
Citation: Esmaeili, F.; Cassie, E.;

Nguyen, H.P.T.; Plank, N.O.V.;

Unsworth, C.P.; Wang, A. Utilizing

Deep Learning Algorithms for Signal

Processing in Electrochemical

Biosensors: From Data Augmentation

to Detection and Quantification of

Chemicals of Interest. Bioengineering

2023, 10, 1348. https://doi.org/

10.3390/bioengineering10121348

Academic Editors: Gou-Jen Wang

and Mahmoud Amouzadeh Tabrizi

Received: 12 October 2023

Revised: 14 November 2023

Accepted: 21 November 2023

Published: 23 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Utilizing Deep Learning Algorithms for Signal Processing in
Electrochemical Biosensors: From Data Augmentation to
Detection and Quantification of Chemicals of Interest
Fatemeh Esmaeili 1,2 , Erica Cassie 2,3 , Hong Phan T. Nguyen 2,3, Natalie O. V. Plank 2,3 , Charles P. Unsworth 1,2

and Alan Wang 4,5,6,*

1 Department of Engineering Science, University of Auckland, Auckland 1010, New Zealand;
fesm704@aucklanduni.ac.nz (F.E.); c.unsworth@auckland.ac.nz (C.P.U.)

2 The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington,
Wellington 6021, New Zealand; erica.cassie@vuw.ac.nz (E.C.); jenna.nguyen@vuw.ac.nz (H.P.T.N.);
natalie.plank@vuw.ac.nz (N.O.V.P.)

3 School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
4 Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
5 Center for Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland,

Auckland 1010, New Zealand
6 Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
* Correspondence: alan.wang@auckland.ac.nz; Tel.: +64-9-923-4402

Abstract: Nanomaterial-based aptasensors serve as useful instruments for detecting small biological
entities. This work utilizes data gathered from three electrochemical aptamer-based sensors varying
in receptors, analytes of interest, and lengths of signals. Our ultimate objective was the automatic
detection and quantification of target analytes from a segment of the signal recorded by these sensors.
Initially, we proposed a data augmentation method using conditional variational autoencoders to
address data scarcity. Secondly, we employed recurrent-based networks for signal extrapolation,
ensuring uniform signal lengths. In the third step, we developed seven deep learning classification
models (GRU, unidirectional LSTM (ULSTM), bidirectional LSTM (BLSTM), ConvGRU, ConvULSTM,
ConvBLSTM, and CNN) to identify and quantify specific analyte concentrations for six distinct
classes, ranging from the absence of analyte to 10 µM. Finally, the second classification model was
created to distinguish between abnormal and normal data segments, detect the presence or absence
of analytes in the sample, and, if detected, identify the specific analyte and quantify its concentration.
Evaluating the time series forecasting showed that the GRU-based network outperformed two other
ULSTM and BLSTM networks. Regarding classification models, it turned out signal extrapolation
was not effective in improving the classification performance. Comparing the role of the network
architectures in classification performance, the result showed that hybrid networks, including both
convolutional and recurrent layers and CNN networks, achieved 82% to 99% accuracy across all three
datasets. Utilizing short-term Fourier transform (STFT) as the preprocessing technique improved
the performance of all datasets with accuracies from 84% to 99%. These findings underscore the
effectiveness of suitable data preprocessing methods in enhancing neural network performance,
enabling automatic analyte identification and quantification from electrochemical aptasensor signals.

Keywords: data augmentation; conditional variational auto-encoder (CVAE); signal extrapolation;
convolutional neural network (CNN); convolutional long short-term memory (ConvLSTM);
long short-term memory (LSTM); gated recurrent unit (GRU); deep learning classification

1. Introduction

Deep learning algorithms have gained attention in the context of sensor develop-
ment and application. These algorithms have been effective and beneficial for addressing

Bioengineering 2023, 10, 1348. https://doi.org/10.3390/bioengineering10121348 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10121348
https://doi.org/10.3390/bioengineering10121348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-1661-8409
https://orcid.org/0000-0001-9755-9537
https://orcid.org/0000-0002-9798-9657
https://doi.org/10.3390/bioengineering10121348
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10121348?type=check_update&version=1

Bioengineering 2023, 10, 1348 2 of 40

problems such as noise reduction, classification, object detection, anomaly detection, and
process monitoring [1–3].

There has been a wide range of deep learning models for classification, such as
convolutional neural network (CNN), generative adversarial network (GAN)-based archi-
tectures [4], and recurrent-based neural networks [5,6]. For example, Zhang [7] proposed
a CNN-based network to automatically identify and quantify heavy-metal ions, which
obtained with an accuracy of 99.99%. Moreover, Li [8] proposed a hybrid network, utilizing
convolutional and long short-term memory layers in the network architectures, for EEG
signal classification to find Parkinson’s disease. The classification accuracy for this model
was 98.6%.

Moreover, deep learning-based generative models, such as variational autoencoders
(VAEs), generative adversarial networks (GANs), and diffusion probabilistic models, have
found extensive use in data augmentation [9]. Specifically, variational autoencoders (VAEs)
and their extension, conditional variational autoencoders (CVAE), have been applied in
research for anomaly detection, generating new sample data, and reconstructing input
data by learning the fundamental features and structure of the training data. For instance,
Liu [10] utilized VAE and CVAE structures for data augmentation in an intrusion detection
system (IDS) to address data imbalances. The application of these networks significantly
improved model performance metrics, specifically the Macro F1-score, by 5.32%. Moreover,
CVAE proved to be effective in detecting structural anomalies in scanning transmission
electron microscopy (STEM) images. By accurately reproducing input data and highlighting
discrepancies in defect input data, CVAE was capable of automatically differentiating
various point defect types [11].

Furthermore, deep learning networks have emerged as powerful tools for time series
forecasting or predicting future data, using techniques such as CNNs, recurrent neural net-
works (RNNs), and temporal convolutional networks (TCNs) [12]. For example, Pirani [13]
explored various RNN-based architectures for financial time series forecasting, demon-
strating that models incorporating gated recurrent unit (GRU) layers outperformed other
recurrent networks. Likewise, Mahjob [14] used quite similar architectures for energy con-
sumption prediction, and the results showed that the network containing long short-term
memory (LSTM) layer in its architectures outperformed other RNN-based models.

The motivation for this paper was related to our previous work [15,16]. In the former,
we used LSTM-based networks for classification. We aimed to enhance the robustness,
performance and speed of the automatic detection and quantification of analyte concentra-
tions registered by sensors. Also, the results of both studies raised an issue that the time for
recording the signals might have been effective in the outcomes of the deep learning models.
Thus, we were inspired to employ techniques to forecast the future output of the sensors
and examine our hypothesis about the signals’ lengths in the sensors’ signal analysis.

Thus, it can be briefly said that, in this study, we applied deep learning algorithms
for signal processing obtained from three comparable CNT FET biosensors. Our primary
objective was to automatically identify and quantify specific analytes using segments of
these recorded signals. However, achieving this classification objective posed challenges
that needed to be addressed. Consequently, we employed three key deep learning-based
signal analysis techniques to overcome these challenges and fulfil our research objectives.
These techniques were categorized into three main steps: (1) data augmentation, (2) signal
extrapolation, and (3) classification models. Additionally, all calculations and deep learning
algorithms were executed using MATLAB R2022b.

Figure 1 illustrates the framework of the applied deep learning methods in this re-
search. Initially, essential data preparation steps were applied to the available datasets,
including z-score scaling and STFT. Subsequently, a CVAE-based data augmentation tech-
nique was used to handle the limited data availability. In the following step, a signal
extrapolation method was employed, utilizing recurrent neural networks (RNN) to gener-
ate uniform signal lengths for all the datasets.

Bioengineering 2023, 10, 1348 3 of 40

Figure 1. Workflow of the proposed deep learning techniques in this study.

Finally, we designed two classification models, C1 and C2, incorporating recurrent and
convolutional layers. The C1 model aimed to identify and measure precise analyte levels
within six distinct categories, ranging from no analyte presence to 10 µM. Each dataset’s
segments were analyzed separately in this model. The C2 classification model, on the
other hand, was developed to differentiate abnormal data from normal segments, identify
the absence or presence of analytes in the sample, and, if present, recognize the specific
substance and measure its concentration.

2. Background of Deep Learning Models
2.1. Recurrent Neural Network

Recurrent Neural Networks (RNNs) [17,18] are a specialized type of feed-forward
neural network designed for processing sequential data. An RNN consists of hidden
recurrent units, where the output at a specific time step is calculated based on the output
from the previous time step.

In Figure 2, the movement of information within an RNN layer across three consecutive
time steps is illustrated. Here, X ∈ RN , h ∈ RL, and Y ∈ RM represent the input to the RNN
layer, the output of the RNN layer, and the subsequent layer after the RNN, respectively. A
recurrent block comprises multiple recurrent units within the RNN layer. In this depiction,
the number of hidden recurrent units, denoted as L, is equivalent to the dimension of h.

Figure 2. Visualization of an RNN unfolded in time, illustrating the transmission of information
within an RNN layer over three consecutive time steps.

In the following, we will delve into the RNN structures utilized in this study. We will
begin by exploring the basic structure of an RNN, followed by its two main extensions:
GRU and LSTM.

Bioengineering 2023, 10, 1348 4 of 40

2.1.1. Conventional Recurrent Neural Network

The vanilla RNN, also known as the conventional RNN, represents the most basic
form of recurrent neural networks, as shown in Figure 3. It undergoes training utilizing the
backpropagation through time technique [17]. In this model, an input sequence Xt ∈ RN

is fed into a recurrent unit at time step t. The output ht of the unit at the time step t is
calculated using Equation (1):

ht =

{
0 t = 0,
φ(Wx Xt + Wh ht−1 + b) otherwise,

(1)

where φ represents an activation function, Wx, Wh, and b indicate weight matrices and the
bias vector, respectively.

Figure 3. Structure of a vanilla RNN unit using a hyperbolic tangent function as its activation function.

Vanilla RNNs, while powerful dynamic systems, face challenges in training due to
the vanishing gradient problem during backpropagation. This problem arises because
the backpropagated gradients tend to either shrink or grow at each time step, leading
to vanishing or exploding gradients over many time steps. Consequently, vanilla RNNs
struggle to capture long-term dependencies. To address this issue, two main extensions
of RNNs were developed: (i) LSTM, and (ii) GRU networks. These extensions integrate
gating mechanisms within their recurrent units, resolving the issue of vanishing gradients
and facilitating the capture of long-term dependencies.

2.1.2. Long Short-Term Memory

Long Short-Term Memory or LSTM [19], an advanced extension of RNNs, excels
in learning temporal dependencies within sequential input during the training phase
due to the unique structure of its recurrent units, known as LSTM cells. These cells
incorporate three key components: the input gate, forget gate, and output gate, as depicted
in Figure 4. These gates play a vital role in regulating the transmission of information
entering and exiting the unit, enabling the LSTM network to capture temporal dependency
in sequential data.

The input gate, represented as it, and the cell candidate, denoted as c̃t, are in charge
of modifying and managing the memory cell state, ct. The forget gate, denoted as ft,
decides which details from the previous time step t− 1 stored in the cell state ct−1 should
be disregarded. The output gate, ot, selects the portion of the cell state that contributes to
the output, ht. Equations (2)–(6) governing these processes at time step t are as follows:

it = σ(Wih ht−1 + Wix Xt + bi), (2)

ft = σ(W f h ht−1 + W f x Xt + b f). (3)

c̃t = tanh(Wch ht−1 + Wcx Xt + bc), (4)

Bioengineering 2023, 10, 1348 5 of 40

ct = it × c̃t + ft × ct−1, (5)

ot = σ(Woh ht−1 + Wox Xt + bo), (6)

ht = ot × tanh(ct), (7)

where Wix, W f x, Wcx, and Wox denote the input gate’s weight matrices for input, forget, cell
value, and output, respectively. Similarly, Wih, W f h, Wch, and Woh represent the recurrent
gate weights for input, forget, cell value, and output, respectively. In the same sequence,
the corresponding bias vectors are denoted as bi, b f , bc, and bo.

