six patients with known or suspected
HCM were referred for clinical cardiac magnetic resonance imaging (MRI). A complete MRI
scan with both T1 and T2 mapping sequences was executed for these patients. The HCM
diagnoses were made following the most recent recommendations of the European Society
of Cardiology. They were based on the detection of the left ventricular wall thickness
≥15 mm in one or more myocardial segments, which was not due mainly to loading
conditions [42]. Table 1 provides details about the patient group’s clinical and cardiac
MRI-derived characteristics.

Table 1. Clinical and cardiac MRI-derived characteristics (mean (standard deviation)) of twenty-six
patients with HCM.

Age (years) 66 (11)
Myocardial thickness (mm) 19 (3)
LGE 19/26

LV RV

ED volume (mL/m2) 74 (15) 61 (13)
ES volume (mL/m2) 23 (14) 23 (6)
Stroke volume (mL/m2) 51 (13) 38 (9)
Ejection fraction (%) 70 (15) 63 (6)

ED: end diastolic, ES: end systolic, LGE: late gadolinium enhancement, LV: left ventricle, RV: right ventricle.

2.2. Cardiac MRI

A 1.5 T MRI scanning system (MAGNETOM Avanto, Siemens Healthcare, Erlangen,
Germany) with 45 mT/m gradients strength and a 12-channel phased array coil was used
for all cardiac MRI examinations.

Cine scans were obtained using a TrueFISP sequence (TR = 2.5 ms, TE = 1.2 ms, slice
thickness = 8 mm) in the 2- and 4-chamber view planes (3 slices each), as well as in the
short-axis view (8–14 slices comprising the entire left ventricle).

The short-axis view was used to obtain both T1 and T2 maps (a single slice located
where myocardial thickness, evaluated with cine images, was maximum). A modified
look-locker inversion recovery (MOLLI) pulse sequence with a 3-3-5 acquisition method
was employed to perform T1 mapping [50]. The following pulse sequence parameters were
used: TE/TR = 1.14/2.5 ms, flip angle = 35°, matrix size = 126 × 192, in-plane resolution
ranged from 1.77 mm × 1.77 mm to 2.34 mm × 2.34 mm, typical field of view = 380 mm ×
275 mm, and slice thickness = 8 mm. T2 maps were obtained using a T2-prepared TrueFISP
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sequence [51] with the following parameters: in-plane resolution ranged from 1.77 mm
× 1.77 mm to 2.34 mm × 2.34 mm, typical field of view was 380 mm × 275 mm, slice
thickness was 6 mm, T2 preparation time was 0/24/55 ms, TR was 4 R-R, flip angle was
70°, and matrix size was 126 × 192. Then, 10–15 min after intravenous gadolinium DTPA
(Magnevist, Schering), gadoteric acid (Dotarem, Guerbet), or gadoteridol (Prohance, Bracco)
administration, late gadolinium enhancement (LGE) images were acquired in the 2- and
4-chamber views of the left ventricle (LV) (3 slices each), as well as in the short-axis view
(8–14 slices encompassing the entire left ventricle) using a 2D phase-sensitive inversion
recovery (PSIR) sequence (TR = 700 ms, TE = 1.09 ms, slice thickness = 8 mm, inversion
time = 200–300 ms, and typical in-plane resolution = 2.4 mm × 3.2 mm).

2.3. T1 and T2 Maps Preprocessing

A cardiac MRI specialist with 15 years of expertise manually segmented the whole
myocardium of each subject using 3D Slicer software (version 4.11.2) [52,53]. In order
to avoid partial volume effects, the myocardium area was independently defined on T1
and T2 maps. A myocardial segmentation for a representative HCM patient is shown in
Figure 1.

Figure 1. T1 (a) and T2 (b) maps (short-axis view) of a representative HCM patient, with the
corresponding manually segmented myocardium region of interest (ROI) showed in panel (c,d),
respectively. Myocardium area size ranged from 740 mm2 to 2370 mm2 across enrolled HCM patients.
Typical myocardial T1 and T2 values were approximately 997 ms and 53 ms (median values across
HCM patients), respectively.

In this study, we independently applied three preprocessing steps on T1 and T2 maps:
(1) voxel size resampling, (2) discretization, and (3) filtering.

Given that T1 and T2 mapping only enabled the acquisition of a single slice, we
performed voxel size resampling by 2D interpolation using the B-spline interpolation
algorithm (with the origins of interpolation and original image grids aligned together [33]).
Calculated T1 and T2 maps, which had an in-plane spatial resolution varying across subjects
from 1.77 mm × 1.77 mm to 2.34 mm × 2.34 mm, were resampled to achieve in-plane
isotropic spatial resolutions of 1.8 mm, 1.9 mm, 2.0 mm, 2.1 mm, 2.2 mm, 2.3 mm, and
2.4 mm.