Figure 4. Structure of an LSTM unit or an LSTM hidden unit (⊕ and � refer to element-wise addition
and multiplication, respectively).

In an LSTM layer, multiple LSTM units are recurrently connected. As shown in
Figure 5, there are two types of LSTM layers: unidirectional LSTM (ULSTM) and bidirec-
tional LSTM (BLSTM). These categories are based on the information flow within the layer.
ULSTM processes information in one direction, moving forward in time, as illustrated
in Figure 5a. Conversely, BLSTM, depicted in Figure 5b, consists of both forward and
backward layers. The forward layer operates in the forward time direction, whereas the
backward layer handles information processing in the reverse time direction.

(a) (b)

Figure 5. Transmission of data within an LSTM layer: (a) a ULSTM layer with forward states, and
(b) a BLSTM layer with both forward and backward states. Here, X, Y,~h, and ~h represent the input,
output, forward and backward states in the BLSTM layer, respectively.

Bioengineering 2023, 10, 1348 6 of 40

2.1.3. Gated Recurrent Unit

A Gated Recurrent Unit or GRU network is an extension of RNNs and a simplified
variant of LSTM, lacking an output gate [20–22]. In comparison to LSTM, GRU is more
straightforward and faster during training. Unlike LSTM, GRU does not utilize a memory
cell state to retain information. Instead, it only controls information within the unit. Unlike
LSTMs, GRUs fully expose the memory in each state. The GRU architecture comprises
three key components: the update gate, the reset gate, and a candidate state, as illustrated
in Figure 6.

Figure 6. Illustration of GRU structure (⊕ and � refer to element-wise addition and multiplication,
respectively).

The update gate, zt, determines the proportion of the previous memory that should
be retained during the training process, while the reset gate, rt, decides how much of the
new input and the previous memory to combine. The following equations mathematically
depict the calculation of the output ht at time step t.

zt = σ(Wzx Xt + Wzh ht−1 + bz), (8)

rt = σ(Wrx Xt + Wrh ht−1 + br), (9)

h̃t = tanh (Wh̃x Xt + Wh̃r (rt � ht−1) + bh̃), (10)

ht = (1 − zt) � ht−1 + zt � h̃t, (11)

where Xt is the input vector, zt is the update gate, rt is the reset gate, h̃t is the candidate
state, and σ is the sigmoid activation function. W and b refer to the weights matrices and
bias vectors, respectively.

2.2. Convolutional Neural Network

Convolutional neural networks (CNN) are designed to analyze data presented in
1D, 2D, or 3D arrays, such as signals, images, or videos. CNNs possess four essential
characteristics: local connections, where neurons focus on specific regions; shared weights,
enabling parameter efficiency; pooling, reducing spatial dimensions; and the incorporation
of multiple layers, allowing the network to extract complicated features from the data.
These characteristics optimize CNNs for processing array data effectively [23]. As shown in
Figure 7, the typical composition of a CNN includes fundamental layers like convolutional,
pooling, and fully connected layers.

Bioengineering 2023, 10, 1348 7 of 40

Figure 7. A typical structure of CNN.

Convolutional layers process multiple input feature maps using filters to generate
output feature maps. This operation involves sliding the filter across the entire input array.
Each neuron calculates a weighted sum in a convolutional layer based on a subset of the
prior layer’s outputs [24]. Consider Xi,j as the prior layer’s output, where i and j denote
the specific position in the two-dimensional grid. The weights assigned to an individual
node within the present layer are denoted as wk,l , with k and l indicating the respective
weight indices. As represented in Equation (12), the calculated 2D convolution or the sum
of weights, can be written as follows:

Yi,j = ∑k ∑l wk,l · Xi,j. (12)

It needs to be mentioned that the output size of a convolution layer, ln, by the padding
p, stride s, is calculated according to Equation (13).

ln = [
ln−1 + 2p− n f

s
+ 1], (13)

where ln−1 and n f indicate the previous layer size and number of filters, respectively.
Following convolutional layers, the output neurons are fed into a non-linear acti-

vation function, such as the Rectified Linear Unit (ReLU) or Leaky ReLU, illustrated in
Equations (14) and (15), respectively.

f (x) = max(0, x). (14)

f (x) =

{
x x ≥ 0,
a · x x < 0,

(15)

where a, the slope coefficient or threshold, is a small positive constant that multiplies
the negative input values, ensuring a small gradient for negative inputs, allowing some
information to flow even for negative inputs.

2.3. Variational Autoencoder

A variational autoencoder (VAE) is a generative learning model developed from
the Bayesian framework, as introduced in [25]. A VAE comprises a recognition model,
also known as a variational approximator, denoted as qφ(z|x) and a generative model
pθ(z)pθ(x|z), where x and z represent input data and latent space, respectively. The
architecture of a VAE network is depicted in Figure 8.

Bioengineering 2023, 10, 1348 8 of 40

Figure 8. Ilustration of a variational autoencoder (VAE) network architecture.

The objective of the VAE is to jointly learn the parameters of variational approximator
φ and the generative model θ. This is achieved by maximizing the evidence lower bound
(ELBO), defined in Equation (16):

Lvae(θ, φ; x) = −DKL(qφ(z|x)||pθ(z)) +Eqφ(z|x)[log pθ(x|z)], (16)

where DKL denotes the Kullback–Leibler (KL) divergence between the approximated
posterior qφ(z|x) and the prior of the latent variable pθ(z). The first term on the right-hand
side acts as a regularizer, encouraging minimising the KL divergence between qφ(z|x) and
pθ(z). The second term represents an expected negative reconstruction error, maximizing
the log-likelihood logpθ(x|z) with samples drawn from the approximated posterior.

To efficiently estimate this optimization, the stochastic gradient variational Bayes
(SGVB) method, employing the autoencoding variational Bayes (AEVB) algorithm and a
reparameterization trick [25], is used. The reparameterization trick involves reparameteriz-
ing the approximated posterior using a differentiable transformation gφ(ε, x), where ε is a
random noise variable acting as an auxiliary variable with an independent marginal p(ε).
This trick overcomes the challenge of calculating the gradient of Lvae with respect to φ.

In practical applications, the choice of probability distributions is pivotal. Typically, a
Gaussian distribution N (µz, Σz) is selected for the posterior, where µ and Σ are arbitrary
deterministic functions [26]. For the prior, a standard normal distribution N (0, 1) is com-
monly chosen. Regarding the likelihood distribution, a multivariate Gaussian distribution
is used for continuous data, while a Bernoulli distribution is suitable for binary data [27].

2.4. Conditional Variational Autoencoder

The conditional variational autoencoder (CVAE) extends the capabilities of the VAE by
incorporating external information, termed conditional data, during the generative process.
Introduced in [28], the CVAE addresses a limitation inherent in VAEs. Traditional VAEs
can generate data solely from latent variables, representing a specific class of sample data.
In contrast, as depicted in Figure 9, a CVAE can create data using both latent variables and
additional conditional input, allowing it to generate sample data for a specific class based
on corresponding class labels [10]. While VAEs are primarily considered an unsupervised
training framework, CVAEs operate in a semisupervised manner as their inputs include
both sample data and class labels.

Bioengineering 2023, 10, 1348 9 of 40

Figure 9. Illustration of conditional variational autoencoder (CVAE) network architecture that
integrates conditional information for enhanced generative modeling.

Equation (17) represents the objective function of the CVAE, which is similar to that of
the VAE but includes additional data class label information:

Lcvae(θ, φ; x) = −DKL(qφ(z|x, y)||pθ(z)) +Eqφ(z|x)[log pθ(x|z, y)], (17)

where y refers to the class label.

3. Materials

This section gives a summary of the datasets used in this study, the sensing protocols
for their corresponding signal registration, along with a detailed explanation of the data
preparation and preprocessing techniques applied. A comprehensive understanding of
the datasets, their preparation, and preprocessing is crucial for gaining insights into the
subsequent classification models.

3.1. Datasets Description

A dataset of sensors, represented as D = {X1, . . . , Xs, . . . , XS}, consists of a collection
of signals denoted as Xs, which are registered from identical sensors. Here, the subscript s
is the index of each signal, while S signifies the total count of signals within this dataset.

In this study, we used and analyzed three distinct datasets: (1) 35-mer adenosine,
(2) 31-mer oestradiol, and (3) 35-mer oestradiol. These datasets include multiple single-
variable time-series signals that record the drain current from three distinct sensors. Specifi-
cally, the sensors were based on technology utilizing aptamer-based electrochemical carbon
nanotube field-effect transistors (CNT-FETs).

Table 1 presents the available datasets and their sizes, including the total number of
signals in each dataset. In order to enhance comprehension of the registered signals, a
brief introduction to the sensors and the sensing protocols used to measure drain current is
provided below, outlining the components of the sensors and the methodology used for
signal measurement.

Table 1. The total count of signals in the provided datasets.

Dataset ID Dataset Name Dataset Size

DS 1 35-mer Adenosine 15
DS 2 31-mer Oestradiol 24
DS 3 35-mer Oestradiol 24

Bioengineering 2023, 10, 1348 10 of 40

Table 2 represents three fundamental components of the sensors employed in collecting
data to concisely compare the datasets. The datasets were primarily differentiated by two
key elements of their sensors: (i) their target analytes and (ii) their aptamers employed
as the bioreceptors. The other key component, which is the transducer, was CNT FET for
all three sensors. Providing a comprehensive explanation of the sensor functionalization
details is outside the scope of this paper. Nevertheless, comprehensive details regarding the
35-mer adenosine sensor, including specifics about receptor functionalization and transistor
fabrication, are available, in [29].

Table 2. The datasets and the fundamental elements of the sensors responsible for recording signals
in each dataset.

Dataset Name Analyte Transducer Bioreceptor Ref.

35-mer Adenosine Adenosine CNT FET 5′-NH2-AAAAAAAAAACCTGGGGGAGTATTGCGGAGGAAGG-3′ [29]
31-mer Oestradiol Oestradiol CNT FET 5′-GGTCCTGACCGGAGGCTGACCGGAGTGGGAA-3′ [30] 1

35-mer Oestradiol Oestradiol CNT FET 5′-AAGGGATGCCGTTTGGGCCCAAGTTCGGCATAGTG-3′ [31]
1 Erica S. Cassie created the aptamer for this dataset, which was a variation of the one described in the cited source.
This sequence incorporated the shared segment of the best three oestradiol aptamers, with additional segments
added at both ends.

In terms of sensing protocols, the procedures for the 31-mer and 35-mer oestradiol
sensors shared similarities, but they differed from those employed for the adenosine sensors.
Table 3 compares and summarizes the sensing procedures used in the datasets.

Table 3. Comparison of the sensing procedures of the sensors. Note that the details regarding the
oestradiol sensors are combined into a single column, as they share similar sensing procedures.

Characteristics Adenosine Sensor Oestradil Sensors

Time interval measurement 1 s 1.081 s with std 5× 10−3

Gate voltage (VG) 0 V 0 V
Drain voltage (VD) 100 mV 100 mV

Buffer solution 2 mM Tris-HCI 0.05× PBS with 5% EtOH
Initial step load chemical 110 µM of 2 mM Tris-HCI 100 µL of 0.05× PBS 5% EtOH
Next steps load chemical - 20 µL of 0.05× PBS 5% EtOH
Initial analyte load time 1000 s 600 s

Time interval of analyte injection 500 s 300 s
Time interval of chemical injection - 300 s
Variation of analyte concentration 100 pM–10 µM 1 nM–10 µM

The signals for oestradiol and adenosine were registered at specific time intervals,
with oestradiol measured every 1.081 with a standard deviation of 5× 10−3 and adenosine
every 1 s, respectively. The drain and gate voltages were held consistently at VD = 100 mV
and VG = 0 V for both.

Initially, the polydimethylsiloxane (PDMS) wells of the sensors were filled with des-
ignated solutions. The adenosine sensor employed a 2 mM Tris-HCl buffer, while the
oestradiol sensors utilized a solution consisting of 0.05 times PBS (phosphate-buffered
saline) with 5% ethanol (EtOH).

In the case of the adenosine aptasensor, the process commenced by filling the PDMS
well with 110 µM of 2 mM Tris-HCl, which was maintained for 1000 s. Following this,
adenosine solution was introduced into the PDMS well every 500 s, with each injection
containing progressively higher concentrations, taking into account the total adenosine
concentration in the well before each addition. Through this incremental approach, the
adenosine concentration in the well was raised, ranging from 100 pM to 10 µM.

Considering the oestradiol aptasensors, the procedure started by introducing an
initial volume of 100 µL of 0.05 times PBS with 5% EtOH into the PDMS well, which
was maintained for 300 s. During the subsequent 300 s, an additional 20 µL of 0.05 times

Bioengineering 2023, 10, 1348 11 of 40

PBS with 5% EtOH was added without altering the oestradiol concentration. Afterward,
oestradiol solution was injected into the well every 300 s, taking into account the existing
oestradiol concentration before each addition. Furthermore, with each increment in the
oestradiol concentration, 20 µL of 0.05 times PBS with 5% EtOH was introduced into
the well. This step-by-step process elevated the oestradiol concentration within the well,
ranging from 1 nM to 10 µM.

Figure 10 illustrates the stereotypical original signals from the mentioned datasets. Ver-
tical lines are employed to distinguish between various analyte concentrations (ACs) within
a signal. It should be noted that the initial ACs for the 35-mer adenosine experiments may
not have been the same; the initial AC in Figure 10a was 1 nM and it was 1 µM for Figure 10b.
Conversely, the initial ACs for experiments involving the 31-mer and 35-mer oestradiol
sensors were entirely the same, as depicted in Figure 10c and Figure 10d, respectively.

Further clarity is needed regarding the terms entire signal and segment, as they are
frequently used throughout this paper. In this context, the term entire signal points out all
the registered sensing responses from the start to the end of an experiment. Conversely, a
segment denotes a specific portion of the entire signal that illustrates the sensor’s registered
data to a particular concentration of the target analyte. For example, in Figure 10a, the data
at t ∈ [1, 2000] are considered as the entire signal, and this signal consists of three distinct
segments: t ∈ [1, 1000] for the No Analyte segment, t ∈ [1001, 1500] for the 1 µM segment,
and t ∈ [1501, 2000] for the 10 µM segment.

(a)

(b)

Figure 10. Cont.

Bioengineering 2023, 10, 1348 12 of 40

(c)

(d)

Figure 10. The stereotypical sensing time series registered by aptasensors include (a) the typical
signal from DS 1 with an initial AC starting from 1 nM, (b) another typical signal from the same
dataset with AC starting from 1 µM, (c) a sample from DS 2, and (d) a sample from DS 3. Note
that AC, C1 Labels, and C2 Labels refer to the analyte concentration and the segment labels for
classification models 1 and 2 in this paper, respectively.

3.2. Data Preparation

There were three steps in order to prepare each dataset for further analysis in this
study. These steps include data normalization, segmentation and segment labelling.

3.2.1. Data Normalization

The purpose of feature scaling or data normalization was to standardize the entire
signals within a specific dataset to a uniform scale. This process also aimed to prevent
certain features from controlling and dominating others. We utilized Z-score scaling for
normalization, employing the mean (µ) and standard deviation (σ) calculated from the
entire signal.

To demonstrate this concept, take an entire raw signal X = [x1, . . . , xi, . . . , xn] of length
n. Equation (18) outlines the normalization process, producing the normalized signal
denoted as XNorm, following the method described.

XNorm = [xNorm
1 , . . . , xNorm

i =
xi − µ

σ
, . . . , xNorm

n]. (18)

Figure 11 displays the effect of Z-score scaling. The impact of the normalization process
becomes evident when you compare Figure 11a,b. Figure 11a represents an original signal

Bioengineering 2023, 10, 1348 13 of 40

sample from DS 1, while Figure 11b shows the same signal after undergoing normalization
using Equation (18).

(a)

(b)

Figure 11. An example of data normalization for the adenosine dataset: (a) the raw signal, (b) the
normalized signal according to Z-score scaling.

It is important to emphasize that the entire signal underwent Z-score scaling. The
primary purpose behind normalizing the signals in this manner was to ensure that all
signals within each dataset were brought to a consistent scale. Additionally, it should be
noted that, for the sake of simplicity, we will subsequently refer to the normalized signals
as X throughout this paper instead of XNorm.

3.2.2. Segmentation

After rescaling the signal, each signal was divided into its component segments. In
this study, a segment is defined as a part of a signal with a consistent analyte concentration
from beginning to end.

Table 4 displays the total count of segments corresponding to various analyte con-
centrations in each dataset. It is important to note that the oestradiol signal’s analyte
concentration ranged from 1 nM to 10 µM. Consequently, the total count of signals and
segments in each class across these datasets remained consistent. On the other hand, the
recorded analyte concentration ranges differed among the adenosine signals. Moreover,
due to an insufficient number of segments in the 100 pM label in DS 1, this particular class
had to be omitted.

Regarding the oestradiol datasets, in the next step, we used the retime function in
MATLAB R2022b for the resampling to increase the data points from 166 data points in

Bioengineering 2023, 10, 1348 14 of 40

each segment to 300 data points. The reason for resampling was to increase the data points
that were essential for the signal extrapolation part.

Table 4. The total number of segments corresponds to the datasets and is categorized based on their
analyte concentration levels. It should be noted that the 100 pM segment in DS 1 was removed due to
data scarcity and will not be mentioned in this study afterwards.

Analyte Concentration DS 1 DS 2 DS 3

No Analyte 15 24 24
100 pM 1 0 0

1 nM 5 24 24
10 nM 7 24 24
100 nM 9 24 24
1 µM 12 24 24

10 µM 15 24 24

Total Segments 63 144 144

3.2.3. Anomaly Detection

Anomaly detection is the task of detecting data samples that exhibit statistically
distinctive characteristics compared to the other available data instances, regarded as
normal instances [32]. Identifying abnormal data is a vital task for machine learning or
deep learning scenarios, as abnormal observations hold misinformation and incorrect
details and deteriorate the performance of predictive models.

With respect to the signals studied in this research, a number of factors influenced
the signals and led to the production of anomalous data. These contributing factors could
include complications in the receptor’s immobilization on the surface of CNT, challenges
in constructing the sensing interface, transistor malfunctions, difficulties and complications
with the receptor on CNT surfaces, laboratory background noise, and so on.

Figure 12 presents a comparison between normal patterns in DS 1 and its abnormal
time series. Figure 12a displays the normal pattern. Figure 12b represents two instances of
entire signals considered anomalies. The blue and red signals correspond to recordings from
non-sensing and broken transistor sensors, respectively. Figure 12c exhibits two signals
with abnormal behaviour during a specific time interval, specifically between 300 s and
750 s. In these observations, segments displaying abnormal behaviour were categorized as
anomalies, while the others as normal segments. A comprehensive explanation of anomaly
description can be found in [16].

The data collector classified the existing segments as standard, borderline, non-sensing
signals, and malfunctioning transistors, relying on prior understanding of the sensors’
capabilities and visual data analysis. In our initial study [15], we considered marginal, no-
sensing signals and broken transistors as abnormal data or contextual outliers. However, in
our subsequent work [16], we introduced an autoencoder-based anomaly detection method
as an additional criterion. Consequently, abnormal data in this study were identified
using the results of [16] and data visualization. Table 5 displays the total number of
normal segments corresponding to each analyte concentration within each dataset after the
application of anomaly detection.

3.2.4. Segment Labeling

In this study, as depicted in Figure 1, we developed two distinct classification models.
Given the differences between these models and the importance of understanding data
classes and labels, we provide an explanation of the segment labelling approach for both
models in this section. For a visual overview of the labelling, refer to Figure 10.

Bioengineering 2023, 10, 1348 15 of 40

(a)

(b)

(c)

Figure 12. These plots illustrate a comparison between normal 35-mer oestradiol signal patterns and
the patterns of abnormal signals: (a) signals showing normal and standard behaviour, (b) abnormal
time series (the blue and red lines represent signals from non-sensing and malfunctioning transistor
sensors, respectively), (c) signals with abnormal time intervals, captured by functional sensors but
exhibiting unusual patterns from 300 to 750 s.

Table 6 provides a quick view of the labels in both models C1 and C2. In classification
model C1, the objective was to detect and quantify the specific analyte concentration within
six different classes, ranging from No Analyte to 10 µM. These models were developed
individually for each dataset, excluding abnormal data. In contrast, classification model

Bioengineering 2023, 10, 1348 16 of 40

C2 aimed to distinguish between normal and abnormal segments. For normal segments,
model C2 also detected the presence of target analytes and their respective quantities.

Table 5. The total size of normal segments for available datasets after applying anomaly detection.

Analyte Concentration DS 1 DS 2 DS 3

No Analyte 9 18 5
1 nM 4 18 5

10 nM 4 18 11
100 nM 4 18 11
1 µM 4 18 11

10 µM 6 18 11

Table 6. Segment labeling for classification models C1 and C2.

C1 Labels C2 Labels
Analyte Concentration

DS 1 DS 2 DS 3 DS 1 DS 2 DS 3

No Analyte 1 1 1 1 1 1
1 nM 2 2 2 2 7 7

10 nM 3 3 3 3 8 8
100 nM 4 4 4 4 9 9
1 µM 5 5 5 5 10 10

10 µM 6 6 6 6 11 11
Anomaly - - - 12 12 12

It is important to note that all three datasets contain both normal and abnormal data.
In the C1 models, abnormal data were excluded, and only normal data were utilized for
prediction models. Conversely, in the C2 model, both normal and abnormal data from
all three datasets were combined. The approach for generating augmented abnormal
data in the C2 model involved creating abnormal data specific to each dataset in the data
augmentation process using their respective VAE. Subsequently, the augmented abnormal
data from all three datasets were treated as a unified category and labeled as class 12 for
the C2 classification model.

3.3. Data Preprocessing

The short-time Fourier transform (STFT), introduced by Stockwell [33], is an extension
of the Fourier transform that is used for analyzing the time-varying frequency components
of non-stationary signals by processing them in short time intervals [34]. This transfor-
mation has found application as a data preprocessing technique in signal processing for
machine learning and deep learning models [35–38].

The STFT involves a sliding window to divide a signal into short time segments, often
with overlap. Fourier transforms are computed for these short segments, and this process
is applied iteratively to cover the entire signal using windowing. In continuous form, the
STFT of a single-channel signal x(t) is expressed as Equation (19):

STFTx(t)(τ, ω) = X(τ, ω) =
∫ ∞

−∞
x(t)ω(t− τ) e−j ωτ dt, (19)

where ω(τ) represents the analysis window function. It should be noted that in the discrete
version of signal x(t), the integral sign in Equation (19) is replaced by a sum.

The parameters of the window function ω(τ) include the type of window, its length,
and the degree of overlap. Various types of window functions are available, such as the

Bioengineering 2023, 10, 1348 17 of 40

rectangular window, Sine window, and Blackman window. Equation (20) describes the
calculation of Blackman window:

ω[n] = a0 − a1 cos(
2πn

N
) + a2 cos(

4πn
N

),

a0 =
1− α

2
, a1 =

1
2

, a2 =
α

2
,

α = 0.16.