The Image Biomarker Standardisation Initiative (IBSI) has suggested carrying out
image discretization with fixed bin width when dealing with quantitative data, such as
T1 and T2 maps [33]. In this study, for each resampling voxel size, the discretization bin
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width values used for T1 maps were 3.60 ms, 3.95 ms, 4.30 ms, 4.65 ms, 5.00 ms, 5.35 ms,
5.70 ms, 6.05 ms, and 6.40 ms, while bin width values used for T2 maps were 0.49 ms,
0.50 ms, 0.51 ms, 0.52 ms, 0.53 ms, 0.54 ms, 0.55 ms, 0.56 ms, and 0.57 ms. Specifically, bin
width values were chosen so that the number of quantization levels for T1 and T2 maps
was within the range of 30–130 for each HCM patient. This approach, previously used in
other technical investigations [41,54–56], may reduce the variability in estimating radiomic
features [57–59].

Different filters were applied to T1 and T2 maps, including the gradient magnitude of
the map (i.e., gradient filter), the square of the map values (i.e., square filter), the square
root of the absolute map value (i.e., square-root filter), and 2D wavelets (Daubechies 3). The
last one yielded four filtered maps obtained through different combinations of 2D wavelets
(i.e., wavelet-LH, -HL, -HH, and -LL), where L/H refers to the combination of low-/high
filters applied in the horizontal and vertical direction. Specifically, filtering was carried out
at fixed isotropic in-plane resampling voxel size of 2.1 mm and at fixed discretization bin
width of 6 ms and 0.56 ms for T1 and T2 maps, respectively. These bin width values ensured
a median (across subjects) number of quantization levels between 30 and 130 [57–59].

All preprocessing steps and subsequent radiomic features estimations were carried
out by using the open-source PyRadiomics library [60] (version 3.0.1) and Python (version
3.7.3) running on a MacBook Air (macOS version 10.14) with a 1.8 GHz Intel Core i5 CPU.

2.4. Radiomic Features Estimation

Given that the used acquisition sequences allowed obtaining T1 and T2 maps on a
single slice, the 2D versions of radiomic features were considered. For each preprocessing
combination, in terms of resampling voxel size and discretization bin width, a total of
98 features were obtained from both T1 and T2 maps: 9 2D shape features, 16 first-order
features (14 intensity-based statistical features and two intensity histogram features, namely
Entropy and Uniformity), and 73 second-order features (i.e., textural features) from gray-
level co-occurrence matrix (GLCM, 22 features), gray-level run length matrix (GLRLM,
16 features), gray-level size zone matrix (GLSZM, 16 features), gray-level dependence
matrix (GLDM, 14 features, with coarseness parameter α = 0), and neighborhood gray-tone
difference matrix (NGTDM, 5 features). Second-order features estimation was performed
according to the Chebyshev norm with a distance of 1 pixel. GLCM and GLRLM features
were computed from each 2D directional matrix (i.e., at 0°, 45°, 90°, and 135°) and averaged
over 2D directions.

For each filter applied on T1 and T2 maps, 89 features were estimated for both T1 and
T2 maps, i.e., all the above except the shape features. Indeed, given that shape features
are usually estimated regardless of the applied image filter, they were not included in
our analysis.

All radiomic features were computed following the definitions provided by the
IBSI [33]. It is worth noting that the first-order feature of Kurtosis calculated by PyRa-
diomics was in accordance with the IBSI, except for an offset value (i.e., 3).

2.5. Collinearity Analysis and Dimensionality Reduction

For T1 and T2 maps, three different effects on radiomic features collinearity and
dimensionality reduction were assessed:

Effect A —for each discretization bin width, the effect of using different resampling
voxel sizes;

Effect B —for each resampling voxel size, the effect of using different discretization
bin widths;

Effect C —at fixed resampling voxel size and discretization bin width, the effect of using
different filters.

For all combinations of preprocessing (in terms of resampling voxel size, discretization
bin width, and filter), we performed a collinearity analysis by computing the pair-wise
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Pearson’s correlation coefficient (PCC) [61] and the Spearman’s correlation coefficient
(SCC) [62] for each couple of radiomic features’ values across subjects. All significant
correlation coefficients (p-value < 0.05) with absolute value above a predefined threshold
were counted and represented in a correlation heatmap. In particular, according to previous
studies, we considered cut-off thresholds of 0.8 and 0.9 for the |PCC| [2,7,18,19,63] and
the |SCC| [15,22,26,30], respectively.

Subsequently, we executed an iterative dimensionality reduction in radiomic features
based on either the PCC or the SCC. For the pair of features with the highest absolute
correlation coefficient, we computed the mean absolute correlation coefficient of each of
the two features with all the others, removing the feature with the highest mean absolute
correlation coefficient. We iteratively repeated each step until the pair-wise correlation
coefficients among radiomic features became less than the predefined threshold value.

Using this procedure, from the original radiomic features data, we obtained a specific
set of radiomic features with lower dimensionality and redundancy for each combination
of preprocessing. Therefore, we (1) compared the number of significant correlations with
an absolute correlation coefficient greater than or equal to the threshold value, (2) evaluated
the percentage of remaining features after the correlation-based dimensionality reduction,
and (3) analyzed the differences in the remaining feature subsets by measuring a stability
index [64,65].

The stability index has been proposed by several authors for the study of feature
selection, showing how even slight variations in the data can lead to different sets of
selected features, in terms of both cardinality and type [64–69]. In this work, we computed
a measure that belongs to stability by Index/Subset category [70,71]. Briefly, a subset
of remaining features is represented as a binary vector, where 0 represents absence and
1 represents the presence of the specific feature. The stability is calculated by the amount
of overlap between the overall subsets of remaining features. Specifically, we used the
stability index defined by Nogueira et al., which complies with the properties of a stability
measure [66]. This stability index takes continuous values between 0 (lowest stability)
and 1 (highest stability). In accordance with the work by Kuncheva et al., stability is
considered good if it is greater than or equal to 0.5 [64]. This index can be actually used
to analyze correlation-based dimensionality reduction, helping us to understand whether
preprocessing can introduce changes in the data such as to yield different sets of selected
features in terms of both cardinality and type.

The collinearity analysis, dimensionality reduction, and stability analysis were carried
out using in-house written Python code (Version 3.10.4) running on an M1 MacBook Air
(macOS Monterey version 12.3.1). In particular, we computed the stability index using the
Python package freely available at https://github.com/nogueirs/JMLR2018 (accessed on
15 January 2021) [66].

3. Results
3.1. T1 Mapping

When varying resampling voxel size and discretization bin width (i.e., effect A and B,
respectively), both the PCC- and SCC-based correlation analysis showed different numbers
of significant pair-wise correlation coefficients with an absolute value greater than or equal
to the defined threshold values. For T1 mapping, for instance, when considering the
resampling voxel sizes of [1.8, 1.9, 2.0, 2.1, 2.1, 2.3, 2.4] mm, the corresponding numbers
of significant |PCC| values greater than 0.8 were [903, 774, 660, 793, 806, 778, 659] and
[882, 799, 676, 800, 839, 851, 655] for fixed discretization bin width values of 3.60 ms and
3.95 ms, respectively (effect A in Table 2). For the same resampling voxel sizes, the number
of significant |SCC| values greater than 0.9 were [497, 447, 507, 438, 491, 461, 392] for
discretization bin width = 3.60 ms and [490, 489, 510, 416, 466, 498, 413] for discretization bin
width = 3.95 ms. A similar result can be observed for all the discretization bin width values
and resampling voxel sizes, as reported in Table 2 for effect A and B and in Supplementary
Figures S1–S4.

https://github.com/nogueirs/JMLR2018
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Table 2. Collinearity analysis and correlation-based dimensionality reduction for T1 maps. In the
column “# of CC”, the number of pair-wise correlation coefficients that were significant and, in
absolute value, greater than the predefined threshold is reported (see Section 2.5 for details). In the
column “% of remaining features”, the percentage of remaining features after the correlation-based
dimensionality reduction is reported.

Effect A—Varying Resampling Voxel Size Values in [1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] mm, with Fixed Discretization BW

Pearson-correlation-based dimensionality reduction Spearman-correlation-based dimensionality reduction

Discretization BW (ms) # of CC % of remaining features # of CC % of remaining features

3.60 [903 774 660 793 806 778 659] [21 24 24 22 23 23 23] [497 447 507 438 491 461 392] [28 28 29 27 27 33 31]
3.95 [882 799 676 800 839 851 655] [21 24 23 23 22 22 24] [490 489 510 416 466 498 413] [29 29 26 29 29 31 29]
4.30 [880 824 680 778 866 825 743] [23 24 22 23 22 24 22] [476 499 554 391 490 461 442] [30 28 29 29 27 31 30]
4.65 [878 816 682 860 810 831 699] [22 24 24 20 23 24 23] [498 477 502 479 443 462 442] [31 30 30 29 32 33 31]
5.00 [900 806 707 840 877 824 712] [23 24 21 22 23 23 23] [491 444 538 484 499 486 446] [31 29 27 31 29 30 29]
5.35 [894 829 712 790 881 878 736] [23 24 24 22 23 23 23] [491 492 495 419 426 455 423] [31 32 29 31 29 30 27]
5.70 [892 819 739 821 862 824 729] [26 24 24 24 23 24 23] [501 475 539 447 442 440 434] [29 30 31 32 30 31 30]
6.05 [908 846 702 777 888 841 731] [24 23 26 23 22 24 20] [503 483 518 430 464 459 446] [30 31 31 32 32 33 28]
6.40 [899 864 714 839 857 843 698] [24 24 27 22 23 24 23] [489 463 523 446 474 464 438] [31 31 31 32 30 32 30]

Effect B—Varying Discretization BW Values in [3.60, 3.95, 4.30, 4.65, 5.00, 5.35, 5.70, 6.05, 6.40] ms, with Fixed Resampling Voxel Size

Pearson-correlation-based dimensionality reduction Spearman-correlation-based dimensionality reduction

Resampling voxel size (mm) # of CC % of remaining features # of CC % of remaining features