(20)

The squared magnitude of the STFT S is known as the spectrogram that represents
the power spectral density of the function over the joint time-frequency plane, as shown in
Equation (21):

Sx(t)(τ, ω) = |X(τ, ω)|2. (21)

In this work, we used the short-time Fourier transform (STFT) for data preprocessing
with a Blackman window. The window parameters were set to a 128-sample Blackman
window, with 64 samples of overlap between adjoining segments and a 128-point Fourier
transform length.

Figure 13 illustrates the spectrogram of a typical and normal segment from the 35-mer
adenosine dataset with an AC of 10 µM. Figure 13a corresponds to the first 300 s of the
segment, while Figure 13b shows the spectrogram for the entire 500 s.

(a) (b)

Figure 13. Illustration of the spectrogram for a typical and normal 10 µM 35-mer adenosine segment:
(a) STFT of the initial 300 s, and (b) STFT of the full 500 s.

The resulting matrices for this transformation, applied to all datasets, were of size
128× 3 for the initial 300 s and 128× 6 for the full 500 s. These matrices were utilized
as the primary input data for all classification models employed in our study. In our
analytical assessment, we conducted a comparative evaluation to evaluate the influence
of this transformation in contrast to the impact of employing data normalization as a
standalone preprocessing technique.

3.4. Data Split

Traditionally, data provided for deep learning models is divided into three segments:
the training set (60%), the validation set (20%), and the test set (20%) [39]. However, in
this study, where we tackled three distinct deep learning tasks—data augmentation, signal
extrapolation, and classification—we employed varied strategies for data partitioning.

During the data augmentation phase, 80% of the original datasets were allocated for
training, and 20% for validation. The test sets comprised scaled augmented data from [15].
For the signal extrapolation and classification models, we used a split ratio of 60% for
training, 20% for validation, and 20% for testing. The data utilized in these stages were the
CVAE-augmented data.

Bioengineering 2023, 10, 1348 18 of 40

4. Methods

In this section, we provide a comprehensive overview of the methodologies imple-
mented to tackle the challenges and fulfil the research objectives of our study. Our approach
includes the development of three core deep learning models: (1) data augmentation,
(2) signal extrapolation, and (3) classification. These models were developed to address
the specific requirements of our research tasks. Moreover, it should be noted that the
entire implementation process for these deep learning algorithms was conducted using the
MATLAB R2022b Deep Learning Toolbox. Moreover, it should be noted that the design of
the networks in this study was based on extensive experimentation and evaluation.

4.1. Data Augmentation

The exceptional performance of deep learning predictive models relies heavily on the
size and consistency of the training datasets to prevent overfitting. However, real-world
datasets often suffer from scarcity and class imbalance issues. To effectively increase dataset
size and enhance data quality, data augmentation plays a crucial role in the successful
application of deep learning models, including time series data [40]. Specifically, genera-
tive models like VAE, CVAE, and GAN have been employed for augmenting time series
datasets. These models are directly applied to capture the data’s underlying probability
distribution, enabling the generation of new samples that closely imitate the original data
distribution [41,42].

In this study, we employed data augmentation using CVAE networks for normal data
and VAE for anomaly data to address limited dataset sizes, enabling the development
of deep learning classification models with generalization ability and reduced risk of
overfitting. Figure 14 illustrates the architecture of encoder and decoder networks utilized
for generating normal data across all datasets.

As illustrated in Figure 14, both encoder and decoder networks shared the same
architecture with minor variations in layers 1, 9, 12, 22, and 23. In the first layer, the
encoder received signal data, while the decoder received random noise. Layers 9 and 12
were convolutional and deconvolutional layers for the encoder and decoder, respectively.
In layer 22, the encoder employed a fully connected layer, while the decoder used a
deconvolution layer. The last layer differed, with the encoder employing a sampling layer
and the decoder using a scaling layer to replicate the original signal.

Figure 15 illustrates the architecture of encoder and decoder networks utilized for
generating abnormal data across all datasets. Notably, AC labels for anomaly data were
impractical and lacked meaningful results. Consequently, layers related to label information
were omitted from the CVAE, and the corresponding networks were modified to VAE
networks. As depicted in this figure, layers 1, 10, 15, and 16 exhibited differences in the
encoder and decoder, which was similar to layers differentiation in the CVAE structure.

In the context of the sampling layer, let X = [x1, x2, . . . , xm]T denote the input data
to this layer, where m represents the length of the vector. This vector was a concate-
nation of the mean vector µz and the variance vector Σz, namely, µz = [x1, . . . , xm/2]

T

and Σz = [x(m/2)+1, . . . , xm]T . The sampling layer produced three outputs: µz, σz, and Z.
Equations (22) and (23) describe the calculations for these outputs:

σz = e
1
2 Σz , (22)

Z = ε · σz + µz, (23)

where ε was a vector with normally distributed random numbers generated with randn
function in MATLAB R2022b.

Regarding the scaling layer, Equation (24) represents the function utilized in this layer
to scale and map the input vector X to the output data fs(X) while maintaining the same
scale as the original registered data:

fs(X) = α · tanh(X), (24)

Bioengineering 2023, 10, 1348 19 of 40

where α ∈ R was the variable α that varied according to the dataset scale. For example,
for normal data across all datasets, we set α to 1.5, which aligns with the normalized
drain current segments for normal data, lying within the range of [−1.5, 1.5]. Conversely,
when generating anomalies in the 35-mer adenosine dataset, α is set to 5, reflecting the
approximate range of abnormal data within [−5, 5].

(a) (b)

Figure 14. Structure of CVAE networks for data augmentation of normal data: (a) the encoder module
and (b) the decoder network.

4.2. Signal Extrapolation

Time series forecasting using deep learning has gained prominence in academic re-
search across diverse domains [43,44]. In the sensors industry, deep learning-based time
series modelling has found application in tasks such as denoising, dimensionality reduc-
tion, anomaly detection, structural damage identification, and predicting future sensor
outputs [45]. Various deep learning algorithms have been employed for forecasting time se-
ries data, including CNN, temporal convolutional network TCN, LSTM, and GRU [43–45].

In this section, we employed recurrent-based networks for forecasting future sensor
outputs in the oestradiol datasets, a task we simply refer to as signal extrapolation in

Bioengineering 2023, 10, 1348 20 of 40

this study. Our motivation for this approach stemmed from the results of our previous
work [15,16], where we raised concerns about the impact of signal length on classification
and anomaly detection outcomes. In both of those studies, deep learning models performed
better when using the 35-mer adenosine dataset with segments lasting 500 s, as opposed
to the 31-mer and 35-mer oestradiol datasets with segments lasting 300 s. As a result, we
applied recurrent-based networks to extrapolate the oestradiol datasets from 300 s to 500 s.

(a) (b)

Figure 15. Structure of VAE networks for data augmentation of abnormal data: (a) the encoder
network, and (b) the decoder module. Note that the anomaly data augmentation was essential for
C2 models.

Figure 16 visualizes the network architecture used for signal extrapolation. These
networks comprised four successive layers: a sequential input layer, a recurrent layer,
a fully connected layer, and a regression layer. The primary distinction among these
networks lay in their recurrent layer, which incorporated either a GRU, unidirectional
LSTM, or bidirectional LSTM layer. For a more detailed comparison of the network layers
and parameters, please refer to Table 7.

Bioengineering 2023, 10, 1348 21 of 40

Figure 16. A schematic of the network architecture. The primary distinction among these networks
lay in their recurrent layer, which incorporated either a GRU, unidirectional LSTM, or bidirectional
LSTM layer.

Table 7. Layer description of the recurrent-based networks developed for signal extrapolation.

Layer Number Layer Type Hyperparameters Learnable Parameters State Parameters

1 Sequential input Output size: 1 - -

Input size: 1 Wx: 3n× 1
Hidden units: n Wh: 3n× n Hidden state: n× 1GRU
Output size: n b: 3n× 1

Input size: 1 Wx: 4n× 1 Hidden state: n× 1
Hidden units: n Wh: 4n× nULSTM
Output size: n b: 4n× 1 Cell state: n× 1

Input size: 1 Wx: 8n× 1 Hidden state: 2n× 1
Hidden units: n Wh: 8n× n

2

BLSTM
Output size: 2n b: 8n× 1 Cell state: 2n× 1

Input size: n Weights: 1× n
FC (GRU, ULSTM) 1

Output size: 1 Bias: 1× 1 -

Input size: 2n Weights: 1× 2n3
FC (BLSTM) 2

Output size: 1 Bias: 1× 1 -

4 Regression output Output size: 1 - -
1, 2 A fully connected layer that succeeds GRU, ULSTM, and BLSTM layers, respectively.

Remember that the input layer’s size fed into the networks matched the length of
the segments and was treated as a single sequence. Similarly, the output size of the
networks was a sequence with a length identical to that of the input segment. Also,
the n refers to the number of hidden units in the recurrent layers. In this section, the
number of hidden units, n, was set to 128. Note that the input weights, along with the
recurrent weight and bias matrices, were combined to create the input weights for both
GRU and LSTMs (Wx = [Wrx; Wzx; Wh̃x], Wx = [Wix; W f x; Wcx; Wox]), recurrent weights in
the same order (Wh = [Wrh; Wzh; Wh̃h], Wh = [Wih; W f h; Wch; Woh]), and bias in the same
order (b = [br; bz; bh̃], b = [bi; b f ; bc; bo]).

The pseudocode outlined in Algorithm 1 describes the technique used to extend the
length of data segments to meet a specified desired length, set at 500 s for this study. With
an input dataset denoted as D and an initial data segment, X, the algorithm proceeded by
iteratively predicting future sensor readings at variable time intervals, controlled by the
timeStep parameter, and appending these predictions to the existing data. This process
continued until the desired data segment length was achieved. Key steps included window-
based data preparation, neural network training, and iterative prediction updates.

Figure 17 illustrates the application of the algorithms described on a segment with
AC of 10 µM from the 35-mer adenosine dataset. In the first iteration, as visualized in
Figure 17a, the predictor window covered the time interval [40, 300], which was used to
predict the subsequent time interval [55, 315]. Consequently, the data from the interval
[301, 315], as the extrapolated part, was appended to the actual segment.

During the second iteration, according to Figure 17b, the predictor and predicted
segments were adjusted to [50, 315] and [65, 330], respectively. As a result, the data from
the interval [316, 330], as the extrapolated part, was appended to the actual segment.

Bioengineering 2023, 10, 1348 22 of 40

Algorithm 1 Algorithm for forecasting future sensor outputs.

Input: Dataset D, Segment X = [x1, . . . , xn], Desired Length L
Output: Extrapolated Segment Xe = [x1, . . . , xn, xn+1, . . . , xL]
Xe ← X
l ← Segment Length
startPoint← Start Point
timeStep← 15
stepOffset← 0
while l ≤ L do

for all X ∈ D do
predictorStart← startPoint + stepOffset
predictorEnd← l − timeStep
Predictor← [xpredictorStart, . . . , xpredictorEnd]
targetStart← predictorStart + timeStep + stepOffset
targetEnd← l
Target← [xtargetStart, . . . , xtargetEnd]

end for
TrainNetwork(Predictor, Target)
PredictFutureDataPoints Xp = [xl+1, . . . , xl+timeStep]

Xe ← Concatenate(Xe, Xp)
l ← Length(Xe)
stepOffset← stepOffset + 10

end while

(a)

(b)

Figure 17. Illustration of two iterations of signal extrapolation procedure on a segment of the 35-mer
adenosine dataset with AC of 10 µM: (a) first iteration, and (b) second iteration.

Bioengineering 2023, 10, 1348 23 of 40

4.3. Classification Models Architectures

As explained before, in this study, we have developed two distinct classification
models: C1 and C2 models. The primary objective of the C1 models is to detect and
quantify analyte concentrations for each dataset individually. On the other hand, the C2
model is designed to identify abnormal and normal data, detect various analytes, and
quantify their respective concentrations throughout all available datasets.