1.8 [903 882 880 878 900 894 892 908 899] [21 21 23 22 23 23 26 24 24] [497 490 476 498 491 491 501 503 489] [28 29 30 31 31 31 29 30 31]
1.9 [774 799 824 816 806 829 819 846 864] [24 24 24 24 24 24 24 23 24] [447 489 499 477 444 492 475 483 463] [28 29 28 30 29 32 30 31 31]
2.0 [660 676 680 682 707 712 739 702 714] [24 23 22 24 21 24 24 26 27] [507 510 554 502 538 495 539 518 523] [29 26 29 30 27 29 31 31 31]
2.1 [793 800 778 860 840 790 821 777 839] [22 23 23 20 22 22 24 23 22] [438 416 391 479 484 419 447 430 446] [27 29 29 29 31 31 32 32 32]
2.2 [806 839 866 810 877 881 862 888 857] [23 22 22 23 23 23 23 22 23] [491 466 490 443 499 426 442 464 474] [27 29 27 32 29 29 30 32 30]
2.3 [778 851 825 831 824 878 824 841 843] [23 22 24 24 23 23 24 24 24] [461 498 461 462 486 455 440 459 464] [33 31 31 33 30 30 31 33 32]
2.4 [659 655 743 699 712 736 729 731 698] [23 24 22 23 23 23 23 20 23] [392 413 442 442 446 423 434 446 438] [31 29 30 31 29 27 30 28 30]

Effect C—Varying Filtering, with Fixed Resampling Voxel Size (2.1 mm) and Discretization BW (6 ms)

Pearson-correlation-based dimensionality reduction Spearman-correlation-based dimensionality reduction

Filter # of CC % of remaining features # of CC % of remaining features

Original 744 20 426 29
Gradient 1244 20 1116 28
Square 958 21 462 28
SquareRoot 816 20 590 27
Wavelet-HH 891 18 726 26
Wavelet-HL 835 21 432 30
Wavelet-LH 826 22 469 28
Wavelet-LL 584 24 483 29

BW: bin width, CC: correlation coefficient, HH: horizontal and vertical high-pass filters, HL: horizontal high-pass
filter and vertical low-pass filter, LH: horizontal low-pass filter and vertical high-pass filter, LL: horizontal and
vertical low-pass filters.

Different numbers of significant pair-wise correlations between features with abso-
lute correlation coefficient value greater than the defined threshold may yield different
percentages of features remaining downstream of dimensionality reduction. With reference
to the representative abovementioned example, as the resampling voxel size changed,
the percentages of features remaining after the PCC-based dimensionality reduction were
[21, 24, 24, 22, 23, 23, 23]% and [21, 24, 23, 23, 22, 22, 24]% for bin width = 3.60 ms and
bin width = 3.95 ms, respectively. On the other hand, for the SCC-based dimensionality
reduction, the percentages of remaining features were [28, 28, 29, 27, 27, 32, 31]% and [29,
29, 26, 29, 29, 31, 29]%. As shown in Table 2, for both PCC- and SCC-based dimensionality
reduction, at fixed discretization bin width (effect A) and resampling voxel size (effect
B), the percentage of remaining features changes only slightly when varying resampling
voxel size and discretization bin width, respectively. Nonetheless, it is also important to
assess whether and to what extent the type of remaining features is dependent on a specific
preprocessing element.

In Table 3, the results of the stability analysis are reported in detail. For both effects
A and B, the stability of the features remaining after the dimensionality reduction can be
considered relatively high, given that all the stability indices were greater than 0.5 [64].

On the other hand, as the type of filtering varies, the number of significant pair-
wise correlations with absolute correlation coefficient values greater than the predefined
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threshold can differ greatly (Supplementary Figures S5 and S6). In particular, for both PCC
and SCC analysis, applying a gradient filter on the original T1 maps leads to a relevant
increase in the number of significant correlation coefficients with absolute value greater
than the predefined threshold (see Table 2). While the percentage of features remaining
downstream of dimensionality reduction seems to vary slightly with filtering, the stability of
the remaining feature subsets is relatively low (less than 0.5 [64]), confirming the sensitivity
of correlation-based dimensionality reduction to the application of different filters (Table 3).

Heatmaps in Figures 2–5 show in greater detail the relationship between each prepro-
cessing and the specific radiomic features that are retained or eliminated by correlation-
based dimensionality reduction. In particular, by fixing one resampling voxel size or
discretization bin width while varying the other, these heatmaps represent the ratio be-
tween the number of times each radiomic feature was selected and the total number of times
the variable could be selected (i.e., the number of considered preprocessing combinations)
through the dimensionality reduction process. For T1 mapping, the features belonging to
the GLRLM class were almost always removed, indicating high collinearity with the other
features (Figures 2e, 3e, 4e and 5e). For the other classes of features, only a few specific ones
were always eliminated, such as: MaximumDiameter, MeshSurface, PerimeterSurfaceRatio,
and PixelSurface [2D shape (Figures 2a, 3a, 4a and 5a)], Variance, MeanAbsoluteDeviation,
Entropy [first-order (Figures 2b, 3b, 4b and 5b)], SumSquares, Id, AutoCorrelation [GLCM
(Figures 2c, 3c, 4c and 5c)], DependenceNonUniformityNormalized, GrayLevelNonunifor-
mity, GrayLevelVariance, HighGrayLevelEmphasis, LargeDependenceEmphasis, SmallDe-
pendenceEmphasis, SmallDependenceHighGrayLevelEmphasis [GLDM (Figures 2d, 3d,
4d and 5d)], and GrayLevelVariance, HighGrayLevelZoneEmphasis, LargeAreaEmphasis
[GLSZM (Figures 2f, 3f, 4f and 5f)].

Table 3. Stability indices for T1 maps.

Effect A—Varying Resampling Voxel Size Values in [1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] mm), with Fixed Discretization BW

Discretization BW (ms) Pearson-correlation-based dimensionality reduction stability Spearman-correlation-based dimensionality reduction stability

360 0.66 0.60
395 0.66 0.60
430 0.63 0.63
465 0.64 0.58
500 0.60 0.61
535 0.65 0.60
570 0.65 0.60
605 0.66 0.58
640 0.64 0.57

Effect B—Varying Discretization BW Values in [3.60, 3.95, 4.30, 4.65, 5.00, 5.35, 5.70, 6.05, 6.40] ms, with Fixed Resampling Voxel Size

Resampling voxel size (mm) Pearson’s correlation-based dimensionality reduction stability Spearman’s correlation-based dimensionality reduction stability

1.8 0.69 0.66
1.9 0.85 0.68
2.0 0.77 0.67
2.1 0.65 0.71
2.2 0.69 0.71
2.3 0.77 0.66
2.4 0.70 0.74

Effect C—Varying Filtering, with Fixed Resampling Voxel Size (2.1 mm) and Discretization BW (6 ms)

Pearson-correlation-based dimensionality reduction stability Spearman-correlation-based dimensionality reduction stability

Filtering 0.38 0.42

BW: bin width.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. Heatmaps of remaining features from T1 maps after PCC-based dimensionality reduction
for effect A (varying resampling voxel size, with fixed discretization bin width (ms)). The radiomic
features are separated in different classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM,
(e) GLRLM, (f) GLSZM, (g) NGTDM.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. Heatmaps of remaining features from T1 maps after SCC-based dimensionality reduction
for effect A (varying resampling voxel size, with fixed discretization bin width (ms)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. Heatmaps of remaining features from T1 maps after PCC-based dimensionality reduction
for effect B (varying discretization bin width, with fixed resampling voxel size (mm)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. Heatmaps of remaining features from T1 maps after SCC-based dimensionality reduction
for effect B (varying discretization bin width, with fixed resampling voxel size (mm)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.

3.2. T2 Mapping

Overall, the results for T2 mapping are similar to those for T1 maps. Specifically, when
varying resampling voxel size and discretization bin width (i.e., effect A and B, respectively),
both the PCC- and SCC-based correlation analysis showed different numbers of pair-wise
significant correlation coefficients with absolute value greater than or equal to the defined
threshold value. For instance, when considering the discretization bin width values of
[0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57] ms, the number of significant correlations
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with |PCC| values greater than 0.8 were [553, 570, 574, 564, 558, 572, 582, 555, 583] and
[579, 582, 594, 574, 582, 589, 579, 599, 591] for fixed resampling voxel sizes of 1.8 mm and
1.9 mm, respectively (effect B in Table 4). At the same values of discretization bin width,
the number of significant correlations with |SCC| values greater than 0.9 were [417, 414,
403, 386, 419, 399, 415, 413, 413] for the resampling voxel size of 1.8 mm and [445, 432, 460,
431, 439, 442, 426, 467, 426] for the resampling voxel size of 1.9 mm. In Table 4 and in the
correlation heatmaps in Supplementary Figures S7–S10, a similar result can be observed for
all preprocessing combinations of effects A and B. Following the abovementioned example,
as the discretization bin width changed, the percentages of features remaining after the
PCC-based dimensionality reduction were [24, 24, 24, 23, 24, 23, 23, 24, 24]% and [23, 21, 22,
22, 26, 22, 22, 22, 21]% for resampling voxel sizes of 1.8 mm and 1.9 mm, respectively. On
the other hand, for the SCC-based dimensionality reduction, the percentages of remaining
features were [32, 33, 34, 34, 31, 33, 32, 31, 32]% and [32, 32, 33, 32, 32, 35, 30, 31, 34]% for
resampling voxel sizes of 1.8 mm and 1.9 mm, respectively. As observed for T1 mapping,
and reported in detail in Table 4, for both PCC- and SCC-based dimensionality reduction,
at fixed discretization bin width (i.e., effect A) and resampling voxel size (i.e., effect B), the
percentage of remaining features changes only slightly with varying resampling voxel size
and discretization bin width, respectively.

Moreover, the results of the stability analysis, reported in Table 5, indicate that, regard-
less of the effects A and B, the stability of the features remaining after the dimensionality
reduction can be considered relatively high (all the stability indices were greater than
0.5) [64].

The number of significant pair-wise correlations between features with absolute corre-
lation coefficient value greater than the predefined threshold was greatly dependent on the
applied filter (Supplementary Figures S11 and S12). In particular, for both PCC and SCC
analysis, applying a gradient filter on the original maps yielded a clear increase in the num-
ber of significant correlations between features with absolute correlation coefficient value
greater than the predefined threshold (see Table 4). As indicated in Table 5, the stability
index of the remaining feature subsets is relatively low (less than 0.5), confirming also for
T2 maps the sensitivity of correlation-based dimensionality reduction to the application of
different filters.