Seven distinct deep learning models were employed for the classification tasks:
(1) GRU, (2) ULSTM, (3) BLSTM, (4) ConvGRU, (5) ConvULSTM, (6) ConvBLSTM,
(7) CNN. The architectures of these networks remained consistent across both the C1
and C2 models. The only difference in the network architectures was in their classification
output layers: the C1 networks had output layers with a size of six classes, whereas the C2
models’ output layers consisted of twelve classes.

Figure 18 and Table 8 visualize and describe the three employed RNN-based networks
for both classification models and compare the networks with regard to their parameters
in different layers. These networks consisted of 5 consecutive layers: (1) a sequential
input layer, (2) a recurrent-based, (3) a fully connected layer, (4) a Softmax layer, and (5) a
classification layer. The main differences among these networks were in their second layers,
with the implementation of GRU, ULSTM, and BLSTM structures within the recurrent layer.

Figure 18. A schematic of the recurrent-based network architecture for classification models. The
primary distinction among these networks lay in their second layer, which included either a GRU,
ULSTM, or BLSTM layer.

Table 8. Layer description and comparison of the developed recurrent-based networks for classifica-
tion models.

Layer Number Layer Type Hyperparameters
(Output Size) Learnable Parameters State Parameters

1 Sequential input 1 - -

Input size: 1 Wx: 3n× 1
Hidden units: n Wh: 3n× n Hidden state: n× 1GRU
Output size: n b: 3n× 1

Input size: 1 Wx: 4n× 1 Hidden state: n× 1
Hidden units: n Wh: 4n× nULSTM
Output size: n b: 4n× 1 Cell state: n× 1

Input size: 1 Wx: 8n× 1 Hidden state: 2n× 1
Hidden units: n Wh: 8n× n

2

BLSTM
Output size: 2n b: 8n× 1 Cell state: 2n× 1

Weights: m× nFC (GRU, ULSTM) m Bias: m× 1 -

Weights: m× 2n3
FC (BLSTM) m Bias: m× 1 -

4, 5 Softmax, Classification m - -

Note that n and m refer to the hidden node numbers in the recurrent layer and the class
numbers in the classification models, respectively. In this part, the hidden node numbers,
n, was set to 128, and m for C1 and C2 models were 6 and 12, respectively. Furthermore,
the details of the input weights (Wx), recurrent weights (Wh), and biases (b) have been
previously explained in this section.

Bioengineering 2023, 10, 1348 24 of 40

Moreover, Figure 19 illustrates the three proposed networks for classification, while
Table 9 provides detailed descriptions and relevant information about their architectures,
collectively referred to as ConvRNNs. These networks, namely ConvGRU, ConvULSTM,
and ConvBLSTM, differ from the previously mentioned RNN-based networks by incorpo-
rating a 2D convolutional layer after the input layer. Some structural modifications were
made to refine and fine-tune the networks.

Figure 19. Illustration of ConvRNN networks architectures used for enhanced feature extraction in
classification tasks.

Table 9. Architecture and layer descriptions of the proposed Conv-GRU, Conv-ULSTM, and Conv-
BLSTM networks for classification models.

Layer Number Layer Type Hyperparameters
(Output Size) Learnable Parameters State Parameters

1 Image Input ls - -

Weights: s f × n f2 2D Convolution [lc n f] Bias: 1× n f
-

3 Leaky ReLU, scale = 0.1 [lc n f] - -

4 Flatten k = lc × n f - -

Input size: k Wx: 3n× k
Hidden units: n Wh: 3n× n Hidden state: n× 1GRU
Output size: n b: 3n× 1

Input size: k Wx: 4n× k Hidden state: n× 1
Hidden units: n Wh: 4n× nULSTM
Output size: n b: 4n× 1 Cell state: n× 1

Input size: k Wx: 8n× k Hidden state: 2n× 1
Hidden units: n Wh: 8n× n

5

BLSTM
Output size: 2n b: 8n× 1 Cell state: 2n× 1

GRU, ULSTM: n6 Leaky ReLU, scale = 0.1 BLSTM: 2n - -

Weights: m× nFC (GRU, ULSTM) m Bias: m× 1 -

Weights: m× 2n7
FC (BLSTM) m Bias: m× 1 -

8, 9 Softmax, Classification m - -

Note that the variable ls represents the length of the segments that are fed into the
networks. In our earlier models, the input layers were configured as sequential input layers.
However, in the case of the ConvRNNs, we opted for an image input layer. As a result,
the input size for the sequential layers was set to one, while for the image input layer, it
matched the length of the segments.

The variable lc, as the output size of the convolution layers, was calculated according
to Equation (13). Additionally, s f and n f denote the size and number of filters in the 2D
convolutional layer, respectively, with p representing padding and s indicating the stride

Bioengineering 2023, 10, 1348 25 of 40

size for this layer. In these classification models, the mentioned variables were set as
follows: ls ∈ {300, 500}, s f = 5, n f = 32, p = 1, s = 1, n = 128, and m ∈ {6, 12}.

It is important to note that the variable ls represents the input length of the segments
fed into the networks, which can vary between 300 s and 500 s. This variation allowed us
to assess the impact of segment length on the models’ performance.

Finally, Figure 20 provides an illustration of the proposed CNN architecture used for
classification, while Table 10 offers a detailed description of its layers.

Figure 20. Illustration of CNN network architecture used for classification models.

Table 10. Architecture and layer descriptions of the proposed CNN network for classification models.
Note that ConvBlock refers to a combination of a 2D convolution layer, a Leaky ReLU activation
function, and a dropout layer placed sequentially.

Layer Number Layer Type Hyperparameters (Output Size) Learnable Parameters

1 Image Input ls -

Weights: s f × n f12 2D Convolution [lc1 n f1
]

Bias: 1× n f1

3 Leaky ReLU, scale = 0.1 [lc1 n f1
] -

4 Dropout, probability = 0.25 [lc1 n f1
] -

Weights: s f × n f25, 6, 7 2D ConvBlock [lc2 n f2] Bias: 1× n f2

Weights: s f × n f38, 9, 10 2D ConvBlock [lc3 n f3] Bias: 1× n f3

Weights: s f × n f311, 12, 13 2D ConvBlock [lc4 n f3] Bias: 1× n f3

Weights: s f × n f214, 15, 16 2D ConvBlock [lc5 n f2] Bias: 1× n f2

Weights: s f × n f117, 18, 19 2D ConvBlock [lc6 n f1
]

Bias: 1× n f1

Input size: k = lc6 × n f1
Weights: m× k

20 FC Output size: m Bias: m× 1

21, 22 Softmax, Classification m -

The variables lci for i = 1, . . . , 6, as the output size of the convolution layers, were
calculated according to Equation (13), where filters’ size s f = 5, padding p = 1, and stride
s = 1. Also, the number of filters were set as follows: n f1 = 32, n f2 = 16, and n f3 = 8.

Bioengineering 2023, 10, 1348 26 of 40

4.4. Model Performance Evaluation

There are two approaches for the evaluation of deep learning models in this study,
which are prediction and classification.

4.4.1. Prediction Model Evaluation Metrics

Regarding the evaluation of the data augmentation and signal extrapolation methods,
we reconstructed their corresponding test data using the training networks and then
calculated the reconstruction error. This error quantifies the dissimilarity between the
original data and the reconstructed output and can be measured using statistical metrics
such as mean absolute error (MAE) [46] or mean square error (MSE) [47]. In this study, we
employed MSE as the metric for calculating the reconstruction error.

Consider X as an input segment represented by [x1, x2, . . . , xN], and let X̂ represent its
reconstructed output given by [x̂1, x̂2, . . . , x̂N]. Equation (25) defines MSE as the metric for
measuring reconstruction errors:

MSE =
1
N

n

∑
i=1

(x̂i − xi)
2. (25)

4.4.2. Classification Model Evaluation Metrics

The classification performance of C1 and C2 models was assessed by the overall
accuracy (ACC) and the Macro F1-score (MF1). To calculate these metrics, initially, a
confusion matrix was created using the classification of the test data, and subsequently, the
two mentioned metrics were calculated.

The overall accuracy, as described in Equation (26), represents the proportion of truly
classified elements in the test data out of the total elements. It was calculated by adding
the diagonal elements of the confusion matrix and dividing the sum by the total number
of elements.

ACC =
Number of correct preditions

The overall count of items in the test set
. (26)

The Macro F1-score serves as a valuable metric for classification models dealing with
multiple classes. To comprehend how the macro F1-score is computed, it is crucial to un-
derstand its constituent elements: recall, precision, and F1-score. Precision in Equation (27),
also known as positive predicted value (PPV), represents the ratio of accurately classi-
fied positive instances out of all the instances predicted positive by the model. Recall in
Equation (28), denoted as the true positive rate (TPR), signifies the proportion of accurately
classified positive instances out of all actual positive instances. The F1-score, outlined in
Equation (29), is calculated from precision and recall. Finally, the macro F1-score, described
in Equation (30), calculates the average of class-wise F1-scores concerning the model.

Precision = PPV =
TP

TP + FP
, (27)

Recall = TPR =
TP

TP + FN
, (28)

F1-score =
2

1/precision + 1/recall
, (29)

Macro F1-score =
1
m

m

∑
i=1
{F1-score}i, (30)

In these equations, m represents the total number of classes within a specific classifica-
tion model.

Bioengineering 2023, 10, 1348 27 of 40

5. Results
5.1. Data Augmentation

Table 11 presents detailed information about the architecture of the networks and
the layers’ output sizes that were utilized for data augmentation. These networks are
comprised of both encoder and decoder modules [10]. The CVAE networks were employed
to augment normal data, primarily due to variations in AC labels across available datasets.
In contrast, the VAE networks were used for generating anomaly data, as these signals
lacked different labels, making the use of AC labels impractical. Additionally, since the
sizes of the segments related to the 31-mer and 35-mer oestradiol datasets, referred to as DS
2 and DS 3 were similar, their network information was merged in one column. In contrast,
the information related to 35-mer adenosine as DS 1 remained separate.

Table 12 shows two types of information regarding the data augmentation with CVAE
for normal data on the three available datasets: (1) the performance evaluation of the
networks and (2) examples of augmented normal segments. After training the networks
as described, we initially evaluated their performance using segments generated with
a scaling data augmentation method, as previously detailed in our work [15]. These
generated segments served as the test data, since the original datasets lacked sufficient
data for testing purposes. Therefore, we first reconstructed the test data using the trained
CVAE networks. The examples of reconstructed normal segments are shown in the left
column of Table 12, while the middle column presents the histogram of reconstruction
errors calculated using mean square error (MSE) according to [48].

Subsequently, the decoder modules of the networks were employed to generate new
data. For each AC, the corresponding label was input into the feature input layer, and the
desired amount of data was augmented. The examples of augmented data are visualized in
the right column of Table 12. The total size of both the original and augmented data for each
AC was set to 200. Likewise, the anomaly data was generated with VAEs’ decoder modules.

5.2. Signal Extrapolation

In the signal extrapolation phase, we employed the 35-mer adenosine dataset for
forecasting future sensor outputs. This dataset had segments with a length of 500 s, which
was longer than the segments in both oestradiol datasets, each with a length of 300 s. This
longer segment length provided a suitable basis for evaluating the performance of the
recurrent-based prediction models in signal extrapolation. Specifically, we used the initial
300 s as the predictor and extrapolated the subsequent 200 s.

The data used here for training and then evaluating the models were the original
and augmented data with CVAE, explained in the previous section. The MSE was used
as the statistical metric to calculate the prediction error, and to assess and compare the
performance of the prediction models. In this part, MSE calculated the difference between
the original segments and their corresponding extrapolated parts at the final 200 s.

Figure 21 displays the results of the signal extrapolation process. Figure 21a–c show
histograms of the prediction error assessed by MSE for each prediction model. Additionally,
Figure 21d provides an example of extrapolated outputs using the GRU network.