Figures 6–9 show the heatmaps of remaining features downstream of the dimen-
sionality reduction process. The features belonging to the GLRLM category were al-
most always removed, indicating high collinearity with the other features (Figures 6e,
7e, 8e and 9e). For the other classes of features, only a few specific ones were always
eliminated: Mean, Variance, MeanAbsoluteDeviation, RobustMeanAbsoluteDeviation,
Energy, RooMeanSquared, Entropy, Uniformity (first-order (Figures 6b, 7b, 8b and 9b)),
SumSquares, Autocorrelation (GLCM (Figures 6c, 7c, 8c and 9c)), GrayLevelNonunifor-
mity, GrayLevelVariance, HighGrayLevelEmphasis, LargeDependenceEmphasis (GLDM
(Figures 6d, 7d, 8d and 9d), GrayLevelNonUniformityNormalized, and LowGrayLevel-
ZoneEmphasis (GLSZM (Figures 6f, 7f, 8f and 9f).
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Table 4. Collinearity analysis and correlation-based dimensionality reduction for T2 maps. In the
column “# of CC”, the number of pair-wise correlation coefficients that were significant and, in
absolute value, greater than the predefined threshold is reported (see Section 2.5 for details). In the
column “% of remaining features”, the percentage of remaining features after the correlation-based
dimensionality reduction is reported.

Effect A—Varying Resampling Voxel Size Values in [1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] mm, with Fixed Discretization BW

Pearson-correlation-based dimensionality reduction Spearman-correlation-based dimensionality reduction

Discretization BW (ms) # of CC % of remaining features # of CC % of remaining features

0.49 [553 579 546 567 534 546 594] [24 23 21 22 23 22 22] [417 445 422 453 443 399 410] [32 32 34 31 30 34 34]
0.50 [570 582 564 570 576 538 605] [24 21 21 22 23 23 21] [414 432 438 467 431 393 479] [33 32 34 32 34 31 32]
0.51 [574 594 547 583 572 544 607] [24 22 22 20 23 22 19] [403 460 432 467 444 380 520] [34 33 33 31 33 32 32]
0.52 [564 574 540 583 557 550 609] [23 22 22 22 26 21 21] [386 431 418 455 406 412 467] [34 32 33 32 35 30 32]
0.53 [558 582 562 555 564 567 599] [24 26 21 21 24 20 22] [419 439 446 435 418 398 487] [31 32 33 32 35 32 32]
0.54 [572 589 570 568 572 554 621] [23 22 21 21 22 21 19] [399 442 453 442 430 419 444] [33 35 31 33 34 31 33]
0.55 [582 579 564 575 563 555 572] [23 22 22 21 24 21 23] [415 426 414 429 435 417 422] [32 30 32 32 35 31 33]
0.56 [555 599 559 580 572 558 605] [24 22 22 22 24 21 20] [413 467 422 448 426 408 450] [31 31 35 35 34 32 32]
0.57 [583 591 562 574 576 526 597] [24 21 23 21 26 21 21] [413 426 442 456 435 405 472 ] [32 34 31 31 33 34 31]

Effect B—Varying Discretization BW Values in [0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57] ms, with Fixed Resampling Voxel Size

Pearson-correlation-based dimensionality reduction Spearman-correlation-based dimensionality reduction

Resampling voxel size (mm) # of CC % of remaining features # of CC % of remaining features

1.8 [553 570 574 564 558 572 582 555 583] [24 24 24 23 24 23 23 24 24] [417 414 403 386 419 399 415 413 413] [32 33 34 34 31 33 32 31 32]
1.9 [579 582 594 574 582 589 579 599 591] [23 21 22 22 26 22 22 22 21] [445 432 460 431 439 442 426 467 426] [32 32 33 32 32 35 30 31 34]
2.0 [546 564 547 540 562 570 564 559 562] [21 21 22 22 21 21 22 22 23] [422 438 432 418 446 453 414 422 442] [34 34 33 33 33 31 32 35 31]
2.1 [567 570 583 583 555 568 575 580 574] [22 22 20 22 21 21 21 22 21] [453 467 467 455 435 442 429 448 456] [31 32 31 32 32 33 32 35 31]
2.2 [534 576 572 557 564 572 563 572 576] [23 23 23 26 24 22 24 24 26] [443 431 444 406 418 430 435 426 435] [30 34 33 35 35 34 35 34 33]
2.3 [546 538 544 550 567 554 555 558 526] [22 23 22 21 20 21 21 21 21] [399 393 380 412 398 419 417 408 405] [34 31 32 30 32 31 31 32 34]
2.4 [594 605 607 609 599 621 572 605 597] [22 21 19 21 22 19 23 20 21] [410 479 520 467 487 444 422 450 472] [34 32 32 32 32 33 33 32 31]

Effect C—Varying Filtering, with Fixed Resampling Voxel Size (2.1 mm) and Discretization BW (0.56 ms)

Pearson-correlation-based dimensionality reduction Spearman-correlation-based dimensionality reduction

Filter # of CC % of remaining features # of CC % of remaining features

Original 551 21 429 31
Gradient 1487 19 1138 28
Square 817 20 564 36
SquareRoot 552 20 447 25
Wavelet-HH 841 17 738 24
Wavelet-HL 753 19 688 24
Wavelet-LH 870 20 469 22
Wavelet-LL 563 18 412 29

Table 5. Stability indices for T2 maps.