Similar to [13], as shown in these histograms, we observed that the GRU network
outperformed the other two networks. Furthermore, as indicated in Table 7, the GRU
model had fewer learnable parameters compared to ULSTM and BLSTM, resulting in
shorter training times for computation than the LSTM models. Thus, we implemented the
signal extrapolation procedure on the oestradiol datasets with a GRU-based prediction
model. Subsequently, Figure 22 represents examples of the predicted outputs from the
oestradiol datasets.

Bioengineering 2023, 10, 1348 28 of 40

Table 11. Detailed information regarding the output sizes of the layers in the networks developed for data augmentation. Additionally, “S”, “C”, and “B” denote the
spatial size, channel number, and batch size, respectively. Furthermore, CVAE and VAE represent the networks used for data augmentation of normal and anomaly
data, respectively.

Layers Layers Name Encoder Decoder

CVAE VAE Encoder/Decoder DS 1 DS 2 & DS 3 DS 1 DS 2 & DS 3

1 1 Image/Feature Input 500 (S) × 1 (S) × 1 (C) × 1 (B) 300 (S) × 1 (S) × 1 (C) × 1 (B) 32 (C) × 1 (B) 32 (C) × 1 (B)
2 2 FC 500 (C) × 1 (B) 300 (C) × 1 (B) 4096 (C) × 1 (B) 2048 (C) × 1 (B)
3 3 Reshape 500 (S) × 1 (S) × 1 (C) × 1 (B) 300 (S) × 1 (S) × 1 (C) × 1 (B) 64 (S) × 1 (S) × 64 (C) × 1 (B) 32 (S) × 1 (S) × 64 (C) × 1 (B)
4 - Feature Input 1 (C) × 1 (B) 1 (C) × 1 (B) 1 (C) × 1 (B) 1 (C) × 1 (B)
5 - Embedding 32 (C) × 1 (B) 32 (C) × 1 (B) 32 (C) × 1 (B) 32 (C) × 1 (B)
6 - FC 500 (C) × 1 (B) 300 (C) × 1 (B) 64 (C) × 1 (B) 32 (C) × 1 (B)
7 - Reshape 500 (S) × 1 (S) × 1 (C) × 1 (B) 300 (S) × 1 (S) × 2 (C) × 1 (B) 64 (S) × 1 (S) × 1 (C) × 1 (B) 32 (S) × 1 (S) × 1 (C) × 1 (B)
8 - Concatenation 500 (S) × 1 (S) × 2 (C) × 1 (B) 300 (S) × 1 (S) × 2 (C) × 1 (B) 64 (S) × 1 (S) × 65 (C) × 1 (B) 32 (S) × 1 (S) × 65 (C) × 1 (B)
9 4 Conv/Deconv 250 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B)
10 5 Leaky ReLU, scale = 0.1 250 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B)
11 6 Dropout, probability = 0.25 250 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B)
12 7 Conv/Deconv 125 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B) 125 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B)
13 - Conv/Deconv 125 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B)
14 - Addition 125 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B)
15 8 Leaky ReLU, scale = 0.1 125 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B)
16 9 Dropout, probability = 0.25 125 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B) 63 (S) × 1 (S) × 16 (C) × 1 (B) 75 (S) × 1 (S) × 16 (C) × 1 (B)
17 10 Conv/Deconv 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B) 249 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B)
18 11 Conv/Deconv 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B) 249 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B)
19 12 Addition 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B) 249 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B)
20 13 Leaky ReLU, scale = 0.1 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B) 249 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B)
21 14 Dropout, probability = 0.25 63 (S) × 1 (S) × 16 (C) × 1 (B) 38 (S) × 1 (S) × 16 (C) × 1 (B) 249 (S) × 1 (S) × 16 (C) × 1 (B) 150 (S) × 1 (S) × 16 (C) × 1 (B)
22 15 FC/Deconv 64 (C) × 1 (B) 64 (C) × 1 (B) 500 (S) × 1 (S) × 1 (C) × 1 (B) 300 (S) × 1 (S) × 1 (C) × 1 (B)

Z: 32 (C) × 1 (B) 32 (C) × 1 (B)
23 16 Sampling µz: 32 (C) × 1 (B) 32 (C) × 1 (B) 500 (S) × 1 (S) × 1 (C) × 1 (B) 300 (S) × 1 (S) × 1 (C) × 1 (B)

σz: 32 (C) × 1 (B) 32 (C) × 1 (B)

Bioengineering 2023, 10, 1348 29 of 40

Table 12. The performance metrics of the proposed data augmentation method and examples of data generated by the decoder modules of the CVAEs are presented.
Columns 2 and 4 show examples of reconstructed and augmented segments, respectively, corresponding to their respective datasets. The segments for reconstruction
were randomly selected from the test data and augmented data. AC refers to the analyte concentration of the segments.

Dataset Reconstructed Segment Reconstruction Error Generated Data

35
m

er
A

de
no

si
ne

AC: no analyte AC: 1 nM

31
m

er
O

es
tr

ad
io

l

AC: 10 nM AC: 100 nM

35
m

er
O

es
tr

ad
io

l

AC: 1 µM AC: 10 µM

Bioengineering 2023, 10, 1348 30 of 40

(a) (b)

(c) (d)

Figure 21. Performance evaluation and an example of signal extrapolation on the 35-mer adenosine
dataset: histograms of prediction error for (a) GRU, (b) ULSTM, and (c) BLSTM networks, along with
(d) an example of forecasting future sensor outputs with three GRU-based prediction models at AC
of 10 µM.

(a) (b)

Figure 22. Examples of signal extrapolation with GRU network on oestradiol datasets: (a) a 31-mer
Oestradiol segment with AC of 1 µM, (b) a 35-mer Oestradiol segment with AC of 100 nM.

5.3. Classification Models

In this section, we delve into the comprehensive performance evaluation of the C1
and C2 models on their respective test sets. Our study focused on three key aspects:

Bioengineering 2023, 10, 1348 31 of 40

data preprocessing methods, signal extension techniques, and the comparative analysis of
various deep learning-based neural networks for classification.

Regarding the data preprocessing, we compared the impact of two approaches: nor-
malized data with z-score scaling and normalized data with the STFT method. For signal
extrapolation, we examined the effect of segment lengths, specifically 300 s and 500 s, on
the classification outcomes. Finally, our study culminated in a thorough comparison across
these four categories, employing the explained deep learning algorithms.

The recurrent layers in the algorithms were configured with 128 hidden units when
applicable. According to our previous work [15], the number of hidden units did not
greatly affect the networks’s performance. Thus, in this study, we just considered one
number, 128. The training process comprised 100 epochs with a minibatch size of 128,
utilizing the Adam optimization algorithm. The learning rate was set to 0.002. Moreover,
to enhance the robustness of the prediction models and avoid the risk of overfitting, K-fold
cross-validation with k = 10 was applied. All other hyperparameters were maintained at
their default values in MATLAB R2022b.

5.3.1. C1 Models

Figure 23 illustrates the performance and impact of deep learning models on the
35-mer adenosine dataset. It is important to note that in C1 models, there were six distinct
classes. This configuration implies that the primary objective of the classification model
was to individually identify and quantify the analyte concentration for each dataset.

(a)

(b)

Figure 23. Performance metrics of C1 model on 35-mer adenosine dataset: (a) accuracy and (b) macro
F1-score.

Bioengineering 2023, 10, 1348 32 of 40

Figures 24 and 25 showcase the performance and impact of deep learning models on
the 31-mer and 35-mer oestradiol datasets, respectively.

(a)

(b)

Figure 24. Performance metrics of C1 model on 31-mer oestradiol dataset: (a) accuracy and (b) macro
F1-score.

The choice of the data processing method significantly influenced the classification
outcomes. Utilizing the STFT method as the data preprocessing technique had a noticeable
effect on the employed classification models. As a result, all the networks for the three
datasets yielded comparable, consistent and high-performance results, ranging between
84% to 99% in both metrics, i.e., accuracy and macro F1-score.

Comparing the deep learning networks, it is evident that ConvGRU, ConvULSTM,
ConvBLSTM, and CNN models demonstrated consistent and comparable performance,
surpassing RNNs across all datasets.

In the context of segment length, it can be deduced that segment length played a
crucial role in recurrent networks such as GRU, ULSTM, and BLSTM models just in the
35-mer adenosine dataset. In the case of the 35-mer adenosine dataset, using the lengthier
segments resulted in a notable accuracy boost, reaching up to 8% in the ULSTM and BLSTM

Bioengineering 2023, 10, 1348 33 of 40

models and as high as 15% in the GRU model. However, it did not affect networks with
convolution layers in their structures.

(a)

(b)

Figure 25. Performance metrics of C1 model on 35-mer oestradiol dataset: (a) accuracy and (b) macro
F1-score.

Considering signal extension for the oestradiol datasets, it is important to note that this
method did not prove effective in our developed classification models. Nevertheless, its
inclusion in this study does not support our previous hypothesis regarding the significance
of segment length for these two datasets in predictive modelling [15,16].

5.3.2. C2 Model

Figure 26 showcases the performance and impact of deep learning models on the C2
classification model.

The outcomes of this model closely mirrored those of the C1 models. It is evident that
employing STFT as the data preprocessing method significantly enhanced the performance
of classification tasks across all networks. The accuracy rates for networks utilizing STFT
ranged between approximately 95% and 98%, underlining its consistent effectiveness in
improving classification outcomes.

Bioengineering 2023, 10, 1348 34 of 40

In the context of signal extrapolation, it is crucial to note that this method did not
demonstrate effectiveness in our developed classification. Specifically, the results for GRU
and ULSTM models using extrapolated segments were consistently lower than those with
original segments, showing a decrease of at least 10%.

(a)

(b)

Figure 26. Performance metrics of C2 model: (a) accuracy and (b) macro F1-score.

Upon comparing the networks, it can be deduced that models with convolution layers
consistently delivered stable results, outperforming RNNs across various signal lengths
and data preprocessing techniques, showcasing high performance.

6. Discussion

Aptasensors utilizing nanomaterials are valuable biosensors as they can detect minute
chemicals and species. A key objective in biosensor development is identifying and mea-
suring trace amounts of specific analytes. Deep learning techniques have become highly
appealing tools for advancing biosensors and their data analysis.

Deep learning generative algorithms, like GANs or VAEs, provide a valuable solution
for data augmentation, addressing the limitations of original data collection. They offer a
cost-effective and time-saving alternative for analysis, crucial in biosensor development [49].

Bioengineering 2023, 10, 1348 35 of 40

Additionally, deep learning algorithms have been extensively utilized in time series fore-
casting, allowing the accurate prediction of future data points [12,50]. This forecasting
approach is effective in tasks such as sensor signal extrapolation and predicting future
outputs. Moreover, deep learning networks serve as powerful tools for various tasks,
including identification, quantification, and classification models [51,52]. These methods
utilize advanced neural network structures to handle intricate data patterns, making them
indispensable in both contemporary research and industrial applications.

In this work, we have successfully proposed and compared several classification
models designed to automatically identify and measure specific analytes based on segments
of signals captured by the aptasensors. However, addressing the challenge of inadequate
dataset sizes, common in real-world scenarios, remains crucial to achieving our primary
goals. Additionally, employing a signal extrapolation method was essential to ensure the
uniformity and equality of all available datasets’ lengths. This step was necessary to test
our earlier hypothesis, which was proposed in our previous papers and involved variations
in segment lengths [15,16].

Regarding the data augmentation, we designed and employed CVAE and VAE net-
works to augment the normal and abnormal data, respectively. The data augmentation and
network designs were applied separately for each dataset. The networks were trained by all
available and original segments within their corresponding datasets. In the test phase, we
used the data that were generated by the proposed scaling data augmentation in [15] as the
test sets. Finally, MSE was used as the evaluation metric for calculating the reconstruction
error. The potential contribution of the presented data augmentation method is that it can
be reused for anomaly detection or outlier detection.