Effect A—Varying Resampling Voxel Size Values in [1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] mm, with Fixed Discretization BW

Discretization BW (ms) Pearson-correlation-based dimensionality reduction stability Spearman-correlation-based dimensionality reduction stability

0.49 0.75 0.73
0.50 0.69 0.70
0.51 0.70 0.68
0.52 0.74 0.70
0.53 0.69 0.68
0.54 0.67 0.70
0.55 0.72 0.71
0.56 0.74 0.71
0.57 0.69 0.65

Effect B—Varying Discretization BW Values in [0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57] ms, with Fixed Resampling Voxel Size

Resampling voxel size (mm) Pearson-correlation-based dimensionality reduction stability Spearman-correlation-based dimensionality reduction stability

1.8 0.81 0.86
1.9 0.89 0.79
2.0 0.88 0.81
2.1 0.81 0.77
2.2 0.86 0.79
2.3 0.84 0.79
2.4 0.84 0.84

Effect C—Varying Filtering, with Fixed Resampling Voxel Size (2.1 mm) and Discretization BW (0.56 ms)

Pearson-correlation-based dimensionality reduction stability Spearman-correlation-based dimensionality reduction stability

Filtering 0.40 0.43

BW: bin width.
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(c) (d)

(e) (f)

(g)

Figure 6. Heatmaps of remaining features from T2 maps after PCC-based dimensionality reduction
for effect A (varying resampling voxel size, with fixed discretization bin width (ms)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.
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(c) (d)

(e) (f)

(g)

Figure 7. Heatmaps of remaining features from T2 maps after SCC-based dimensionality reduction
for effect A (varying resampling voxel size, with fixed discretization bin width (ms)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.



Bioengineering 2023, 10, 80 17 of 24

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8. Heatmaps of remaining features from T2 maps after PCC-based dimensionality reduction
for effect B (varying discretization bin width, with fixed resampling voxel size (mm)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.
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Figure 9. Heatmaps of remaining features from T2 maps after SCC-based dimensionality reduction
for effect B (varying discretization bin width, with fixed resampling voxel size (mm)). The radiomic
features are separated in classes: (a) 2D shape, (b) first order, (c) GLCM, (d) GLDM, (e) GLRLM,
(f) GLSZM, (g) NGTDM.

4. Discussion

The effect of preprocessing on radiomic features dimensionality reduction is not
usually considered in clinical studies. Therefore, we assessed in detail, for the first time,
whether and how voxel size resampling and discretization, as well as filtering, can impact
on radiomic features selection, considering the specific case of myocardial T1 and T2
mapping-derived features of a homogenous group of patients with HCM.
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For both T1 and T2 maps, the dependence of collinearity of radiomic features and
correlation-based dimensionality reduction with respect to preprocessing, in terms of maps
resampling and discretization, results relatively moderate. In fact, for all considered cases,
the percentage of features downstream of correlation-based dimensionality reduction varies
only slightly with resampling voxel size and discretization bin width, within an interval
equal to [19–35]%. In addition, the stability index is always greater than 0.5, indicating that
the feature sets remaining after dimensionality reduction not only have similar cardinality
when applying different resampling voxel sizes or discretization bin widths but also
exhibit almost the same type of radiomic features. Overall, the number of eliminated
radiomic features through correlation-based dimensionality reduction is more dependent
on resampling voxel size and discretization bin width for textural features than for shape
or first-order features. Figures 2–9 clearly show that the textural features remaining after
correlation-based dimensionality reduction (panels c–g) vary with preprocessing changes
more than the shape (panel a) or first-order features (panel b). Indeed, textural features
present intermediate color hues between light yellow and dark blue, indicating whether
the specific textural feature was removed according to the preprocessing parameter. On the
other hand, shape and first-order features mainly present color hues equal to light yellow,
i.e., the feature was permanently eliminated regardless of the preprocessing performed,
or dark blue, i.e., the feature always remained regardless of preprocessing. This result is
in line with a previous study on myocardial radiomic features derived from T1 and T2
mapping [37], showing that textural features estimate has a greater sensitivity to resampling
voxel size and discretization bin width than shape or first-order features estimate.

For both effects A (i.e., varying resampling voxel sizes, with fixed discretization bin
width) and B (i.e., varying discretization bin widths, with fixed resampling voxel size),
our results suggest a greater influence on correlation-based dimensionality reduction in
resampling voxel size than discretization bin width (Tables 3 and 5). In fact, the stability
indices are, as a whole, greater for effect B than for effect A, indicating how discretization
bin width has less influence on Pearson’s as well as Spearman’s correlation analysis and the
subsequent dimensionality reduction. As expected, we confirmed that features belonging
to the shape and first-order classes are not sensitive to the change in discretization bin
width, given that these radiomic features (except Entropy and Uniformity) were estimated
before discretization under the IBSI recommendations [33] (panels (a) and (b) of Figures 4,
5, 8, and 9).