In the context of signal extrapolation, we designed and compared networks incor-
porating recurrent layers to generate segments with uniform lengths [53]. For training
and testing the signal extrapolation algorithm, we utilized the 35-mer adenosine dataset,
which featured 500-s data points and was longer than the two oestradiol datasets. This
dataset allowed us to thoroughly assess the proposed algorithm. To evaluate prediction
accuracy, MSE was employed, comparing real data with extrapolated data in the last 200 s.
Among the three recurrent networks studied, the GRU-based network outperformed the
other two LSTM-based networks [13]. Subsequently, this technique was applied to the
oestradiol datasets to extend the segments from 300 s to 500 s. Furthermore, this pro-
posed signal extrapolation can be regarded as an algorithm for time series forecasting for
similar datasets.

We categorized our classification objectives into two models: C1 and C2. C1 models
were tailored for individual datasets, focusing on six classes that spanned from zero analyte
presence to 10 µM concentrations. Conversely, the C2 model considered all datasets,
distinguishing 12 classes. These classifications included identifying normal and abnormal
data, detecting analyte presence, and measuring its concentration when present.

We designed seven deep learning networks incorporating recurrent, convolutional,
or hybrid layers to achieve our classification objectives. These networks were subjected to
two preprocessing methods: z-score scaling and z-score combined with the STFT method.
Furthermore, we examined the influence of segment length on the classification outcomes.
Evaluation metrics included overall accuracy and macro F1-score, given the presence of
multiple classes within each classification model.

The results indicated a significant improvement in model performance, particularly
in recurrent-based networks, when utilizing the STFT method as a data preprocessing
technique. However, the signal extrapolation method did not yield consistent effects
on classification models. Networks combining both recurrent and convolutional layers
consistently outperformed others. Interestingly, the performance of CNN networks was
comparable to that of Conv-RNN networks [38].

In our analysis, we observed that the C1 models and RNN networks achieved lower
accuracy levels with the 35-mer oestradiol dataset, consistent with the findings in [15].

Bioengineering 2023, 10, 1348 36 of 40

However, when accounting for randomness, all datasets exhibited similar results in
other networks.

In our future research, we plan to explore deep transfer learning techniques such
as VGG-19, Inception, and ResNet-50 for our classification models. This will enable us
to assess and compare their impact on the overall classification performance [54,55]. Ad-
ditionally, we intend to incorporate attention mechanisms into our classification models.
Attention mechanisms can improve feature extraction from input data, potentially enhanc-
ing the overall performance of our models [56]. We also can use hybrid networks [57] or
CNN networks [58] for signal extrapolation to examine and compare their effects on time
series forecasting.

The limitation in our study came from not having sufficient data. The first limitation
was related to the signal analysis technique used. In machine learning tasks, it is typical to
apply the same changes to both training and test data. However, we employed a method
to scale each time series derived from its mean and standard deviation. This occurred
due to the unfeasibility of calculating the mean and standard deviation using the existing
statistical techniques. The second limitation was related to the lack of data for testing the
CVAE networks. Thus, we used the scaling augmented data from our previous work. The
third limitation was related to the data augmentation with VAE for anomaly data. There
was insufficient abnormal data to evaluate the VAE networks for augmented data.

7. Conclusions

In this paper, we proposed three main techniques utilizing deep learning algorithms
to examine the signals from the drain current of three comparable electrochemical sensors
across the datasets named the 35-mer adenosine, and the 31-mer and 35-mer oestradiol.
These signals captured the sensors’ responses as the concentrations of the target substances
gradually rose from 1 nM to 10 µM. Our primary goal was to achieve automatic identifi-
cation and measurement of specific analytes based on a section of the signal captured by
these sensors. These three main steps to fulfil our goal can be categorized into (1) data
augmentation, (2) signal extrapolation, and (3) classification models.

The CVAE-based data augmentation method proved highly effective in enhancing and
strengthening the generalization abilities of classification models, while only insufficient
original data was provided. Furthermore, the results indicate that this augmentation
technique was particularly impactful when coupled with the STFT method as the data
preprocessing technique.

We used a signal extrapolation method to generate uniform signal lengths for all the
available datasets as the feed for classification models. The proposed GRU-based signal
extrapolation algorithm demonstrated exceptional performance in reconstructing original
data within the 35-mer adenosine dataset, which featured lengthier signals. Consequently,
this algorithm was applied to extrapolate oestradiol datasets with segments lasting 300 s.
Notably, while this method did not yield effective results in our classification models,
its inclusion in the study was pivotal for investigating our hypothesis concerning the
significance of segment length in predictive modelling. Ultimately, the findings of this
study do not support our initial hypothesis.

In terms of classification models, initially, we designed seven deep learning networks
with the aim of detecting and quantifying specific analyte concentrations across six distinct
classes. These classes ranged from the absence of the analyte to 10 µM, with each dataset’s
segments being analyzed independently. The classification performance was evaluated
with two metrics: accuracy and macro F1-score. The outcomes indicated that ConvGRU,
ConvULSTM, ConvBLSTM, and CNN exhibited robustness and consistently delivered
high-performance results compared to recurrent networks.

In the second classification model, we employed the same set of deep learning net-
works for a twelve-class classification task. The objective was to differentiate abnormal
data from normal segments, ascertain the absence or presence of the analytes in the sample,
and, if an analyte was present, identify the specific substance and quantify its concentra-

Bioengineering 2023, 10, 1348 37 of 40

tion. The results mirrored those of the previous model, demonstrating that ConvGRU,
ConvULSTM, ConvBLSTM, and CNN exhibited stability and consistently outperformed
recurrent networks.

The outstanding performance of ConvGRU, ConvULSTM, ConvBLSTM, and CNN
suggests that sequential data analysis does not necessarily yield better results with recur-
rent networks, which are specifically designed for such data. Our findings indicate that
the combination of convolutional and recurrent layers, as seen in ConvRNN networks,
outperforms pure RNN architectures, even with the increase in learnable parameters. This
suggests that, in the context of our datasets, the optimal classification strategy involves
using both recurrent and convolutional layers for effective time series feature extraction.

Additionally, our results highlight the efficiency of CNN models, which possess fewer
learnable parameters yet demonstrate computational efficiency and speed and satisfactory
classification performance when compared to ConvRNN models. This underscores the
versatility of CNNs in handling time series data with remarkable efficiency and accuracy.
The evaluation metrics of the classification models indicate that the proposed networks are
effective tools for automatic identification and measurement of analyte concentration.

Furthermore, our results indicate that the exceptional performance of these networks
can be effectively enhanced by employing an appropriate data preprocessing technique,
such as the STFT method, as a time-frequency feature extraction utilized in our study. This
suggests that the choice of data preprocessing technique could serve as a beneficial tool for
improving neural network performance, aligning with our goal of automatic identification
and measurement of specific analytes.

Author Contributions: Conceptualization, F.E., N.O.V.P., C.P.U. and A.W.; methodology, F.E.; soft-
ware, F.E.; validation, F.E.; formal analysis, F.E.; investigation, F.E. and A.W.; resources—computing
resources and analysis tools, F.E.; resources—laboratory samples, E.C. and H.P.T.N.; resources,
N.O.V.P.; data curation, E.C.; writing—original draft preparation, F.E.; writing—review and editing,
F.E., N.O.V.P., C.P.U. and A.W.; visualization, F.E.; supervision, A.W.; funding acquisition, N.O.V.P.
and C.P.U. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Marsden Fund, managed by the Royal Society Te Apārangi,
grant number VUW1708.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study might be available on request from
the corresponding author. There are restrictions on data availability due to their necessity for our
future work.

Acknowledgments: The authors express gratitude to Erica Happe for her assistance. It is acknowl-
edged that Erica Happe identified the abnormal data within the 35-mer adenosine dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
DL Deep Learning
STEM Scanning Transmission Electron Microscopy
IDS Intrusion Detection System
AC Analyte Concentrations
CNT Carbon Nanotube
STFT Short-Term Fourier Transform
FET Field-Effect Transistor
GAN Generative Adversarial Network

Bioengineering 2023, 10, 1348 38 of 40

AE Autoencoder
VAE Variational Autoencoder
CVAE Conditional Variational Autoencoder
CNN Convolution Neural Network
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
ULSTM Unidirectional Long Short-Term Memory
BLSTM Bidirectional Long Short-Term Memory
GRU Gated Recurrent Unit
FC Fully Connected
ELBO Evidence Lower Bound
AEVB Autoencoding Variational Bayes
SGVB Stochastic Gradient Variational Bayes
KL Kullback–Leibler

References
1. Al-Ashwal, N.H.; Al Soufy, K.A.; Hamza, M.E.; Swillam, M.A. Deep learning for optical sensor applications: A review. Sensors

2023, 23, 6486. [CrossRef] [PubMed]
2. Yasir, M.; Jianhua, W.; Shanwei, L.; Sheng, H.; Mingming, X.; Hossain, M. Coupling of deep learning and remote sensing: A

comprehensive systematic literature review. Int. J. Remote Sens. 2023, 44, 157–193. [CrossRef]
3. Incel, O.D.; Bursa, S.O. On-Device Deep Learning for Mobile and Wearable Sensing Applications: A Review. IEEE Sens. J. 2023,

23, 5501–5512. [CrossRef]
4. Thapa, A.; Horanont, T.; Neupane, B.; Aryal, J. Deep Learning for Remote Sensing Image Scene Classification: A Review and

Meta-Analysis. Remote Sens. 2023, 15, 4804. [CrossRef]
5. Pan, J.; Hu, Z.; Yin, S.; Li, M. GRU with dual attentions for sensor-based human activity recognition. Electronics 2022, 11, 1797.

[CrossRef]
6. Zhou, K.; Liu, Y. Early-stage gas identification using convolutional long short-term neural network with sensor array time series

data. Sensors 2021, 21, 4826. [CrossRef] [PubMed]
7. Zhang, J.; Chen, F.; Zou, R.; Liao, J.; Zhang, Y.; Zhu, Z.; Yan, X.; Jiang, Z.; Tan, F. A CNN-Based Method for Heavy-Metal Ion

Detection. Appl. Sci. 2023, 13, 4520. [CrossRef]
8. Li, K.; Ao, B.; Wu, X.; Wen, Q.; Ul Haq, E.; Yin, J. Parkinson’s disease detection and classification using EEG based on deep

CNN-LSTM model. Biotechnol. Genet. Eng. Rev. 2023, Online ahead of print. [CrossRef]
9. Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data augmentation for medical imaging: A systematic literature review. Comput. Biol.

Med. 2022, 152, 106391. [CrossRef]
10. Liu, C.; Antypenko, R.; Sushko, I.; Zakharchenko, O. Intrusion detection system after data augmentation schemes based on the

VAE and CVAE. IEEE Trans. Reliab. 2022, 71, 1000–1010. [CrossRef]
11. Prifti, E.; Buban, J.P.; Thind, A.S.; Klie, R.F. Variational Convolutional Autoencoders for Anomaly Detection in Scanning

Transmission Electron Microscopy. Small 2023, 19, 2205977. [CrossRef] [PubMed]
12. Chen, Z.; Ma, M.; Li, T.; Wang, H.; Li, C. Long sequence time-series forecasting with deep learning: A survey. Inf. Fusion 2023,

97, 101819. [CrossRef]
13. Pirani, M.; Thakkar, P.; Jivrani, P.; Bohara, M.H.; Garg, D. A comparative analysis of ARIMA, GRU, LSTM and BiLSTM on

financial time series forecasting. In Proceedings of the 2022 IEEE International Conference on Distributed Computing and
Electrical Circuits and Electronics (ICDCECE), Ballari, India, 23–24 April 2022; IEEE: Piscataway, NJ, USA; pp. 1–6.

14. Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and
Drop-GRU Neural Networks. Sensors 2022, 22, 4062. [CrossRef] [PubMed]

15. Esmaeili, F.; Cassie, E.; Nguyen, H.P.T.; Plank, N.O.; Unsworth, C.P.; Wang, A. Predicting analyte concentrations from electro-
chemical aptasensor signals using LSTM recurrent networks. Bioengineering 2022, 9, 529. [CrossRef]

16. Esmaeili, F.; Cassie, E.; Nguyen, H.P.T.; Plank, N.O.; Unsworth, C.P.; Wang, A. Anomaly Detection for Sensor Signals Utilizing
Deep Learning Autoencoder-Based Neural Networks. Bioengineering 2023, 10, 405. [CrossRef]

17. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

18. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
20. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
21. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.
22. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.

http://doi.org/10.3390/s23146486
http://www.ncbi.nlm.nih.gov/pubmed/37514779
http://dx.doi.org/10.1080/01431161.2022.2161856
http://dx.doi.org/10.1109/JSEN.2023.3240854
http://dx.doi.org/10.3390/rs15194804
http://dx.doi.org/10.3390/electronics11111797
http://dx.doi.org/10.3390/s21144826
http://www.ncbi.nlm.nih.gov/pubmed/34300566
http://dx.doi.org/10.3390/app13074520
http://dx.doi.org/10.1080/02648725.2023.2200333
http://dx.doi.org/10.1016/j.compbiomed.2022.106391
http://dx.doi.org/10.1109/TR.2022.3164877
http://dx.doi.org/10.1002/smll.202205977
http://www.ncbi.nlm.nih.gov/pubmed/36651114
http://dx.doi.org/10.1016/j.inffus.2023.101819
http://dx.doi.org/10.3390/s22114062
http://www.ncbi.nlm.nih.gov/pubmed/35684681
http://dx.doi.org/10.3390/bioengineering9100529
http://dx.doi.org/10.3390/bioengineering10040405
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Bioengineering 2023, 10, 1348 39 of 40

23. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
24. Contreras-Cruz, M.A.; Novo-Torres, L.; Villarreal, D.J.; Ramirez-Paredes, J.P. Convolutional neural network and sensor fusion for

obstacle classification in the context of powered prosthetic leg applications. Comput. Electr. Eng. 2023, 108, 108656. [CrossRef]
25. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
26. Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908.
27. Park, D.; Hoshi, Y.; Kemp, C.C. A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational

autoencoder. IEEE Robot. Autom. Lett. 2018, 3, 1544–1551. [CrossRef]
28. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf.

Process. Syst. 2015, 28, 3483–3491.
29. Nguyen, H.P.T.; Murugathas, T.; Plank, N.O. Comparison of duplex and quadruplex folding structure adenosine aptamers for

carbon nanotube field effect transistor aptasensors. Nanomaterials 2021, 11, 2280. [CrossRef]
30. Jauset-Rubio, M.; Botero, M.L.; Skouridou, V.; Aktas, G.B.; Svobodova, M.; Bashammakh, A.S.; El-Shahawi, M.S.; Alyoubi, A.O.;

O’Sullivan, C.K. One-pot SELEX: Identification of specific aptamers against diverse steroid targets in one selection. ACS Omega
2019, 4, 20188–20196. [CrossRef]

31. Alsager, O.A.; Kumar, S.; Zhu, B.; Travas-Sejdic, J.; McNatty, K.P.; Hodgkiss, J.M. Ultrasensitive colorimetric detection of
17β-estradiol: The effect of shortening DNA aptamer sequences. Anal. Chem. 2015, 87, 4201–4209. [CrossRef]

32. Maleki, S.; Maleki, S.; Jennings, N.R. Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering.
Appl. Soft Comput. 2021, 108, 107443. [CrossRef]

33. Stockwell, R.G.; Mansinha, L.; Lowe, R. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996,
44, 998–1001. [CrossRef]

34. Akan, A.; Cura, O.K. Time–frequency signal processing: Today and future. Digit. Signal Process. 2021, 119, 103216. [CrossRef]
35. Tang, S.; Yuan, S.; Zhu, Y. Data preprocessing techniques in convolutional neural network based on fault diagnosis towards

rotating machinery. IEEE Access 2020, 8, 149487–149496. [CrossRef]
36. Jafari, M.; Shoeibi, A.; Khodatars, M.; Bagherzadeh, S.; Shalbaf, A.; García, D.L.; Gorriz, J.M.; Acharya, U.R. Emotion recognition

in EEG signals using deep learning methods: A review. Comput. Biol. Med. 2023, 165, 107450. [CrossRef]
37. Yuan, Y.; Xun, G.; Jia, K.; Zhang, A. A multi-view deep learning method for epileptic seizure detection using short-time fourier

transform. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health
Informatics, Boston, MA, USA, 20–23 August 2017; pp. 213–222.

38. Garcia, C.I.; Grasso, F.; Luchetta, A.; Piccirilli, M.C.; Paolucci, L.; Talluri, G. A comparison of power quality disturbance detection
and classification methods using CNN, LSTM and CNN-LSTM. Appl. Sci. 2020, 10, 6755. [CrossRef]

39. Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing biosensors with machine learning. ACS Sens. 2020, 5, 3346–3364.
[CrossRef]

40. Kebaili, A.; Lapuyade-Lahorgue, J.; Ruan, S. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.
J. Imaging 2023, 9, 81. [CrossRef]

41. Wen, Q.; Sun, L.; Yang, F.; Song, X.; Gao, J.; Wang, X.; Xu, H. Time series data augmentation for deep learning: A survey. arXiv
2020, arXiv:2002.12478.

42. Iglesias, G.; Talavera, E.; González-Prieto, Á.; Mozo, A.; Gómez-Canaval, S. Data Augmentation techniques in time series domain:
A survey and taxonomy. Neural Comput. Appl. 2023, 35, 10123–10145. [CrossRef]

43. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [CrossRef]
[PubMed]

44. Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep learning for time series forecasting: A survey. Big
Data 2021, 9, 3–21. [CrossRef] [PubMed]

45. Namuduri, S.; Narayanan, B.N.; Davuluru, V.S.P.; Burton, L.; Bhansali, S. Deep learning methods for sensor based predictive
maintenance and future perspectives for electrochemical sensors. J. Electrochem. Soc. 2020, 167, 037552. [CrossRef]

46. Marimon, X.; Traserra, S.; Jiménez, M.; Ospina, A.; Benítez, R. Detection of abnormal cardiac response patterns in cardiac tissue
using deep learning. Mathematics 2022, 10, 2786. [CrossRef]

47. Cheng, D.; Fan, Y.; Fang, S.; Wang, M.; Liu, H. ResNet-AE for Radar Signal Anomaly Detection. Sensors 2022, 22, 6249. [CrossRef]
48. Zheng, M.; Man, J.; Wang, D.; Chen, Y.; Li, Q.; Liu, Y. Semi-supervised multivariate time series anomaly detection for wind

turbines using generator SCADA data. Reliab. Eng. Syst. Saf. 2023, 235, 109235. [CrossRef]
49. Yang, Z.; Li, Y.; Zhou, G. TS-GAN: Time-series GAN for Sensor-based Health Data Augmentation. ACM Trans. Comput. Healthc.

2023, 4, 12. [CrossRef]
50. Morid, M.A.; Sheng, O.R.L.; Dunbar, J. Time series prediction using deep learning methods in healthcare. ACM Trans. Manag. Inf.

Syst. 2023, 14, 2. [CrossRef]
51. Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Remote Sensing: Classification, Detection, and

Segmentation. Remote Sens. 2023, 15, 1821. [CrossRef]
52. Dhaka, V.S.; Kundu, N.; Rani, G.; Zumpano, E.; Vocaturo, E. Role of Internet of Things and Deep Learning Techniques in Plant

Disease Detection and Classification: A Focused Review. Sensors 2023, 23, 7877. [CrossRef]
53. Zheng, W.; Chen, G. An accurate GRU-based power time-series prediction approach with selective state updating and stochastic

optimization. IEEE Trans. Cybern. 2021, 52, 13902–13914. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.compeleceng.2023.108656
http://dx.doi.org/10.1109/LRA.2018.2801475
http://dx.doi.org/10.3390/nano11092280
http://dx.doi.org/10.1021/acsomega.9b02412
http://dx.doi.org/10.1021/acs.analchem.5b00335
http://dx.doi.org/10.1016/j.asoc.2021.107443
http://dx.doi.org/10.1109/78.492555
http://dx.doi.org/10.1016/j.dsp.2021.103216
http://dx.doi.org/10.1109/ACCESS.2020.3012182
http://dx.doi.org/10.1016/j.compbiomed.2023.107450
http://dx.doi.org/10.3390/app10196755
http://dx.doi.org/10.1021/acssensors.0c01424
http://dx.doi.org/10.3390/jimaging9040081
http://dx.doi.org/10.1007/s00521-023-08459-3
http://dx.doi.org/10.1098/rsta.2020.0209
http://www.ncbi.nlm.nih.gov/pubmed/33583273
http://dx.doi.org/10.1089/big.2020.0159
http://www.ncbi.nlm.nih.gov/pubmed/33275484
http://dx.doi.org/10.1149/1945-7111/ab67a8
http://dx.doi.org/10.3390/math10152786
http://dx.doi.org/10.3390/s22166249
http://dx.doi.org/10.1016/j.ress.2023.109235
http://dx.doi.org/10.1145/3583593
http://dx.doi.org/10.1145/3531326
http://dx.doi.org/10.3390/rs15071821
http://dx.doi.org/10.3390/s23187877
http://dx.doi.org/10.1109/TCYB.2021.3121312
http://www.ncbi.nlm.nih.gov/pubmed/34731085

Bioengineering 2023, 10, 1348 40 of 40

54. Jana, S.; Middya, A.I.; Roy, S. Participatory Sensing Based Urban Road Condition Classification using Transfer Learning. Mob.
Netw. Appl. 2023, 1–17. [CrossRef]

55. Neupane, B.; Horanont, T.; Aryal, J. Real-time vehicle classification and tracking using a transfer learning-improved deep learning
network. Sensors 2022, 22, 3813. [CrossRef]

56. Li, W.; Chen, H.; Liu, Q.; Liu, H.; Wang, Y.; Gui, G. Attention mechanism and depthwise separable convolution aided 3DCNN for
hyperspectral remote sensing image classification. Remote Sens. 2022, 14, 2215. [CrossRef]

57. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020,
32, 17351–17360. [CrossRef]

58. Silva, A.Q.B.; Gonçalves, W.N.; Matsubara, E.T. DESCINet: A hierarchical deep convolutional neural network with skip
connection for long time series forecasting. Expert Syst. Appl. 2023, 228, 120246. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11036-023-02118-6
http://dx.doi.org/10.3390/s22103813
http://dx.doi.org/10.3390/rs14092215
http://dx.doi.org/10.1007/s00521-020-04867-x
http://dx.doi.org/10.1016/j.eswa.2023.120246

	Introduction
	Background of Deep Learning Models
	Recurrent Neural Network
	Conventional Recurrent Neural Network
	Long Short-Term Memory
	Gated Recurrent Unit

	Convolutional Neural Network
	Variational Autoencoder
	Conditional Variational Autoencoder

	Materials
	Datasets Description
	Data Preparation
	Data Normalization
	Segmentation
	Anomaly Detection
	Segment Labeling

	Data Preprocessing
	Data Split

	Methods
	Data Augmentation
	Signal Extrapolation
	Classification Models Architectures
	Model Performance Evaluation
	Prediction Model Evaluation Metrics
	Classification Model Evaluation Metrics

	Results
	Data Augmentation
	Signal Extrapolation
	Classification Models
	C1 Models
	C2 Model

	Discussion
	Conclusions
	References