Digital image filters can be applied before radiomic features extraction to detect and
emphasize tissue characteristics different from those usually obtained from original images.
In this regard, the IBSI has proposed a new reference manual to define and standardize the
implementation of image filters in radiomics software [34]. Given that filtering can actually
modify (even in a substantial way) T1 and T2 maps, we observed a relevant sensitivity of
both PCC- and SCC-based dimensionality reduction to filtering. Although the percentage
of remaining features is similar when using different filters, the stability indices were less
than 0.5, indicating that the subsets of selected features were composed of different features.

A remarkable difference between T1 and T2 maps in sensitivity of collinearity analysis
and dimensionality reduction to preprocessing was found. Performing the correlation-
based dimensionality reduction on radiomic features from T2 maps was characterized
by lower sensitivity to voxel size resampling and discretization than radiomic features
from T1 maps. Regardless of whether PCC or SCC is used, the percentage of T2-derived
features eliminated by the dimensionality reduction procedure is less than the percentage
of removed T1-derived radiomic features. In addition, the remaining subsets of T2-derived
features showed greater stability than the corresponding subsets of T1-derived features.
These results, along with the previous findings by Marfisi et al. [37], also support the use
of T2 mapping as a potential useful tool to describe myocardial structural anomalies in
patients with HCM. So far, only T1 mapping has been used in previous HCM radiomic
research, primarily due to its capacity to detect myocardial fibrosis [47–49,72]. T2 maps,
however, are regarded as the gold standard for assessing myocardial edema, a well-known
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adverse prognostic feature in HCM [73,74]. While T2 mapping cannot evaluate myocardial
fibrosis per se, texture analyses have the potential to circumvent this constraint by revealing
myocardial structural heterogeneity caused by myofibrillar disarray and fibrosis [46,75].

We acknowledge the following issues as potential study limitations. First, we focused
only on T1 and T2 maps, albeit they are particularly suitable for radiomic analysis, given
their quantitative nature. Additional studies will be necessary to investigate the effect
of preprocessing on correlation-based dimensionality reduction in radiomic features for
classical cine, LGE, and STIR sequences. In HCM patients, T1 maps are usually obtained
before and after contrast administration to calculate extracellular volume, a surrogate
marker of interstitial remodeling and interstitial fibrosis [47,48,72]. However, in the present
study, we focused only on native T1 values, mainly considering the possibility of obtaining
equivalent information from radiomics analysis of non-contrast images to gadolinium-
enhanced images. Indeed, avoiding contrast administration is a hugely desirable prospect
currently under investigation.

Second, even though we only looked at single-slice T1 and T2 mapping acquisitions,
myocardial alterations in HCM patients may also affect visibly non-hypertrophied cardiac
parts. Consequently, a whole-heart coverage might offer a more thorough assessment of
disease load and improve the diagnostic effectiveness of cardiac MRI. However, evaluating
a single ROI on the mid-cavity short-axis map for a global/diffuse illness is considered
sufficient [76]. Our technical study’s primary objective was to assess how voxel size
resampling and discretization affected radiomic characteristics calculated from standard
cardiac T1 and T2 mapping. As a result, we concentrated on a single short-axis slice at
a location where myocardial changes were thought to be more severe, and the thickness
of the myocardium was at its maximum. This allowed us to obtain minimum partial
volume effects, which can significantly affect regions of myocardial segments that are
thinner. Furthermore, given that this is a retrospective study with participants who had
been referred for clinical or routine cardiac MRI, it is crucial to avoid having excessively
lengthy acquisition times, especially for patients who are not cooperative.

Third, we included only twenty-six patients with HCM, representing a homogeneous
group with the same pathology. Nonetheless, the findings of this technical investigation
may be helpful and prodromic for future clinical studies, which should enroll a larger
number of participants and include control subjects to specifically assess the clinical poten-
tial of radiomic analysis of T1 and T2 maps in HCM patients. This could lead to a better
understanding of the role of CMR in differentiating HCM from hypertensive heart disease
and other cardiomyopathies and in discriminating different genotypes of HCM, as well as
in assessing arrhythmic risk in these patients [44,47,48].

Finally, our results depend on the cut-off thresholds defined for PCC and SCC. We
decided to use the most chosen thresholds from previous studies that have performed
correlation-based dimensionality reduction in a machine learning workflow (i.e., 0.8 for
|PCC| and 0.9 for |SCC|) to understand this procedure’s sensitivity to preprocessing in a
real scenario. Studying the changes in dimensionality reduction as the cut-off threshold
changes was beyond the scope of this work.

5. Conclusions

In this HCM study, using radiomic features extracted from T1 and T2 maps, we ob-
served a moderate sensitivity of collinearity analysis and correlation-based dimensionality
reduction to some conventional image preprocessing procedures. While, as a whole, this
effect is relatively moderate for voxel size resampling and discretization, it is remarkable
when considering filtering. Moreover, correlation-based dimensionality reduction is less
sensitive to preprocessing when considering radiomic features from T2 compared with
T1 maps. Our findings further confirm the effect of preprocessing in radiomic analyses,
with the consequent need of considering it toward a standardization of methods and when
comparing data/results from different clinical studies.
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